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A Kosterlitz-Thouless-like approach is used to describe the superfluid transition of thin “He
films adsorbed on multiply connected surfaces such as packed powders or other porous materials.
The elementary topological defect mediating the transition is a string linking two vortices of oppo-
site circulation. The long-range interaction between strings gives rise to a phase transition which
has a critical exponent for the superfluid density of v=0.64.

Kosterlitz and Thouless' (KT) first demonstrated the
key role played by vortices as the elementary topological
excitations in the superfluid phase transition of *He films.
In their picture the transition temperature Tk separates
a low-temperature superfluid state, where vortices of op-
posite circulation are bound in pairs, from a high-
temperature normal state where single free vortices exist.
For a flat two-dimensional (2D) film, this theory predicts?
that the areal superfluid density o; jumps at Tkt from
zero to a finite universal value o, = (2/7) (ma4/h) %k TkT.
Below Tkt the density is sensitive to the interaction be-
tween pairs, and a real space renormalization procedure?
allows a calculation of the macroscopic, observable o7,
starting from the “bare” microscopic value o at the shor-
test length scales. The predictions of the theory have been
well verified by experiments on flat substrates of centime-
ter dimensions. *

However, notable differences with the pure 2D case
have been found on substrates characterized by a small
length scale such as packed powders®~7 or other porous
materials.® ~® The onset of superfluidity occurs at a tem-
perature close to the KT prediction, but the superfluid
jump is broadened and the density decreases continuously
to zero over a temperature domain of width AT. In order
to interpret their data in Vycor glass, Reppy and co-

" workers’ proposed that the transition becomes similar to
the bulk three-dimensional (3D) A transition, crossing
over to a dilute Bose gas transition in the thinnest films.
However, the theory based on these ideas'® does not ex-
plain the observed decrease of AT when the substrate
grain size is increased,®~7 and, thus, cannot be extrapolat-
ed to the flat-substrate KT case which must be recovered
in the limit of very large grains.

On the other hand, Kotsubo and Williams® were able to
account for the broadened transitions they observed in
packed powders by employing a finite-size modification of
the KT theory, in which only vortex pairs of separation
smaller than the grain size are included in the renormal-
ization. They found a transition width AT in agreement
with the prediction of Barber, !
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where a is the grain size, a( the vortex core size, and B the
nonuniversal constant of the Kosterlitz correlation length.
In the limit @a— oo the sharp flat-substrate transition is
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recovered. The defect of this model is that it does not take
into account the possibility of vortex pairs with separation
greater than the grain size. As a result, the transition pre-
dicted by the model is not a full thermodynamic transi-
tion, displaying a finite-size “tail”” rather than power-law
behavior in the critical region.

In the present paper we present a model of the super-
fluid transition which accounts for the 3D connectivity of
the surface. Following the work of Minoguchi and
Nagaoka'!? and Machta and Guyer,'® we introduce a vor-
tex string as the elementary excitation of the system. The
string connects two 2D vortices of opposite sign through a
single path along the substrate. However, unlike the pure-
ly 1D strings of Minoguchi and Nagaoka, our strings in-
teract with each other through a long-range dipole flow
field. This leads to a 3D thermodynamic phase transition,
while the 1D case is rigorously known not to have a phase
transition. '

We model the porous medium as a 3D lattice made up
of intersecting cylinders, as shown in Fig. 1. For simplici-
ty, we assume in the following that there is no distribution
in the cylinder sizes; they all have radius a and length b
between intersections (a~»). The interaction energy U
between a vortex and an antivortex in the helium film
coating this surface takes different forms depending on
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FIG. 1. Lattice model of a porous medium, made of intersect-
ing cylinders (here a cubic arrangement for example). The cir-
culation must be quantized around the closed paths C1 or C2.
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their separation R. When R <a,b the substrate can be
considered flat on the scale R of the pair, and U has the
well-known InR behavior.

On the other hand, when the vortex separation is larger
than the lattice spacing (R>>a,b), the flow pattern has to
account for the nontrivial connectivity of the surface. At
the same time, the circulation of the flow around any
closed path on the surface (like C1 or C2 of Fig. 1) has to
be quantized. We believe that it is possible to satisfy these
conditions by drawing a closed line forming a loop in the
3D space [labeled C in Fig. 2(a)]l, which crosses the film
only on both cores of the vortices, and such that the circu-
lation around any closed path on the surface is one if it
passes through this loop, and zero otherwise.

In the following, we neglect fluctuations and limit our-
selves to the lowest energy excitations, as shown in Fig. 2.
The ring joining the 2D vortices separated by R must then
have a minimum area, and is made of two straight and
parallel strands, separated by their minimum distance ~b
[Fig. 2(b)]. One of the strands corresponds to quantized
circulation around cylinders, and the other one to opposite
circulation around loops, together forming a “string” join-
ing the 2D vortices [Fig. 2(a)]l. At large distance r>b
from this string, the flow field is the same as the one gen-
erated by a long and thin dipolar ring, and decays like
1/r2. Besides the core energy of the 2D vortices, the total
energy U of this excitation is equal to the total kinetic en-
ergy associated with the superfluid flow. It can be roughly
divided in two parts: one comes from the flow in the cen-

FIG. 2. (a) String structure of lowest energy, involving a +1
quantum around a cylindrical trunk, and — 1 around one adjoin-
ing loop. The circulation about any closed path circling the
dashed loop (C) is different from zero. For simplicity the far-
field dipolar flow is not shown here. (b) In the continuum limit
this structure is equivalent to a long thin ring stretched between
the two vortices.

tral elements of the string, the other one from the far field
dipolar flow. Although an exact computation of these two
parts can only be achieved numerically, it is easy to see
that they are both proportional to the vortex separation R
and to the reduced superfluid density K =(o,/kpT)
x (h/m4)?, so that we simply write U =anKR/b. The di-
mensionless factor a only depends on the geometry of the
lattice, and increases with the connectivity of the sub-
strate. It can be shown that a > b/a > 2.

We use a Kosterlitz-Thouless approach to calculate the
macroscopic superfluid density oy, renormalized by the in-
teractions between strings. We consider only straight
strings, neglecting their fluctuations. A magnetic analo-
gy'® is used to compute the interaction energy AU be-
tween a fixed long string and a string of shorter length R
which experiences the flow field v; generated by the long
string
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Here, m =27(h/m4)S is the dipole moment of the ring
formed by the two strands of the string, with S =bRA, and
ps—~os/b is the average 3D superfluid density per unit
volume of the sample. Taking a thermal average over the
possible orientations of m gives
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The probability dp to find a current loop of length be-
t»\;een R and R +dR at a given position within the volume
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When R =b this reduces to the probability of finding a
pair of vortices separated by a cylinder length,
which determines the normalization constant as
A=exp(—2E.+anK). E, is the vortex core energy al-
ready renormalized up to the scale b, and may be comput-
ed from the bare core energy E2 on the atomic scale using
the recursion relations for vortices on a single
cylinder.>'%!3 We introduce for convenience the usual
vortex fugacity y =exp(—E_).

The renormalized energy of the fixed string is
U, =U — [{AU)dp. Defining K, =(h/m4)*(c/ksT), us-
ing the dipole flow field vy =(#/m)(b/r?), and integrating
over d3r gives the renormalized superfluid density,
R*dR

b 5
Here the constant  is of the order of 167%/3, within a fac-
tor of order unity depending on the particular lattice
structure. For self-consistency the K’s in the integral
should be replaced by the renormalized value K,. Ex-
panding in powers of y2, Eq. (5) is then the first two terms
of the expansion. Near the phase transition where K, — 0
the integral becomes large and the expansion breaks
down. We use the technique of Jose, Kadanoff; Kirkpa-
trick, and Nelson?® in this regime, dividing the integral -
into two parts, one going from b to b'=be’(5§< 1), and
the other from &' to oo,

dp=Aexp(—anKR/b)

. (5)

K. =K —ﬁfmezyzexp[ —anK(R/b—1)]
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K. ~K—pK**5—B [, K??exp{s6—anKI(R—b'e ~)/b'e 1}

This takes the same form as Eq. (5) under the transfor-
mation

K— K'=(K—BK?2y25)e?,
y2_>yl2=y2e(4~a:rK)6’
K,— K;=K,e’,

@)

Repeating this transformation indefinitely, it can be writ-
ten in differential form, setting § =dl,

OK _ p_pr2,2
ol KTBKYy”,
R ®)
L) ‘—’(4—(171:K)y2 ,
a/
and the observable superfluid density is
K.(I=0)=K,(De —’=Ilim Ke ™. )

This last equation is the Josephson hyperscaling relation
in three dimensions,? meaning that this phase transition
will be accompanied by a critical specific heat peak.

Equations (8) have a trivial fixed point K =0, y =0, and
a nontrivial one K. =4/ra, y?=1/BK.. Depending on the
initial value K at the atomic scale, the trajectories near
the fixed point either lead to K— o, y— 0 (finite
superfluid density, vortices bound on stings) or to K—> 0,
y— o (zero superfluid density, vortices unbound with
strings of infinite length). At a critical value Ko, corre-
sponding to the transition temperature T, the trajectory
ends on the fixed point (K,,y.). The superfluid density
goes continuously to zero as T approaches T,., and by
linearizing the recursion relations about the fixed point
one finds o5~ (T —T,)" with v=2/(/17—1) =0.64. We
show in Fig. 3 the variation of o,(7) for the case most
similar to a packed powder geometry, b =2a. For scales
less than 2a the usual KT recursion relations are iterat-
ed,'® and then at longer scales Eqs. (8) are iterated to
macroscopic lengths. The different curves correspond to
different values of 2a/ay, the ratio of the grain diameter to
the vortex core parameter. We used the particular values
of the parameters a =2, $=16x%/3 and E2=2.2K,. We
have also noticed that the transition temperature is some-
what affected by the value of q, i.e., the connectivity of the
lattice. This result could be experimentally checked by
varying the packing coefficient of the powders. The
broadening AT ~T,. — Tt from the pure KT transition
agrees with Eq. (1) and results from the effective cutoff of
the recursion relations at the grain size, as discussed in
Refs. 5, 12, and 13. The cutoff results in this case from
the changeover to the more energetically costly strings.
However, as o5— 0, the strings finally lead to a full ther-
modynamic phase transition at 7.

This monotonic broadening of the KT transition with
grain size has been observed in all porous materials stud-
ied to date,®? ranging from 50-um Al,O3; powder to 60-
A Pt powder. We note that the predicted exponent
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v=0.64 of our calculation is in good agreement with the
result v=0.63 found by Reppy and co-workers®’® in
porous Vycor glass of ~150-A grain size. Higher values
of the exponent (up to one) have been observed in packed
powders,% and we do not know how the distribution of
grain sizes in these systems might affect the exponent, a
factor which has not been included in our model. A more
complete theoretical treatment should also take into ac-
count the fluctuations of the strings, using a con-
figurational sum over the different possible paths. Some
initial calculations along this line suggest that the average
fluctuation amplitude remains small even near 7T,, but we
do not know the extent that v will be affected.

It is possible that our model is related to the Villain
model formulation of Machta and Guyer,'? although they
are not exactly equivalent. Indeed, our string is a super-
position of azimuthal and axial pore vortices, which are
their elementary excitations. However, their calculation
only takes into account the axial pore vortices, while we
find it necessary to include both kinds of pore vortices.in
constructing strings having 2D vortices at the end points.
In addition, we feel that our model has the advantage of
giving a clear physical picture of the transition. For ex-
ample, the diverging correlation length near 7, can easily
be identified as the mean length of the strings being excit-
ed, which becomes infinite at 7.

In summary, we have shown that the superfluid transi-
tion of “He films adsorbed on multiply-connected surfaces
can be simply described in a vortex pair formulation. The
vortices are linked by a string along the substrate, and are
the excitations responsible for the thermodynamic phase
transition. The predictions derived from the recursion re-
lations for the superfluid density are in agreement with
present experimental data.
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FIG. 3. The renormalized superfluid density plotted vs re-
duced temperature, resulting from iterating the KT equations to
scale b =2a, and then Eqgs. (8) to infinite scale. The curves a, b,
and ¢ correspond to increasing grain size (2a/ao =6, 30, 150, re-
spectively), and curve d to the pure KT case (2a/ao— o).
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