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Magnetism in fcc rhodium and palladium
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First-principles total-energy band calculations using the fixed-spin-moment procedure are used to
study the volume dependence of the magnetic behavior for fcc Rh and Pd. We calculate the total
energy, the magnetic moment, and the spin-polarized l-decomposed electron occupancy from below
the equilibrium volume to the free-atom limit, and show the magnetic susceptibility in the nonmag-
netic range. We find that both metals are nonmagnetic at zero pressure, but undergo first-order
transitions from nonmagnetic to magnetic behavior at expanded volumes. In both cases, the onset
of magnetic behavior is accompanied by magnetic moments that exceed the Hund's-rule atomic lim-
it. With increasing volume, we find a depletion of s and p states and a corresponding increase of d
states with an approach to the 4d and 4d ' free-atom configurations for Rh and Pd, respectively.

I. INTRODUCTION

Since transition-metal free atoms have magnetic mo-
ments consistent with Hund's rule and atomic ground-
state configurations, all condensed transition-metal sys-
tems must also exhibit magnetic behavior at sufficiently
large volumes. For normally magnetic transition metals,
the onset of magnetic behavior occurs at volumes below
equilibrium, whereas, for normally nonmagnetic transi-
tion metals, the onset occurs at expanded volumes. It has
been shown that all transition metals exhibit an onset of
magnetic behavior at well-defined critical volumes, and
that the resulting transitions can be second- order, first
order, or composite made up of a combination of
second-order and first-order transitions. ' In all cases, the
onset of magnetic behavior is singular. That is, the mag-
netic moment increases with increasing volume with an
infinite slope at the onset of magnetic behavior. In gen-
eral, the magnetic moment of a condensed transition met-
al is less than Hund's rule applied to atomic ground-state
configurations, and approaches the limiting values from
below. As we will show, Rh and Pd are exceptions with
magnetic moments exceeding Hund's rule and approach-
ing the limiting values from above.

The normally nonmagnetic 4d fcc elements, Rh and
Pd, are isoelectronic to the magnetic 3d elements, Co and
Ni. It is therefore reasonable to expect these 4d elements
to be nearly magnetic, even though the Pd free atom is
nonmagnetic with a 4d ' Ss configuration, and even
though both Rh and Pd are nonmagnetic at zero-pressure
equilibrium volumes. Both metals exhibit large paramag-
netic susceptibilities, with the Pd susceptibility approxi-
mately twice that of Rh. In addition, late 3d transition
metal impurities lead to ferromagnetic behavior in both
Rh and Pd. This incipient magnetic behavior implies in-
teresting volume-dependent magnetic properties.

The expectation that Rh and Pd are "almost" magnetic
even at equilibrium volumes has led to considerable in-
terest in their electronic structure. Augmented plane
wave (APW) band calculations for Pd and KKR band
calculations for both Rh and Pd yield typical fcc

density-of-states (DOS) with the Fermi energy, EF, locat-
ed immediately above the sharp leading peak for Pd and
just below the same peak for Rh. A recent relativistic
treatment shows that without spin-orbit coupling Pd be-
comes magnetic at a 5% lattice expansion; with spin-
orbit coupling, a 10% lattice expansion is required.

In the present work, we use nonrelativistic
augmented-spherical-wave (ASW) spin-polarized band
calculations and the fixed-spin-moment procedure to
study the volume dependence of the magnetic behavior
for metallic Rh and Pd from below the equilibrium
volume up to the free-atom limit. We show that the on-
set of magnetic behavior is first order, with initial mo-
ments exceeding the Hund's-rule free-atom limit and that
the moments decrease and approach the free-atom values
at large volumes. Thus we show that our calculations
yield the expected limiting free-atom magnetic behavior
as well as the correct equilibrium zero-pressure behavior.

II. SPIN-POLARIZED CALCULATIONS

In Figs. 1 and 2, we present our calculated total ener-
gies and magnetic moments as functions of the Wigner-
Seitz radius, rws [or equivalently, as functions of the
volume, V=(4'/3)rws]. The total energies are given
relative to the total energy of the free atom, E, . For Rh,
we find a nonmagnetic solution up to 3.32 a.u. , and mag-
netic onset at 3.25 a.u. For Pd, the nonmagnetic solution
terminates at res =3.10 a.u. , and we find an onset of
magnetic behavior at res =3.06 a.u. The equilibrium lat-
tice separations are indicated on the figures. Since we
find equilibrium at 2.81 and 2.88 a.u. , we see that magne-
tism occurs at 16%%uo and 6%%uo (in agreement with Ref. 5)
lattice expansions for Rh and Pd, respectively.

As shown, the magnetic moments for both systems are
discontinuous at the transition, and have only limited
ranges of coexistence for nonmagnetic and magnetic be-
havior. As a consequence, the two systems undergo weak
first-order transitions, and show only small discontinui-
ties in the slopes of the energy versus volume curves.
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FIG. 1. Calculated magnetic moment and total energy as a
f f Rh showing a weak first-order transitionfunction of r~s or cc

from a nonmagnetic (NM) to a ferromagnetic (FM) state. The
termination of the NM state, and the beginning of the FM state
define two critical points.

4d ' free-atom ground-state configurations from above, a
behavior that is in contrast with most of the other transi-
tion metals.

A Stoner analysis based on the monmagnetic DOS
readily shows that the initial magnetic moments are a
direct consequence of the integrated DOS from the Fermi
energy to the lead peak. In Fig. 3 we show the DOS, for
Rh d Pd at the equilibrium lattice separation. s

ad-shown, the Fermi energy for Rh lies well below the lea-
ing peak while the Fermi energy for Pd lies just above the
peak. The relative diAerence between the initial magnetic
moment values for the two systems is in good agreement
with these integrated segments of the DOS.

In Fi s. 4 and 5, we show the calculated volume depen-
dence of the I-decomposed occupancy for the two systems

R =6 The nonmagnetic solution extends upup to ws= a u.
to a stability limit (the upper critical point) of 3.32 a.u.
for Rh and 3.10 a.u. for Pd where the occupancies are not
spin polarized. The magnetic solution begins at the lower
critica point o1 f 3.25 a.u. for Rh and 3.06 a.u. for Pd
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FICE. 3. Density of states at the equilibrium lattice separation
for Rh and Pd taken from Ref. 4. The initial magnetic moments
shown in igs. anF' . 1 d 2 are a consequence of the integral from
the Fermi energy to the leading peak.
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FIG. 4. Calculated spin-polarized electron occupancy as a
function of r~s for fcc Rh showing the discontinuity at the
lower critical point where magnetic behavior begins.
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FIG. 5. Calculated spin-polarized electron occupancy as a
function of r~s for fcc Pd showing the discontinuity at the
lower critical point where magnetic behavior begins.

decomposed occupancies. The discontinuity in the ma-
jority (up-spin) and minority (down-spin) d-band occu-
pancy at the lower critical point reAects the singular na-
ture of the transition. Our calculated s,p, and d spin-
polarized occupancy shows that most of the magnetic
moment can be accounted for by d-band polarization.
For Rh, the s bands and the p bands are both polarized
antiparallel to the d bands immediately above the transi-
tion, but the polarization changes sign at larger volumes.
The large-volume limit implies 4d Ss and 4d Ss majori-
ty and minority band configurations and the experimental
4d composite ground-state configuration. For Pd, our
calculations show that the s bands and p bands are only

slightly polarized (antiparallel to the d bands) and we
show only the average occupancy. The differences be-
tween majority and minority band occupancy for the s
band and p band are equal and relatively constant
(= —0.01 electrons) throughout the range of magnetic
behavior. Clearly, the large-volume limit implies that
both the majority and minority d bands are full and that
the s,p bands are completely empty. Thus we find 4d 5s
and 4d Ss majority and minority band configurations
and the experimental 4d ' composite ground-state
configuration.

Figures 4 and 5 show that, with increasing volume,
electron transfer occurs from the s,p bands to the d
bands. Calculated DOS show that the s,p bands are grad-
ually pushed to higher energies (above the Fermi energy),
and that a gap develops when the s,p bands no longer
overlap with the (spin-split) d bands. Electron transfer
continues until atomic configurations are reached (where
the spin-split s,p bands finally separate). In the process,
the individual bands become narrower. Figures 1, 2, 4,
and 5 show that, even at volumes where the free-atom
configuration is achieved and electron transfer ceases, the
total energy still does not reach the free-atom value be-
cause the bands still have finite widths. The small
changes in total energy at still larger volumes are a conse-
quence of final band narrowing to discrete atomic levels.

III. MAGNETIC SUSCEPTIBILITY

All of the results described in this work are derived
from analysis of calculated E(M) curves and their deriva-
tives. The magnetic field, H, required to maintain the
system at a magnetic moment, M, is given by
H =BE/BM. Stable solutions are defined by magnetic
moments that required no field and therefore correspond
to local minima in E(M) curves (local maxima define un-
stable solutions). If a local minimum occurs at M =0,
the system has a nonmagnetic solution; if a local
minimum occurs at a finite M value, the system has a
magnetic solution. For any solution, the magnetic sus-
ceptibility, g, is given by,

q=BMZBa = lx(B'EyBM') .

Thus, the susceptibility at a given solution can be found
from the curvature of the E(M) curve at any volume
(Wigner-Seitz radius). In the nonmagnetic range, the
curvature is taken at M =0. Since the Pauli paramagnet-
ic susceptibility, y0, is,

Xo=t aN«F»
where N ( Ez ) is the DOS at the Fermi energy for one
spin, and p~ is the Bohr magneton, the susceptibility
enhancement ratio, g/ga, is,

X~Xo= I &[@AN(Ep. )B'E/BM'] .

We expect g/ga to approach unity at low volumes where
the systems have free electron behavior, and to become
singular at the termination of nonmagnetic behavior.

At a given volume in the nonmagnetic range, g is
determined by fitting our calculated E(M) curves to a
Landau expansion (in even powers of M), and extracting
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8; netic band calculations and involve an approximate
determination of an exchange-correlation integral at the
equilibrium volumes. We note the general agreement be-
tween the present and the perturbation results for both
systems, and the large susceptibility for Pd.

IV. DISCUSSION
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FIG. 6. Calculated susceptibility enhancement ratios as a
function of r~s for fcc Rh and Pd. Arrows indicate equilibri-
um, and + indicate points taken from Refs. 4 and 8.

the I=0 curvature. Figure 6 shows calculated p/pp as
a function of rws for Rh and Pd. The volume depen-
dence of g/gp depends upon details of the DOS through
the volume dependence of the curvature of calculated
E(M) curves and X(EF). The apparent noise in the cal-
culated points shown in the figure may be a reAection of
these details.

Also shown in Fig. 6 are two points determined ' by
using perturbation theory to find the response of each
system (near the equilibrium volume) to a uniform exter-
nal field. Our volume-dependent results are derived
directly from spin-polarized calculations and E (M)
curves. The perturbation results are based on nonmag-

Theoretical ground-state properties are usually derived
from an analysis of a fit of a calculated curve of total en-
ergy versus volume to a simple function. The function
effectively smooths the calculated. points and enables a
better determination of the curvature used to determine
the bulk modulus. Equilibrium Wigner-Seitz radii, bulk
moduli, and cohesive energies derived from the position,
curvature, and depth of the minimum in the total energy
versus rws curves are indicated in Figs. 1 and 2. The list-
ed cohesive energies contain an estimated zero-point lat-
tice energy correction of 3 mRy for Rh and 2 mRy for
Pd. Note that these results differ in detail from results
of previous calculations. Our previous results are based
on nonspin-polarized calculations which were fit to
Morse functions over an extended volume range to facili-
tate a detailed thermal analysis. The present work is
based on fixed-spin-moment spin-polarized calculations
throughout the entire volume range, and differs from
those of Ref. 9 by utilizing much fewer calculated points
which are fit to a polynominal in the immediate vicinity
of the energy minimum.

In summary, we have shown that our fixed-spin-
moment spin-polarized results for Rh and Pd are in
reasonable agreement with equilibrium ground-state
properties, and that they approach the expected free-
atom limit. Finally, we have calculated the susceptibility
as a function of volume directly from our E(M) curves,
and compared these with previous results.
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