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Contact angle for two-dimensional Ising ferromagnets
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The contact angle of a sessile drop on a wall is considered within a modified planar Ising mod-

el. The thermal variation of this contact angle is computed exactly, and it is shown how a simple
thermalization of the boundaries (wall) may lead to an exact treatment of multiple wetting transi-

tions.

I. INTRODUCTION

Consider a binary mixture which separates into two im-
miscible phases labeled + and —and let the wall of the
container differentially wet the components. Provided the
+ and —phases coexist, the system should undergo a
phase transition from a partially wet to a totally wet state
at a temperature T~ below the critical value T„but
dependent on the degree of differential wetting. Such a
conclusion was suggested in the seminal phenomenological
theory of Cahn ' for the contact angle displayed by a mac-
roscopic drop of one-phase sessile on the wall. For the
planar case in which the binary mixture is modeled by the
spin-2 Ising ferromagnet there is an exact solution
which has been interpreted and extended in terms of the
solid-on-solid (SOS) or random walk arguments (Ref. 3
and references therein).

A natural order parameter in this problem is the con-
tact angle: A macroscopic droplet of the minus phase has
a well-defined shape and, in particular, a well-defined con-
tact angle with the wall. This contact angle 0, is a func-
tion of temperature and wall interaction; it goes to zero
when approaching the wetting transition, where droplets
spread and cover the wall completely. The shape of a
macroscopic droplet can be obtained by minimizing the
surface free energy at constant volume; the contact angle
8, is then found to obey the equation

dz+-
cos8, z+ —(8, ) —sin8, (8,) =z+„—z „, (1)

0

where z+. —(8) is the interfacial surface tension for an in-
terface at angle 8 with respect to the underlying lattice,
and zi„, z „are the wall free energies of the plus and
minus phases. This is the modified Young rule, applic-
able to anisotropic media [in three dimensions we should
write z+ —(8,&) and 8, =8, (P), but the equatorial angle p
plays a dummy role].

The thermodynamical variational argument leading to
(1) has been justified in statistical mechanics only for
1+1 dimensional SOS models. ' A proof for more gen-
eral systems would be very welcome, but the result can al-
ready be used to predict contact angles, whenever the in-
terfacial and wall free energies are known. It should be
kept in mind that the concept of a contact angle is valid
only for macroscopic droplets —a metastable situation.

In the present paper, we give the temperature depen-

dence of this cpntact angle for a droplet within the Ising
model with various wall interactions.

II. THE RESULTS
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FIG. 1. (a) The planar Ising ferromagnet with an external
field aICi on one edge. (b) A decorated planar Ising ferromag-
net.

For the planar Ising model shown in Fig. 1(a), with

Kl =pJ|~ 0, K2=pJ2~ 0, p=llkT and with a surface
Geld aKi we can grow a sessile drop of the minus phase
with either minus favored at the wail (a (0, wetting) or
with plus favored at the wall (a) 0, drying). The two
cases are related by reversing the sign of z+„—z- in

(1), thus 8, is replaced by rz
—8, . Thus, we can treat both

wetting and drying transitions in this way.

4708 1989 The American Physical Society



39 BRIEF REPORTS 4709

The exact calculation of the wall free energies gives for
a~0, e

TtI2
a=0

Pz+„P—z = y(ie(a, T) ) (2)

where %'(a, T) is given by

exp [9'(a, T)] exp(2K2) (cosh 2K ~

—cosh2aK ~ )/sinh2K i,

and the Onsager function y( ) is defined by

cosh [y(co) ] = cosh2K~ cosh2K2

—sinh2EC~ sinh2K2 cosco (4)

Pz+ (8) =cos8y"(zo(8) ) —i sin8ro(8)

for 0 ~ 8~ n/2 with ro =co(8) a solution of

(5)

with y(zo) 0 for real ro. Finally, we need the interfacial
tension which has been computed in Ref. 8 and equals

l
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FIG. 2. The contact angle 8 as a function of exp( —2K) for a
drop within a planar Ising ferromagnet with external field aKi
on one edge (K~ K2=K}. K, denotes the critical value of the
coupling [exp( —2K, ) =&2 —I].

i tang =
CO

(6)

T8' sinh2K~ —a sinh2aK~
8, (a, T)—2 K2+ K(

Tw cosh2E ~

—cosh2aKi

—Ki coth2Ki (8)

This linear vanishing is characteristic of second-order
phase transitions, with an amplitude which takes into ac-
count the angular dependence of the surface tension
z~ —(8). Notice that Pz+„—Pz „(»0) is a monotone
function of a [this follows from Fortuin, Kasteleyn, and
Ginibre (FKG) inequalities' l. Thus, 8, (a, T) is also
monotone in a and 0~ 8, (a, T) ~ n/2 for a ~0. Some
solutions of (7) for 8, (a, T) are shown in Fig. 2.

The theory has an SOS limit with K~
(1 —a)K~ b where B&0 is a pinning potential. Then
(7) simplifies to give

tan8, (6, T) =sinhp/(coshK2 —cosh'),
where

Inserting (5) and (6) into the modified Young equation
gives, with (2), (3), and (4),

tan8, (a, T) =sinh2K~ sinh2K2 sinh%'/sinh(Pz~„— Pz „)
(7)

for the contact angle 8, (a, T) in the partially wet case.
Evidently 8, (a, Oy) =x/2, and 8, (a, T)~ 0 as
~(a, T) 0, which corresponds to the already known
wetting transition line Tit =Tn (a) (dashed curve in Fig.
3 below). Near the transition, we obtain

Suppose that b = ~ c for simplicity, then a,ff(ee) =a
and, for b & 0, as T 0

a,ff(T)-a ~ b+ (In2)/2K~+0(e ' ) . (12)

Inspection of Eq. (3) at the transition %' =0 near a —1,
T 0 gives

a ——1+(e ' ')/2K). (13)

Choose a and b = —c so that a & —1, a —b 5 —1. Then
there exists a (wet-partially wet-wet) sequence of phase
transitions on raising T. We give in Figs. 3 and 4 a,ff(T)
for some values of a, b, and c and the corresponding con-

e -2K

ture, chosen here to be as simple as possible for illustrative
purposes, but still exactly solvable. The sum over the
spins in the wall can be carried out and the result is as in

Fig. 1(a), but with a temperature-dependent a,ff(T) given

by

a ff(T) =a + tanh ' [tanh(bK~ )tanh(cK ) 1

e~ =e '(1 —e s), (10)

and the transition condition is P =0.
%'e now turn to the question of multiple wetting transi-

tions. In Fig. 1(b), each spin near the wall is subjected to
a surface field aK~ as in Fig. 1(a), but is also coupled, via
bK&, to a spin in the wall, which in turn is subjected to a
diH'erent field cEC ~. The wall is thus given a thermal struc-

FIG. 3. a,ff(T) as given in (11) for various values of a, b, and
c with K[=K2=K. From left to right, we have a = —0.9,
b = —c =0.3; a = —0.2, b = —c =1.0; a = —0.5, b = —c=0;
a = —2.7, b =c =3.0. One can see zero, -one, or two intersec-
tions with the transition line (dashed curve) calculated from (3)
with + =0.
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F12
where the ellipsis represents higher-order terms so that
the analog of Eq. (13) reads

—4(Z2+SC, )—1&a& —l+ +
K

exp(-2K~ j

exp(-2K j

FIG. 4. The contact angle 8 as a function of exp( —2E) for
various values of a, b, and c with K~ =K2 =K. From top to bot-
tom we have one wetting transition a = —2.3, b c=3.0 and
a = —0.3, b = —c =0.1 and two wetting transitions a =1.85,
b = —c =3 and a = —0.2, b = —c = 1.

and a low-temperature expansion of r+ —leads to
—4(SC2+Z3)

pry (8=0) =2Et —2e ' ' + (is)

tact angles 8,. This extends results of Chalker and Sluc-
kin" on a similar but more complicated model, and a
mean-field study of Ebner and Saam' on a model with
long-range wall potential.

It is also worth noting that (11) and (12) also hold in
three dimensions; the results of Frohlich and Pfister [Ref.
13, Eq. (2.23)] give

—1 ~ a ~ Pry —(8=—0)/2Et,

If we now choose again b = —c and a ~ —1, a b~—1,
the wall will be wet near T=O and will undergo a wet-
partially wet transition within the low-temperature re-
gime. Raising even more the temperature should then
yield a partially wet-wet transition before reaching T, be-
cause of entropic repulsion; this second transition is the
usual one, but a rigorous proof of its occurrence is still
lacking in dimension greater than 2, at least to our
knowledge.

The possibility of a (wet-partially wet-wet) sequence on

raising T has also been found for continuous SOS mod-
els. Comparing that case with the discrete SOS model
as obtained in (9) and (10), which has only one transition,
we conclude that the continuous character of the variables
may also induce multiple wetting transitions. The results
of the present paper for a discrete model with a thermal-
ized wall show that the possibility of two wetting transi-
tions is a rather general phenomenon. It may be useful in

the interpretation of experiments. '
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