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A unifying physical picture, the purpose of which is to account for both the experimental re-
sults of Devoret et al. [Phys. Rev. Lett. 53, 1260 (1984)] and their more recent simulation data
[Phys. Rev. B 36, 58 (1987)] throughout a wide range of values of the friction y is discussed.
Our theoretical predictions are compared to the results of a digital simulation experiment, which

we have carried out for this specific purpose.

The resonant activation of a current-biased Josephson
tunnel junction has been recently studied by using the pic-
ture of a Brownian particle, with space coordinate x and
velocity v, moving in a nonlinear potential ¥ (x) under the
influence of both a coherent and oscillatory driving force
and a standard fluctuation-dissipation process' ~3
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By using the projection-operator method,* the system of
Eq. (1) is described by a Fokker-Planck equation, where
the effect of the coherent field is simulated by a v-
diffusion term, with a diffusion coefficient dependent on x
and v.

We know from the celebrated Kramers theory? that in
the inertial case the process of escape from a potential
well is given by (V) is the barrier intensity)
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and is dominated by the energy diffusion around the bot-
tom of the reactant well. This allows us to safely®’ make
a mean-field approximation, which replaces the x- and v-
dependent diffusion coefficient with its mean value. The
resulting Fokker-Planck equation is shown® to lead im-
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mediately to the following effective temperature:
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where P(w) is the energy absorbed by the system per unit
of time (when the steady state is reached) and is given by
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The nice aspect of this theory is that, according to the
spirit of the Kubo linear-response theory,® P(wg) is eval-
uated in terms of a property of the system in the absence
of the coherent excitation, i.e., (v (0)v (£))eq.

Thus, I'(4) is obtained from Eq. (4) by replacing T
with Teq of Eq. (5) and the enhancement of the rate pro-
cess, defined by Devoret et al. 2 as
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is written as follows:
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This leads us to the following expression for the observ-
able InR:?
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Under the assumption

P(wg)/y<ksT, ’ 10)
the logarithm of R reads
Vo P(wg)
InR = - . 1
n kBT )/kBT ( 1)

From now on the problem reduces to that of evaluating
the Laplace transform of (v(0)v(z))eq at the frequency
wg. This is not an easy task and a detailed investigation
has recently been totally devoted to discussing this intri-
guing problem.’ In Ref. 9 this problem has been faced
with different techniques. First of all, a very advanced re-
cursion method '° has been used. The convenience of each
technique depends on the physical regime under investiga-
tion. It has been shown that when the damping y is large
enough, the major reason for the line broadening is the
dissipation term — yv(z) itself appearing in Eq. (1). This
is the counterpart of longitudinal relaxation processes in
magnetic resonances, since the broadening is associated
with an exchange of energy between system and “bath.”’
In the extremely underdamped limit, on the contrary, the
main reason of broadening is the anharmonic nature of
the potential V. A very small y means that an almost van-
ishing stochastic force is sufficient to make the Brownian
particles spread within the potential well. Due to the
anharmonic nature of the potential V¥, these Brownian
particles explore regions characterized by different local
frequencies. When studying a process of escape from a
potential well, a finite temperature means that the
Brownian particle can “feel” the influence of local fre-
quencies lower than that corresponding to the harmonic
approximation at the bottom of the potential well.!!
When the system is excited by a coherent radiation field,
the result is a line broadening of the absorption spectrum,
which does not imply any significant exchange of energy
between system and bath. This is reminiscent of trans-
verse relaxation processes in the field of magnetic reso-
nances.” When the former condition applies, the use of
the recursion rules of Ref. 10 leads to reliable results.>'?
On the contrary, when the latter condition applies, the re-
cursion rule method should be supplemented by suitable
asymptotic techniques, leading virtually to a resummation
over an infinite continued fraction.'® In this case it is con-
venient to follow a different procedure.

If the “longitudinal” relaxation process is to be totally
neglected, the problem of the evaluation of P(wg) can be
faced by adopting a technique which consists of taking ad-
vantage from the property of nonlinear oscillators, the os-
cillations of which are related to the energy E of an oscil-
latory trajectory in the well via a well precise relation,
denoted by w(E). We thus obtain’
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The theory of Ref. 9 allows us to predict that the line

shape of InR on the high-frequency side is controlled by 7.
The behavior on the low-frequency side is proved to exhib-

it universal behavior.? This is so because from Ref. 9 we
see that in the extremely underdamped limit® the low-
frequency side of the spectrum!'' consists of a series of
“quantized” transition frequencies embodied within a
broad spectrum and, on this side, the “longitudinal” relax-
ation process only contributes to making those transition
overlap. Thus, as long as the “longitudinal” process is
kept conveniently slower than the “transverse” one, this
side of the spectrum must only depend on the potential
shape and the temperature 7. On the high-frequency
side, on the other hand, according to Eq. (12) the spec-
trum should brusquely end at the frequency corresponding
to the harmonic expansion at the bottom of the potential
well. The presence of a finite “longitudinal” process es-
tablishes a further line broadening, proportional to y, and
this is the reason why this side of the spectrum is proven to
sensibly depend on 7.2

For a quantitative illustration of our remarks above,
taking also into account the effect of a finite “longitudi-
nal” relaxation, we can generalize the result of Eq. (12)
according to the lines of Ref. 12. This leads us to the fol-
lowing expression for P(wg):
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o(E) is precisely the inverse of E(w) appearing in Eq.
(12). According to the theory of Ref. 12, this expression
also takes into account that, due to the absorption of ener-
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FIG. 1. InR [Eq. (9)] vs wr/ws, where wp is the frequency at
the bottom of the well. The solid line is the theory [Eq. (13)],
the data with bars are the results of the computer simulation;
the error bars are the one standard deviation confidence interval.
The potential [Eq. (1)1 is ¥(x) =px+cos(x). In the simulation
p=0.73, kgT =0.1, 4 =0.015, and y=0.05 [see Egs. (1) and
)l
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gy from the coherent field, the effective temperature of the
system increases. The unperturbed energy distribution of
the linear response theory is indeed replaced by the excit-
ed energy distribution of Eq. (16). This leads to the eval-
uation of T via an iterative approach. The mere appli-
cation of the linear-response theory would lead us to the
same scaling properties as those pointed out by the au-
thors of Ref. 2. This iterative approach, on the contrary,
leads to a deviation from the predictions of the linear-
response theory which can be significant around the top of
the absorption curve.

To test this prediction we carried out a digital simula-
tion experiment leading to results in qualitative agreement
with those of Ref. 2. The algorithm used is described else-
where, !4 and it is applied with a time step set to 35 of the
oscillation period at the bottom of the well and the
residence time inside the well computed by averaging
more than 2000 first passage times. On leaving the well,

the particle was brought back to the bottom of the well
with random velocity extracted from a Gaussian distribu-
tion with zero average and standard deviation kp7T and
random phase of cos(wg?), extracted from a flat distribu-
tion between 0 and 2z. In Fig. 1 we compare our theoreti-
cal prediction to the results of our numerical simulation.
We used an excitation field so weak that at the top of the
absorption curve our iterative approach leads to a Teg
with a relative deviation from the prediction of the linear
response of about 15%. Note that no fitting parameters
have been used. The quantitative agreement is as satisfac-
tory as that of other recent theoretical approaches. '>16
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