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Exact diagonalization study of the frustrated Heisenberg model
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The spin- 2 frustrated Heisenberg model is studied on a square lattice using the modified Lanc-
zos technique. Frustration is introduced in the system through an additional coupling along the
diagonals of the plaquettes. On a 4X4 lattice the ground state smoothly interpolates between two
asymptotic Neel-like limits. However, on a narrow region of parameter space we find that the
lowest-lying levels above the ground state are singlets rather than triplets, suggesting the existence
of a new phase in the thermodynamic limit.

What are the properties of the ground state of a two-
dimensional Heisenberg model with frustration? This
question was raised some time ago by Anderson' in the
context of the spin- 2 triangular lattice. A new spin-
liquid state [the resonating-valence-bond (RVB) state]
has been proposed as a candidate for the ground state of
frustrated systems. The recent discovery of high-T, su-
perconductors has induced considerable work in this area
because it is believed that the introduction of doping in
the half-filled Hubbard model is similar to adding frustra-
tion to a spin system. That may destabilize the Neel
state in favor of a RVB-like state. Other speculations link
the ground state of the frustrated Heisenberg model with
the fractional quantum Hall state.

However, the existence of a spin-liquid ground state for
some physically realistic spin- 2 antiferromagnet in 2D
has not been shown. Recently, a step forward in that
direction has been given: a 2D Heisenberg model with
frustration was studied in Ref. 5 using conventional spin-
wave techniques. A small region in parameter space was
found where the ordered states are melted by fluctuations.
That opens the possibility of the existence of a disordered
ground state in that region. Since spin-wave techniques
are based on the evaluation of Auctuations around ordered
states in the large S limit, other approaches (specially nu-
merical methods) are necessary to analyze the S= —,

'

model. However, an analysis of the Heisenberg model
with frustration using Monte Carlo techniques is very
difficult because negative weights are induced in the cal-
culation. So far, the only reliable method for this type of
problem is the study of small lattices using the Lanczos
approach. In this paper we present an exact diagonaliza-
tion analysis of the frustrated Heisenberg model using a
modification of the Lanczos method that has been recent-
ly used in the study of the unfrustrated 2D Heisenberg
model and related problems.

We have studied the model described by the Hamiltoni-
an

where S; is a spin- —, operator at site i of a two dimension-

al square lattice with periodic boundary conditions.
e(=e„or e~) denotes unit vectors in the two directions
while d(=e„+ er) denotes vectors along the diagonals of
the plaquettes. In this paper we take J~ =2.0. For J2 =0
convincing evidence has been presented ' showing that
the ground state is Neel-like. The coupling J2 introduces
frustration in the problem so the Neel state cannot be the
ground state for large enough values of J2. However, in
that limit the system decouples into two unfrustrated sub-
lattices each one with Neel order. Classically (S=~),
the change from one regime to another occurs (abruptly)
at J2jJ~ =0.5. Around this region in parameter space is
where we have the possibility of finding a new phase for
the S = —,

' model once quantum fluctuations are properly
taken into account.

What sizes and geometries of lattices are more ade-
quate for our search of an intermediate phase in the frus-
trated Heisenberg model? It is certainly important to
keep the main symmetries of the bulk lattice. For that
purpose special square lattices can be constructed. How-
ever, from them we should exclude those lattices where
N/2=odd (N is the number of sites) otherwise for large
values of J2 the system would be divided into two frustrat-
ed sublattices. Then, it is convenient to analyze square
lattices with special geometries having 4,8, 16, . . .
sites.

As numerical technique we use the modified Lanczos
method. Our main results are the following: The four-
site lattice can be solved analytically. There is a crossing
of levels at J2 =1.0 between the only two possible singlets
of this lattice without additional intermediate phases.
More interesting are the results for an 8-site lattice (for
the geometry of this lattice see Fig. I of Ref. 9). In this
case we have 14 singlets. In Fig. 1 we show the energies of
the lowest-lying levels. We found that these energies are
straight lines as a function of J2. At J2=1.0 there is
again a crossing between two singlet states. The stag-
gered magnetizations change abruptly at this point since a
crossing is like a first-order phase transition. However,
note that at exactly J2=1.0 a third singlet becomes de-
generate with the other two Neel-like states (then there is
an intermediate phase in this problem at only one point).
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FIG. 1. The energy of the lowest-lying levels of the 8-site lat-
tice. Shown are the singlet ground states yo, yl and a close third
singlet y2. Also shown are the two lowest-energy triplet states
y3 and y4.

This interesting detail is important to understand some
unexpected results below.

ln Fig 2we. show the ground-state energy (Ep) vs J2
for a 16-site (4X4) lattice (in many systems this size of
the lattice has proven to be large enough to capture the
essential physics of the problem). The momentum k of
the ground state is k = (0,0). Although for J2 between 1.0
and 1.3 there is a rapid change in the slope of Eo, the
crossover between the two asymptotic Neel limits seems to
be smooth, quite different from the results on the 4- and
8-site lattices. This suggests that there is no crossing of
levels in the ground state of this model for any value of J2.
In Fig. 2 we also show the energies of the lowest-lying ex-
cited states with nonzero momentum (these states are very
easy to study with our technique simply by changing the
quantum numbers of the starting configuration). For

small J2 the first excited state is a triplet and has
k=(x, z), while at large J2 it is also a triplet but with
k=(x, O) or (O, x) (doubly degenerate due to the decou-
pling of the lattice into two sublattices). These states will
become the spin waves of the Neel states in the thermo-
dynamic limit. For large and small J2 the other states
with nonzero momenta are at much higher energies. This
is the typical behavior of a Neel ordered system. Howev-
er, note that in the region where Ep rapidly changes cur-
vature, the first excited state with nonzero momentum is a
singlet with k (O, n) or (x,0) rather than a triplet. This
suggests that we may find new results in that intermediate
region as shown below.

In Fig. 3 we show the square of the staggered magneti-
zation defined as

(2)

We have also measured the staggered magnetization
(M2) in one of the two sublattices in which the system
decouples at large Ji. The results show that M~ at J2=0
has a large value typical of a Neel state. For J2 = 1.2 this
magnetization has already decreased (smoothly) to a
small number. In the same region of parameter space M2
increases also smoothly. From Fig. 2 we observe that
there is a narrow region where both magnetizations are
small and in that regime we may find a new phase in the
thermodynamic limit (the continuity of the magnetiza-
tions suggest second-order phase transitions). Bigger lat-
tices are clearly necessary to clarify whether the two mag-
netizations vanish (in the bulk limit) at different points or
not.

Analyzing the number of iterations (z) required by our
numerical method to converge to the ground-state energy
with an accuracy of 10 we find that it has a clear peak
at J2=1.35. Relaxation times are usually related with
the difference in energy AE between the ground state and
the first excited state through z = I/&F. . Then this result
suggests the existence of another singlet state with zero
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FIG. 2. Energy of the ground state (per site) on a 4& 4 lattice
vs J2. Also shown are the first excited states with nonzero
momentum and the momentum of each state.

FIG. 3. Staggered magnetizations Mj and Mf vs Jq on a 4X 4
lattice. The error is smaller than the points.
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momentum very close to the ground state. They may easi-
ly become degenerate or cross in the thermodynamic limit.

To study this excited (singlet zero momentum) state
with our numerical method we need to use as a starting
configuration a state orthogonal to the ground state. In
principle, that can be accomplished by selecting as a trial
function the state

~ y&,; ~&
= ~p& (p~ leap& ~ I/fp&, where

~ p&

is arbitrary (as long as its projection on the excited state is
nonzero) and

~ yo& is the ground state previously calculat-
ed. However, we found that in practice it is simpler to ob-
tain an orthogonal state by inspection of the ground state.
For example, if two states

~ ai&, ( a2& of the S, basis ap-
pear in the ground state with weights ai, a2, respectively,
then a state orthogonal to the ground state is

~ y&„,,~&

=
( a ~ &

—a ~/az ~
a 2&. This is the method we used and, in

general, it produces good results. For example, evaluating
the ground-state energy Eo with error 10 we get an ac-
curacy of 10 in the energy of the first excited state. If
we continue the iterations after an error of 10 is
reached, the state decays into the ground state because
originally it had a projection on the ground state due to
small errors in a~, az. We can generalize these ideas for
higher excited states, but of course the accuracy of each

—1.0

new excited state is poorer than the previous one.
Applying this technique we found the remarkable result

shown in Fig. 4(a) (some special values of the energies are
also presented in Table I). In the region Jz= (1.1, 1.5)
there is another singlet state with zero momentum (E~),
very close to the ground state. Note that the gap between
these two states is much smaller than the gap between the
triplet (ET) and the singlet (Eo) states at J2 =0 (see also
Fig. 2) which we know will become degenerate in the ther-
modynamic limit. In Fig. 4(a) we also show some points
corresponding to a second excited state (E2). Those
values have error bars because of the difFiculty in stabiliz-
ing the state against a decay into the ground state. '

One possibility is that the two almost degenerate states
are the equivalent of the Neel states yo and y& of Fig. 1

with a small gap opened between them (which is possible
since they have the same quantum numbers). However, if
an interchange of states effectively has occurred then the
excited state should have magnetic properties opposite to
those of the ground state, as yo and y~ have on the 8-site
lattice. We have evaluated the magnetizations in the ex-
cited state and they are qualitatively very similar to those
of the ground state, not the opposite.

Then we have a more interesting situation where on a
finite region of parameter space the lowest-lying levels
above the ground state are singlets rather than triplets.
Consider, for example, the following scenario: Suppose
that the states whose energies are denoted by Eo and E2
(or some other excited state) in Fig. 4(a) correspond to
the states yo and y~ on the 8-site lattice (Fig. 1) with a
gap opened. Then the singlet (E~) of Fig. 4(a) is in

correspondence with y2 of Fig. 1 which was degenerate
with the ground state at one-point on the 8-site lattice. '

Then in the interval J2= (1.1, 1.5) we may have a new
disordered ground state' ' (the staggered magnetiza-
tions are very small in that region). The "one point" new
phase of the 8-site lattice corresponds now to a finite re-
gion.

It is very dificult to imagine that the fact that the
lowest-lying excited states are singlets rather than triplets
can be a finite-size efI'ect. Then, we conjecture a phase di-
agram for this model as shown in Fig. 4(b). Since the
magnetizations behave very smoothly we expect second-
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TABLE I. Ground-state energy (Ep) and first excited-state
energy (E~) per site (both singlets with zero momentum) of the
2D Heisenberg model with frustration as a function of J2 on a
4X41attice. The error is in the last digit.

ordered
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ordered
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each

sublattice)
FIG. 4. (a) Ground-state energy (Eo) and first excited-state

energy (E~) (per site) on a 4&4 lattice as a function of Jz near
the degeneracy region. Also shown is the second excited-state
energy (Ez). The three states are singlets with k=(0,0). For
comparison, we also show the triplet (ET) and singlet (Es)
states of Fig. 2. (b) Possible phase diagram of the Heisenberg
model with frustration in the thermodynamic limit.

0.950
1.100
1.150
1.200
1.325
1.400
1.500
1.600
1.750

Ep

—1.065 978
—1.047 189
—1.047 183
—1.051 792
—1.089 305
—1.127 716
—1.188 546
—1.254670
—1.358437

—1.0160
—1.0254
—1.0307
—1.0380
—1.0804
—1.1169
—1.1691
—1.2233
—1.3072
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order phase transitions separating the different phases.
This represents the first evidence of the existence of a new
intermediate phase in the spin- —,

' frustrated Heisenberg
model.

Our lattice is not big enough to address finer details
about the properties of the new disordered phase. Does
the very small gap found between the first two singlets
vanish in the bulk limit'? If this is true then we have a new
phase with a degenerate ground state (probably having
massless excitations). A second possibility is that the
almost-zero singlet-singlet gap is an artifact of our lattice
and the bulk limit has a finite gap. In that case, the exci-
tations of the disordered phase may be massive (as sug-
gested in the RVB states with short-range bonds).

Of course considerable work is still needed. That work
should be along two main directions. (a) To check the
infiuence of finite size effects in our results it is important
to study a square lattice with 20 sites (bigger lattices do
not have the correct symmetries or are too big for Lanczos
methods). This case will require considerably more com-
puter time not only because the number of states in the
Hilbert space is larger than for the 16-site case (factor
=6) but also because the gap between singlets may be

even smaller increasing the number of iterations needed
for a good convergence. (b) The second area of investiga-
tion is the study of the properties of the first excited state.
Here we will find that a clear definition of a spin-liquid
state is unknown (in other words, the operator whose sus-
ceptibility diverges in a RVB phase is unknown to us). '

Work along these lines is in progress.
Note added. After completion of this work we learned

of a calculation by F. Figueirido et al. ' with results simi-
lar to ours.
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