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We have considered coagulation processes containing n-polymer interactions and studied the sole
processes of n-polymer coalescence by means of a generalized Smoluchovski equation, which is
solved as an initial-value problem for the product kernel: R(il, i2, . . . , I'„)=(ili2 . . i„) with
0(cu(1. A variety of novel critical behaviors and new critical exponents are found which are
diff'erent from those obtained from the Smoluchovski equation. Our results can be regarded as
higher-order approximations to the two-polymer collision processes and thus contribute towards
our understanding of general coagulation processes.

I. INTRODUCTION

The critical behavior of irreversible coagulation pro-
cesses have recently been studied extensively using the
Smoluchovski equation. ' ' This kinetic equation has
been used to model the time evolution of the size distribu-
tions c (t) in the coagulation processes, such as polymer-
ization, clustering of colloidal particles, red blood cells,
etc. , ' in which the substance A s are assumed to react
with each other according to the following scheme:

scribe the corresponding coagulation process which con-
tains all possible reactions occurring in cluster growing
process. To this end, it seems important to explore, first
of all, the sole process of n-tuple coalescence, since the
general coagulation process appears to be difficult to han-
dle at present.

To go beyond the growth process (1.1) towards the
most general coagulation processes,

~2(i, j)
A;+A. = A;+

A;+A
R (i,j)

= A;+. ,
R3(i,j,k)

A+A +Ak - A++k,
where A, denotes a j-mer, and R (i,j ) is the rate constant
for the reaction of an i-mer and j-mer. This model can be
described by the kinetic equation

A;+A;+ +A; Ai
1 +i2+ +i

c~(t)= —,
' g R (i,j)c;c~ —cl, g R (kj )cz .
i+j=k j=1

(1.2)

one has, as a first step, to study the sole processes of n-
polymer coalescence in which polymers react with one
another in the manner

In recent years it has been noticed that, for certain
choices of the rate constants R (i,j ), the Smoluchovski
equation (1.2) predicts the occurrence of a gelation transi-
tion at a finite time t, (gel point), which is marked by a
divergence of a mean cluster size and by the onset of
mass fiux from the finite size clusters (sol particles) to-
wards the clusters of infinite size or gel. More recently, it
is found that the kinetic equation (1.2) also predicts the
instantaneous occurrence of a gelation transition for
some special kernels. ' To date, the system (1.2) has re-
ceived considerable investigation, and many of its critical
properties have been discussed. It is, however, quite clear
that, apart from the binary collision, there must exist oth-
er possible kinds of reactions among the coagulating po-
lymers such as tribasic, quadruple co11isions or more gen-
erally n-tuple collision, in the real coagulation processes.
Therefore, one must construct a kinetic equation, which
is similar in form to the Smoluchovski equation, to de-

A;+A, + +A,.

R (il, i2, . . . , i )

ll+l2+ ' ' ' l

c
1

l
1
+l2+ ' +l =PP2

R(i, , iz, . . . ,i„)e, c; . c,
1 2 n

cm

(n —1)!,. R(i„i2, . . . ,i„+„m)

Xc;c; . c;
1 2 n —1

This kind of processes is of interest for the following
reasons. First, it is a crucial step towards fully under-

which are modeled on the following generalized Smolu-
chovski equation:
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standing the general coagulation processes, since such a
sole process of n-tuple collision is relatively easy to deal
with mathematically, and the resulting conclusions may
provide insight into the essence of the real growth pro-
cesses (1.3). Second, in some special circumstances the
sole process of n-tup1e coagulation itself may prove to be
of great importance. For example, when breakup process
is allowed it may be possible that the growth process
prefers the tribasic coalescence to binary collision, since
the structure formed in a three-polymer reaction process
appears to be more stable than that generated by the
binary collision process. It is an easy matter to note that
the cluster generated by the sole process of n-tuple col-
lision may generally exhibit a regular morphology. If this
is the case, one should study the corresponding sole pro-
cess of coagulation to obtain the relevant properties of
the growing clusters. Nevertheless, there is not doubt
that the probability of the occurrence of n-tuple collision
is much smaller than that of binary interaction. This sole
process is still interesting and deserves detailed investiga-
tion. We believe that a thorough study on the sole pro-
cess of n-tuple coalescence will indeed contribute towards
a better understanding of the general coagulation pro-
cesses.

The main purpose of this paper is to study the kinetic
equation (1.4) for the special product kernel

given initial distribution c (0), subject to the normaliza-
tion

M(0) =g kct, (0)= 1,
k

can be derived in terms of generating functions:

(2.2)

g (x, t) = g c„(t)exp(kx ),
k =]

(2.3a)

f (x, t) =g (x, t) = g kck-(t) exp(kx),
k=]

(2.3b)

g(x, t)= g (M„x")/n! .
n=0

The initial va1ues of these functions are given by

(2.5)

g (x, O) = g e& (0) exp(kx) = v (x),
k =1

(2.6a)

where the subscript x denotes a partial derivative with
respect to x. The moments

M, = g k "ck(t), (2.4)
k =1

if they exist, can be obtained from

(1.6a) f (x,O)= g kck(0) exp(kx)=u(x) .
k=1

(2.6b)

with

s. =k",
k (1.6b)

Multiplying (2.1) with m exp(mx) and summing over m,
we arrive at a partial differential equation for f (x, t)

where ~ is a geometric exponent characterizing the sur-
face of a k-mer, and satisfies 0(co~1. Following the
same lines of Ref. 8, we first discuss the exactly solvable
model ~=1, and then study the asymptotic behaviors of
the size distribution for general co. In Sec. II, we deter-
mine the generating function of the size distribution, and
discuss the properties of the sole mass in the sol and gel
phase. In Sec. III, we use the Lagrange expansion to
derive an explicit solution of the size distribution for the
monodisperse initial distribution. In Sec. IV, we discuss
the structure of possible post-gel solution of (1.5) and
derive the asymptotic results of the size distribution. Fi-
nally, in Sec. V we conclude our results and give some
further remarks.

(fn —
1 Mn —1)

(n —1)!
(2.7)

X, = (f" ' —M' ')l—(n —1)! . (2.8)

So1ving this equation for the initial condition
f (x,O)=u(x) we find a solution in the following two
equivalent forms:

x=u '(f) — tf" ' —I dr[M(r)]"
0

(n —1)!,

(2.9)

where M =gP, kck(t) To solve .Eq. (2.7) we introduce
the inverse function x =X(f, t). Using the identities
f =1/Xf and f, = —X, /Xf we find a simple equation

II. THE GENERATING FUNCTIO'NS
AND THE SOL MASS

f(x, t)=u x+ tf" ' —j dr[M(r)]"
0

(n —1)!

For the special case of co= 1, the kinetic equation (1.5)
turns into

(t)= 1

n!,.1+,.2+ +

mc
,
g(ii2 . „,)e c, c,

1

x =s —
I
t [u (s) ]" ' —T I l(n —1)!,

f (x, t) =u (s),
(2.11a)

(2. 11b)

where

(2.10)
where u '(f)=x is the inverse function of f =u(x).
For later purposes we write the solution in the following
parametric form:

(2.1) T— d~M ~ (2.12)

The time evolution of the size distribution c (t) for a These equations enable us to determine the sol mass
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M(t)=u[s(O, t)],
s((},t)= tf" ' —f dr[M(r)]"

0

~d M~

(n —1)!

(n —1)! .

(2.13a)

(2.13b)

M(t)=f (O, t) for a given initial distribution. Inserting
x =0 into (2.11), we obtain a closed equation for M (t):

with the gel point t being given by

t, =(n —2)!/M2(0) . (2.18)

Here we notice that as n increases the gel point t, in-
creases. This shows that the probability of n-tube col-
lisions decreases with increasing n, and the gelation tran-
sition is unlikely to occur in systems with n ~~.

Differentiating (2.13) with respect to t results in

M(t)=u'[s(O, t)]tMM" '/(n —2)! . (2.14)

This equation combined with (2.13a) has two solutions
for all t, provided u'(so) = oo with so )0. The first one is
a constant solution

III. THE SIZE DISTRIBUTION

In this section we calculate the size distribution c (t)
for the monodisperse initial distribution, by means of the
Lagrange expansion. It is clear that once the generating
function f (x, t) is known, the c (t) can be found by ex-
panding f in powers of z = e . For convenience we define

M, (t) =M(0) =1,
corresponding to

5, (t)=0 .

The second one is

(2.15a)

(2.15b)

- f(z, t)=f(x, t)= g kz"c„(t),
k=1

u(z)=u(x)= g kz"ck(0) .
k =1

(3.1a)

(3.1b)

Mb(t) = u (sb ),
where sb(0, t) is determined from

(2.16a)
where z =e". In this notation the general solution (2.11}
is given by

1/t =
I u'(sb )[u (sb )]" 'I l(n —2)! . (2.16b)

Following the same graphical analysis of the solution de-
scribed in Ref. 8 one can easily prove that

t~t,
M(t)=min(1, Mb)= 'M ) (2.17)

z=y exp( —[t[u(y)" ' —T)I /(n —1!),
f=u(y},

(3.2a)

(3.2b)

where y =e'. For any given (differentiable) f=u(y) and
z (y), such that z(yo) =zo, the Lagrange expansion of f in
powers of (z —zo) is

(z —zo )
f(z, t)=u(yo)+ g

k=1 dy

k —1

y yo

z (y) —zo
(3.3)

To calculate c (t) one must expand f (z, t) about zo=O(x~ —oo ), where yo=u(yo)=0. Thus from the preceding
equations we find

Zf(z, t)= g
, kf dy

u'(y) exp —[u(y)" ' —T (3.4)

kt
u '(y) exp u"

X

After some algebra, we arrive at

where X =(n —1)!. Comparing it with (3.1a), one obtains
I k —

1

ck(t)= exp ——T (kk!)k d
X dy

(3.5)

[q(n —1)+1]t
(cqnI)+ 1(t)

( n —2)!(n —2)!
q(n —1)+1

exp T
n —1)! I[q(n —1)+1]q(n —1)I,

n =2, 3, . . . , q=I, 2, . . . . (3.6)

In deriving (3.6) we have made use of the monodisperse initial distribution u (x)=e . With this initial condition, one
easily obtains from (2.16b)

and

sb =
I ln[(n —2)!/t] I l(n —1)

Mb=u(sb)=[(n —2)!/t] .

(3.7)

(3.8)

Thus from (2.12) and (2.17) it follows immediately that
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T= '

t, +(n —2)!ln(t lt, ),

Substituting (3.9) into (3.6) we finally obtain

(3.9)

[q(n —1)+1]tc (n ))+)(t)
(n —2)!(n —2)!

[q (n —1)+1]t
exp

()i —1)! [q(n —1)+1]q(n —1), t~t, (3.10a)

cq(„))+)(t)= [q (n —1)+1]t,
(n —2)!(n —2)!

[q (n —1)+1]t,
(tlt, )

' '" "l[q(n —1)+1]q(n —1), t ~ t, (3.10b)

c (t)=0, m&q(n —1)+1, (3.1 1)

c (t) —b t (3.12)

with q =1,2, ... . , and n =2, 3, . . . . This solution
reduces to the result derived of Ref. 8 for n =2. From
(3.11) we find that the long-time behavior of c (t) is given
by

1—(PI2c) )b = — g R(i j,k)b, b b),
i+j+k =m

b
R(ij,m )b, b, .

i j =1
(4.4)

c (t)=c (t, )[1+p(t t, )]— (3.13)

with a = 1 I(n —1), which suggests that the possible exact
post-gel solution wi11 be of the form

The unknown P may be eliminated by using (4.4) for
m = 1, and the following recursion relation results

1 R(i, j,k)b;b bk
i+j+k=m

where p is a constant, to be determined, and t, is the gel
point.

IV. THK EXACT POST-GKL SOLUTION
AND THE ASYMPTOTIC BEHAVIOR OF c (t)

oo

[R(i,j,m ) R(i,j, 1 )]b;b =—0 . .

i j =1

The exact solution (4.3) has the remarkable property

(4.5)

c (t) =
—,
'

i+j+k =m
R (ij,k)c;c ck

Cm g R(i j,m)c;c, .
i, i = 1

In this section we wi11 discuss the exact post-gel solu-
tion (3.13), and use it to derive a recursion relation to
study the long-time behavior of solutions of (1.4) for
0 & co & 1. For simplicity, we restrict ourselves to the case
n =3. The extension to the general n is straightforward.

When n =3, Eq. (1.4) can be written as

2E', &E & ~, m=2, 3, . . . ,

whel e

(4.7)

M (t) = g kc„(t)=M(t, )/[1+ p(t t, )]'"—,
k=1

which indicates that the sol mass decreases in time for
t ~t, .

Before proceeding we argue that the limiting ratio
b =lim, „c Ic, satisfies the recursion relation (4.5)
provided that the b s satisfy the strict inequalities

Here we attempt to show that the size distribution in gel-
ling systems approaches a special solution in the follow-
ing sense

E = lim g R (ij,m)c, c, I[c,(t)]
f —+ oo

t&J =

R(i,j,m)b;b
i j =1

(4.8)

lim c (t)lc, (t)=b
g~ oo

(4.2)

c (t)=c (t, )[1+p(t t, )] )i' (t~t, ) . — (4.3)

Writing c (t)=b c, (t), where b =c (t, )lc, (t, ), and
inserting the solution into (4.1) we obtain

where b (m =1,2, . . . ) are bounded positive numbers
with b, =1.

First we consider a possible exact post-gel solution of
(4.1) of the form o. (t)= —,

' g R (i j,m)c;c. ,
i j =1

S (t) = f dt'o (t') .
0

The formal solution of (4.1) reads

(4.9a)

(4.9b)

Here the infinite sums are assumed to be convergent.
In order to show that the coagulation equation (4.1)

reduces to the recursion relation (4.5) as t ~ ~, we intro-
duce
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c (t)=exp[ —S (t)] c (0)+f dt' —,
'

0 i+j+k =m
R (ij,k)c;(t')ci(t')c&(t') exp[S (t')] (4.10)

The long-time behavior of S (t) can be determined from c, (t)(t —+ ~ ), which in turn is given by (4.1) for m =1:

c, (t) = c,—o, /2=E, c, l2, t~ ~,
provided E, ( oo. Therefore, one has in (4.9) as t ~ oo

o (t) =E c, /2=E /(2E, t ),
S (t)=(E /2E2)ln(t),

(4.11)

(4.13)

(4.14)
i+j+k =m

Differentiating (4.14) with respect to t yields

provided E & ~. On the basis of (4.12) and (4.13) the dominant long-time behavior of the t integral in (4.10) can be es-
timated as t"' ' with v(m)= —1+E /(2E, ). This quantity diverges as taboo since E )2E, . Thus, c (0) may be
neglected in (4.10), and the equation reduces to the long-time form

dt' —,
' R i,j,kc; t'c t'ck t' exp S t' =b c] t exp S t

i+j+k=m
R(i,j,k)c, (t)c (t)c&(t)=b (o c, +c, ), tab oo . (4.15)

Using (4.2), (4.11), (4.12), and (4.13) we find

1

6 R(i,j,k)b;b bk =(E Ei )b— (4.16)

This is, in fact, the recursion relation (4.5). The cluster size distribution behaves as c (t)-c, (t)b —Cb /(t)'~
(m =1,2, . . . , t ~ ~ ), where Cb /(t)'~ is the exact solution of the coagulation equation (4.1).

To determine the asymptotic solution of the recursion relation, we multiply (4.5) by m, and sum over m to obtain the
following representation of the recursion relation:

m =1
mb g R(i j, l)b, b~= g

i =1 j=L —i+1 k =L —i —j+1
kR(i j k)b b bk . (4.17)

If we assume that the solution b. of the recursion relation at large m has algebraic m dependence, i.e.,

b =8m ' (m~ ~),
then, inserting the ansatz (4.18) into (4.17) leads to

E, /mb =8 (limL + ')f dx f dy f dzxR(x, y, z)(xyz)
0 1 —x 1 —x —y

(4.18)

(4.19)

r= 1+3'/2,
with

(4.20)

(4.21)

for nongelling systems, while

In nongelling systems one finds a consistent solution only
if r (2.Thus, from (4.19) we find

for system (1.2), which is in contrast with (4.22). Com-
paring the exact post-gel solution of the Smoluchovski
equation with (4.3), one may readily find that as t +ce, —
the c ( t ), determined from (4.1), behaves as
c (t) —t '~, rather than c (t) —t ' deduced from the
Smoluchovski equation.

For general n it is an easy matter to show that the pos-
sible exact post-gel solution

T=
3

+CO (4.22) c (t)=c (t, )l[1+P(t t, )]'""— (4.23)

for gelling systems.
It should be emphasized that the asymptotic behaviors

of c (t) derived from (4.1) are obviously different than
those from the Smoluchovski equation. ' At fixed ~, the
exponent ~, which characterizes the large m behavior of
c (t), is given by

r=(n +1)/n +co (4.24)

and

and the cluster size distribution approaches this exact
solution as t ~ ~, or c (t) lci(t)~b for the gelling sys-
tems, with the critical exponent ~ being given by

T= —+CO ca & (n —1)ln (4.25)
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on account of the ansatz (4.18). From (4.23) and (4.24)
one can recover the results of Ref. 12 by simply setting
n =2. According to the previous discussion we find that
for different n one has different asymptotic behaviors, and
as n ~~ our results indicate that the gelation transition
is impossible to take place for the sole process of n-tuple
collisions with n ~~.

V. CONCLUSION

In the preceding sections we have discussed the sole
processes of n-polymer coalescence by analyzing the cor-
responding generalized Smoluchovski equation. We have
derived an explicit solution of the size distribution for the
product kernel (1.5) for re= 1, and obtained a general re-
lation between co and ~, viz. ,

r=(n +1)/n+co

for (n —1)/n (co~ l. We have also derived a special
post-gel solution, and discussed the long-time behavior of

the size distribution. Our study shows that those sole n-
polymer collision processes are indeed of great interest
theoretically and practically since they do exhibit a
variety of novel critical behaviors near gelation.

Now we would like to emphasize the following points
to demonstrate what we have really achieved in the pre-
sentation.

(i) It seems that the existence of a unique solution of
(1.4), as suggested by the explicit solution (3.10), (3.11),
and the exact post-gel solution (4.23), can be proved fol-
lowing the same lines described in Ref. 2.

(ii) The gelation criteria can be derived from the mo-
ment equations for some characteristic kernels. As for
the product kernel (1.5) we believe that gelation occurs
for co) (n —1)/n, though as rigorous proof is lacking at
present.

(iii) In the realistic coagulation processes, the many-
polymer interactions should be taken into account as the
masses of clusters grow large. Therefore one has to ana-
lyze the following kinetic equations:

c (t)=B2 g R2(i j )c;cj/2 —c g R2(m,j)c,
i+j=m j=1

+B3
i +j+k =m

il+l2+ ' ' ' +I —m

Rn(il~l2, . . . , l„)C/ C;
' ' '

C;
1 2 n

R3(i,j,k)c, c,c&/6 —c g R (3m, i j)c,c /2 +
i j =1

Cm

(n —I )!,. Rn(ll)lg, . . . )ln l. . . )m)C) Cl
' '

C;
2 n —1

(5.1)

(t) =B2 —,
' g Rz(i, j)c;c —c g R2(j, m)c
i+j=m j=1

+B
i+j+k =m

R 3 ( l, J, k )C(Cl Cl,

Cm
R3(l j,m)c;c

ij =1
(5.2)

instead of (1.2) or (1.4). Here B, 's are positive constants,
satisfying 0~B; ~ 1. The kinetic system (5.1) is, in gen-
eral, very difficult to deal with analytically. However, it
can simplified for some specific cases. The simplest case
is the so-called sole processes of the n-polymer interac-
tions discussed in this paper, which correspond to
B„))BJ for every j&n in (5.1). When B2 ))B;
(i=3,4, . . . ), we see that (5.1) reduces to (1.2). In the
case of B2&0, B3&0, and B, =0 for i =4, 5, . . . , we
have the following coagulation equations:

Since the sole processes of two- and three-polymer in-
teractions have different critical exponents, it seems plau-
sible to expect the following behavior for the system (5.2).
For B3 ))B2 there may exist a scaling time t, such that

(5.3)

for t ((t„and
(5.4)

for t ))t, . This suggests that the long-time behavior of
c (t) may be dominated by the three-polymer interaction
processes.

In addition, the complicated large-m behaviors of c (t)
are also expected for (5.2) as well as (5.1). The study in
this present publication indeed provide an important step
towards the solution of the general coagulation equation
(5.1). We will deal with (5.1) in detail in a forthcoming
work.

R. M. Ziff, J. Stat. Phys. 23, 241 (1980).
F. Leyvraz and H. R. Tschudi, J. Phys. A 14, 3389 (1981).
F. Leyvraz and H. R. Tschudi, J. Phys. A 15, 1951 (1981).

4R. M. Ziff and G. Stell, J. Chem. Phys. 73, 3492 (1980).

5R. M. Ziff, E. M. Hendricks, and M. N. Ernst, Phys. Rev. Lett.
49, 593 (1982).

E. M. Hendricks, M. H. Ernst, and R. M. Ziff, J. Stat. Phys. 31,
519 (1983).



39 GENERALIZED SMOLUCHOVSKI EQUATION WITH GELATION 4665

M. H. Ernst, E. M. Hendricks, and R. M. ZiA; J. Phys. A 15,
L743 (1983).

R. M. ZiA; M. H. Ernst, and E. M. Hendricks, J. Phys. A 16,
2293 (1983).

F. Leyvraz, J. Phys. A 16, 2861 (1983).
F. Leyvraz, Phys. Rev. A 29, 854 (1984).

' P. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54,

1396 (1985).
P. G. J. van Dongen and M. H. Ernst, J. Phys. A 18, 2779
(1985).
P. G. J. van Dongen and M. H. Ernst, J. Stat. Phys. 44, 785
(1986).
P. G. J. van Dongen and M. H. Ernst, J. Phys. A 20, 1889
(1987).


