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Fulton-Gouterman ground states for soft tunneling systems
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The two-site and periodic X-site model of a tunneling particle in a "soft" surrounding (phonons,
electronic excitations) is considered. The emphasis is on the Fulton-Gouterman (FG) transcription
of these models, which lays open a peculiar topological property. The latter always supplements
any symmetry-broken bath wave function by mirror images of finite weight in other spatial regions.
In this manner an antilocalizing tendency emerges. We analyze this tendency and show that locali-
zation, if defined in the very strict sense, is overcome by the FG topology. From this result we
deduce a temporal limitation for the stability of a strictly localized state, which, however, does not
seem to be in convict with the particular kind of symmetry breaking discussed in recent literature.

I. INTRODUCTION

Much discussion has grown up recently about the
transport behavior of a tunneling particle coupled to a
heat bath of harmonic oscillators. In a real physical sys-
tem the background oscillators may represent the phonon
system (phonon-assisted quantum diffusion) or may be re-
viewed as representations of other elementary excitations,
e.g. , excitonic, electronic, spin excitations, etc. For a
good review of modern work we refer to the articles of
Leggett et al. ' Specifically these approaches have pon-
dered a particular coupling setup known as Ohmic dissi-
pation, and it has been shown that this coupling law leads
to a particular kind of symmetry-broken ground state, if
the coupling strength exceeds a critical value.

Further insight into the problem may be gained from
an approach which up to the present has not been ex-
ploited very much. As shown by Fulton and Gouterman
a two-level system (=two-site system), which is coupled
to an oscillatory system in such a manner that the total
Hamiltonian displays a reAection symmetry, may be sub-
jected to a unitary transformation (FG transformation),
which diagonalizes the system with respect to the two-
level subsystem. This method can be generalized to the¹ite situation, if the symmetry of the system is
governed by an Abelian group.

It was Shore and Sander who first employed the FG
transformation as a tool to investigate the localization
problem in a mode-assisted transfer process (excitonic
self-trapping). They have found that the vibrational part
of the ground-state wave function pertaining to the left or
right site is given, respectively, as a displaced oscillator
function with a small supplement of its mirror image.
The latter establishes mode mixing in the oscillatory bath
and makes the self-trapping process a smooth one, which
is in contrast to a sharp transition as surmised earlier.

In the present work we apply the FG transformation to
the two most prominent tunneling models considered so
far —the two-site and the spatially periodic X-site model
with local bath coupling, respectively. We first give a
brief review of the generalized Fulton-Gouterman tran-
scription of a Hamiltonian displaying an Abelian symme-

try. We then apply this transcription to a two-site tun-
neling center and evaluate the ground-state energy-
expectation value by use of a displaced oscillator trial
wave function which subsequently is supplemented by a
mirror-image contribution. Thereafter we turn to the FG
equations of the periodic site model and again employ a
displaced oscillatory trial form. We finally make some re-
marks about the spin-bath models which correspond to
the oscillatory bath models considered before.

The main emphasis of this work is onto the peculiar to-
pological properties displayed by the Fulton-Gouterman
Hamiltonians, which have an impact onto the spatial ex-
tension of the solutions.

II. GENERALIZED FULTON-GOUTERMAN
TRANSFORMATION

For later reference we briefly review the background of
the FG concept. We consider X-particle states ~m )
with tunneling between nearest sites m and m +p and a
linear coupling to a bath of oscillators. We require that
the system displays the symmetry of an Abelian group
(elements R ) such that

Im &=R lO), R =(R, )

The Hamiltonian then reads

g (~m & &m+p~+H. c. )
g p, m

+ —X &r~(Pr~Pr~+Qr~Qr~)2 r, x

where a linear coupling to a bath has been assumed,
which for convenience is written as a superposition of
normal coordinate couplings. I Qr&,Prz ] are the
symmetry-adapted normal coordinates, (branch A. , irre-
ducible representation f'), such that

R Qr~=&r«)Qr~.
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yr(R, ) is the character of element R in the irreducible
representation I . g is the number of nearest neighbors p.
We note the symmetry requirement

[H, R,„]=0. (4)

The particles states Im ) constitute an N-dimensional
(regular) representation in which each of the irreducible
representations appears once. Since each eigenfunction
of the Hamiltonian must be an irreducible representation
of the group, we may write it in the Wigner form

—gX (R )R (l0&@("(Q)),
N

which we insert in the Schrodinger equation. Employing
the orthonormality of states Im ) and the orthogonality
theorem of group theory we find the Fulton-Gouterman
equations

of the system [ Im ) ]. We also assume the system to be
governed by reffection symmetry (a simple case of Abeli-
an symmetry) generated by a single element G, which is a
reffection operator, [R,„}= [ 6,6 =E

I . The group has
two irreducible representations I =g,p, which designate
the two parities p =+1, and the characters are y (G) =p,
g (E)= 1. The Hamiltonian then reads

H= —S-,'(It &(rI+Ir)(tI)o. + y—nr, (P«+Q«)

+ —,'(Il & & tI —I» & &»I)o,g II„D„Q„

where [Q„),P„&I are odd-parity modes and where we
have used the pseudospin notation

1
HFQ + (Q) Hbath+ g &r )Dr )Q r ).

——g yr(R„)R„tI)' '(Q)

E(r)C,(r)(Q)

~.=-,'(It )(.I+ I. ) (t I),
~, =-,'(ll ) (t I

—I. ) (.I),
1

2i

(10)

We remark that the even modes Qsz have the prefactor
I

1 ) ( 1I+ I
r ) ( r

I

= 1, hence there is no coupling to them.
Therefore we henceforth may disregard them and drop
the index u attached to the bath coordinates. We define

R tI)(I =E)( Q)p 0

E(r=E) &,(r=E)(Q) (8)

For completeness we note that the FG equations can also
be established by means of a unitary transformation UFO.
For this we refer to the original papers. '

III. TWO-SITE TUNNELING CENTER COUPLED
TO A BATH OF OSCILLATORS

We idealize the particle system to one of two states
only, I

r ) and
I
l ), which now constitute the regular base

bath
=

—,
' g IIr ~(P r ),P r ~+ Q r ~Q r ~ »
r', x

which is a rigourous substitute of the original Schrodinger
equation. In this manner the original eigenvalue problem
is replaced by X-eigenvalue equations, each referring to a
single irreducible representation, respectively, but each
pertaining to the vibrational subspace only. It is this
reduction which represents the main virtue of the
Fulton-Gouterman transcription and oAers both compu-
tational advantages as we11 as physical insights. In par-
ticular it is the last term of HF~ which establishes a
specific topological quality, since it has the eff'ect of sup-
plementing each wave function by rejected contribu-
tions, which are centered in diA'erent spatial regions.
These are generated by the symmetry operators R„,
which in our discussion below will be either reAectional
or translational operators. Specifically for the ground
state @0(Q) we find [I =E, gE(R„)= 1],

r

HFG @0 (Q) Hbath+ X &r'xDr'xQr')
I ', A,

1H„„h=—QA)(P) +Q) ) .2,
The Wigner formula (5) amounts to a parity ordering

of the wave functions

q(I ) [It )(P(I )(Q)+
I ) Gct(I )(Q)]v'2 (12)

Therefore we get only two FG equations

H(Fro) ~("(Q)= H,...+—r, ~.D.Q. -p—G ~("(Q)bath 2

E ( I )tI)( I )( Q) (13)

+It&&r G~), (14)

which is the form used by Shore and Sander. 6& is the
reAection operator in the vibrational subspace. For the
trial even-ground-state wave function (I =g,p =1) we
choose a product of displaced oscillator wave functions

6. '
@0(')(Q)=Q ~ '"exp ——Q,+, (1S)

where 5) are variational parameters. Inserting (15) into
(13) we are confronted with the overlap integral

In passing we note that these equations could have
been found also via a unitary transformation defined by
the operator

UFo= '
(ll &&tlGg+Ir &(rl Ir&&lI

2
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~ =
& ~.'"(Q)IG~.'"(Q) & =e.p 4

(16) A 1

AD 1+4 1+4 (23)

which characterizes the "Debye-Wailer" screening. The
ground-state energy is then given by

E s' = —g II ——g 0 (2D —5 )5 ——X . (17)( 1 1
0 p

A.
g

A. A, A.

A vanishing overlap integral would mean localization in
the two-site system, since in this case the lowest state of
odd parity would be degenerate with the even-parity
ground state. Hence a symmetry-broken state, for exam-
ple ~r &No(Q), would become a good eigenfunction of
Hamiltonian (9). We now specify our calculation to a
coupling setup of power-law form

Q~
QiD (Qi)p(Oi)=4aQDxi, xi =

D

where p(Q&) is the frequency density in the oscillatory
system and AD is the Debye frequency. Two power laws
have been considered as physically significant. m =1
characterizes the "Ohmic dissipation" case, which main-
ly plays a role in one-dimensional systems or in systems
where electronic excitations across the Fermi surface
play the role of the bath. ' Case m =3 is often taken for
three-dimensional tunneling in nonmetallic systems.

(1) In a naive approximation we first choose 5&=Di
and therefore we find from (16)

X [e',~'(Q)+

@GAL,

'~'(Q)], (24)

where y is a new variational parameter. This rejective
ansatz (24) cannot be written in product form and thus
establishes mode mixing in the bath. To get a perception
of the geometrical meaning of this ansatz, we return to
the original form of the wave function for p =1, which is
given by expression (12)

This equation is seen to yield nonlocalized solutions A&0
only for coupling constants a & a„=1, provided we
choose b,e/IID (1. (We do not consider the less interest-
ing case b, e /DD ~ 1). If a exceeds the critical value, the
solution jumps to localization. This behavior is shown in
Fig. 1.

(3) We now take account of the remarkable topological
property of the FG Hamiltonian which is established by
the refiective term of Eq. (13). Operating the FG Hamil-
tonian onto the wave function always yields a small quan-
tity (-b, ) of the mirror image of this wave function. Us-
ing this observation, first made by Shore and Sander in
the context of exciton self-trapping, we supplement the
displaced oscillator wave function 40s'(Q) by an admix-
ture of its mirror image (-y) and employ the trial wave
function

Q( ref)( Q )
—

( I +2~~ +~
2

)
—1/2

X' '=exp ——g Dq
1

OD
=exp ——f dO p(Q)D'(II)

4 0

(1+2)u+)') '"
0

x I [e,'&'(Q)+) Gc'o"'(Q)] I
t &

+[G4,'"(Q)+y+,'"(Q)]lr & I (25)

1

=exp —n dx x =exp
0

(19)

The divergence for m = 1 (Ohmic dissipation), also called
infrared divergence, leads to a vanishing overlap and
hence to localization of the particle.

(2) Minimizing the energy with respect to the displace-
ments leads to a self-consistency equation

Without the reflective part (@=0), itjos' is a symmetrized
linear combination of localized states (states of broken
symmetry) shown in Fig. 2 by solid lines. Roughly speak-
ing, in this wave function the left state

~
1 & of the particle

is attached to an oscillatory function which is displaced

10 Eo(s) / ()D

Qg+ ~(5i )

where X is given by Eq. (16). By means of the ansatz

D

(20)

(21)

4

2

Eq. (20) is transmuted into a self-consistency equation for
A, 4,

10 A
xm

A = exp —a dx
OD o (x +A)

(22)

Specifically for the Ohmic dissipation case (m =1) this
reads

FIG. 1. Ground-state energy Eo ' with a simple displaced os-
cillatory ansatz as a function of the localization parameter A

(A=O, localization). Coupling law: Ohmic dissipation (m =1).
a=0.97, 1.03 and o:=a„=1,6/0D =0.36.
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FIG. 2. Geometrical illustration of the wave function. Solid
lines: Simple displaced oscillatory part (y=0). Dashed lines:
Supplements of the reAective ansatz (y&0) establish a mode
mixing.

FIG. 3. Ground-state dependence Eo ' on the localization pa-
rameter A (A=O, localization) in the case of the reAective an-

satz (y&0, solid line) and in the case of the ansatz without
rejective supplement (y=0, dashed line). Coupling law: Ohm-

ic dissipation (m = 1);a = 1.03) o,„,5/AD =0.36.

to the left, and similarly the right state ~r & is attached to
an oscillatory wave function displaced to the right. The
supplements which are introduced by the reAective an-
satz (24) and (25) are illustrated by dashed lines. This
most clearly exemplifies the effect of the specific topologi-
cal property inherent in the FG Hamiltonian (13). There
is, as one might say, a reAection of the oscillatory wave
function across the barrier. Minimizing the energy with
respect to the admixture parameter y, and introducing
the simplified ansatz

Q2
E„,=—,

' g Qq —
—,'aQD—

8o.QD
(30)

IV. MULTISITE PERIODIC ARRAY OF
ONE-PARTICLE STATES COUPLED TO A BATH

OF OSCILLATORS

where E&„denotes the energy of the localized state
(A =0),

we find for the ground-state energy

a
E(')~' = —,

' g Q~ —
—,'QD

Another simple Abelian group, and simultaneously the
group of greatest physical interest, is the translational
group. For lucidity we confine ourselves to the one-
dimensional translational group, which, by imposing
periodic boundary conditions, is the cyclic group generat-
ed by one single element,

—
—,'Ae A + (AlnA —1) for A «1

8e AD
R„=(Ri)", (Ri) =E . (31)

(27)

in leading order for small values of A, where A is the
remaining global variational parameter. In this manner a
logarithmic barrier against localization is established if
localization is defined in the strict sense. This is shown in
Fig. 3, where even for cx) a„ there is a logarithmic des-
cent of Eo ' immediately above A =0 which establishes a
minimum at A&0. The dashed line in Fig. 3 illustrates
the energy Eog' which we get by varying only the dis-
placements, taking y =0. For (b, /f), D ) « 1, a ) 1 minim-
ization of Eq. (27) yields

A =exp[ —(2aQD /b, )~]

The irreducible representations of the cyclic group are
given by I = k =0,+1,+2, . . . , +N /2 with characters

.2'
yk(R„)=exp i kr (32)

where k =0 denotes the unity representation. We thus
specify our calculation to a one-dimensional cyclic chain
of particle sites with nearest-neighbor tunneling interac-
tion (p= 1, —1). The Hamiltonian reads

H= ,' g Aq(P, P, +g-qg q)

——y((m &(m+1]+[m+1&(m()
2

AD
p —4

2

from which we find the ground-state energy

(29)

+ —,
' y ~m &(m ~R 'y f)qDqg q (33)

where we have confined ourselves to a simple branch of
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00 D (0 )p(Q ) =4aQD
D

m

(34)

in accordance with Eq. (18). The Wigner prescription (5)

normal modes I =q =0,+1,+2, . . . , +N/2, and we
henceforth drop the index A, . For our practical computa-
tion we will again employ a power-law strength function

for the general group-theoretical form of eigenfunctions
now leads to the Bloch functions

—+exp i km ~m )R &0(")(Q) .(ic) 1 .2'
v'~ (35)

Following the general argumentation of Sec. II we find
for the X FG equations

H(k) (I)k(g) i g Q (p p +g g )+ ) g ~ D g (ei(2rrlN)kR +e —'(2rrIN)kR
) q)(k)(g)

q

~ ( k )(I) ( k )
( g )

We again choose a product of displaced oscillator wave functions as trial functions,

(36)

6
@'"'(Q)=ff7r ' "exp —

—,
'

Q +
q

5
Q +

2
(37)

From Eq. (3) we know the effect of the translational operator R, onto the normal coordinates Qq,

.2'
R+ Q =exp +i q Qq

from which we find

R (p(k)(Q) —~ —'I/4
p

+ (2 IN)qg +1 5
+& 0

— m exp e
2

5
+i(2rrIN)qg

2
(38)

OI

~q +(I)'"'"(Q)R 4'"'(Q) =X + qr
' exp . Q + e —'" ' cos —

q0 +1 0 q N Q + e + i(rrIN)qCOS
q

6

2
(39)

where

1 2%=exp ——g 5 5 1 —cos q
8

q

The eA'ective overlap matrix element then reads

( (I&(k)( Q) ~

ei(27rIN)kR +e
—i(2m IN)kR

~

@(k)(g) )

(40)

each single-k case we have to minimize the respective ex-
pression for Eo ' with respect to the variational parame-

ters'6

.
The most important outcome of this calculation is the

modification of the Debye-Wailer exponent in the
effective overlap integral X [see Eq. (40)], which is the q-
dependent factor

=RE cos k
277

N
(41) 21TB =1—cos q (43)

The lowest (i.e., zero phonon) Bloch band for the tunnel-
ing particle is thus given by

q q

—icos k
2m

(42)

where each of these states Eo ' is to be understood as the
lowest state of the particular FG equation (36) pertaining
to the respective irreducible representation k. Thus, in

Since B -q for small q, this factor has the ability to
compensate infrared divergencies in the exponent of Eq.
(40) if the displacements 5q diverge for q~0. We take
cognizance of the fact that the appearance of B is a
consequence of the particular topological characteristics
of the FG Hamiltonian.

To exemplify the impact of the quantity B onto in-

frared divergency in a more explicit manner, we have to
specify the dispersion law of the bath modes. We first as-
sume a bath of acoustic phonons:
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n, =2nD[ q
/

q
Q

2
D

2

which yields for small ~q ~
values

(44)

(45)

m 0. A better choice of 5 [minimization of Eq. (42)]
yields again Eq. (46). Employing (51) we are left with

4
E(k =0) E ~(0) 1+ ~ a ~(0)

0 = L 8 nD

in the strong-coupling limit, where in this case

4E'"="=E —m") 1+0 = L (47)

in the strong-coupling limit, where we have defined

Taking the rough choice 6 =D we find localization (i.e.,
X=0) for m ~ —1. A more accurate choice is found by
minimization of Eq. (42) and yields

0 D
(46)

X( '=exp —(gD —D B =exp
q

7T2
a . (53)

Thus, in physically relevant systems (m = 1,2,3) we al-
ways find suppression of localization, if the latter is
defined in the strict sense. This suppression is quantita-
tively (but not qualitatively) enforced, if the trial func-
tions are supplemented by contributions in other spatial
regions, such as terms of the form R+, @0"'(Q). This
would be the corresponding extension to the reflective an-
satz of Sec. III.

L' '=exp —
—,
' gD D ~B~ =exp

q

and the localization energy we get for ~=0,

(48)

V. SPIN BATHS, TWO-SITE AND
MULTISITK MODELS

E~ =
—,
' g 0 —

—,(aQD .
q

(49)

~2 0
B

2 QD
(51)

and for the rough choice 5 =D, we find localization for

Figure 4 illustrates the effective bandwidth E0 ' —EI,
which is just the lowering of the energy with respect to
the localization energy EL.

The second choice is an excitonic bath,
2

o, =n- '2q

Then (for small ~q~ values)

It turns out that the preceding two models with oscilla-
tory baths may be easily related to the corresponding
models with spin baths. Spin baths may be viewed as os-
cillatory baths, in which double (triple, etc.) excitations of
the single oscillator are disregarded, since then the oscil-
lators would act as two-level systems (i.e., spin systems).
Taking into account now the statistical weight of double
(triple, etc. ) excitations of a single oscillator, which is
-X, as contrasted to the statistical weight for single exci-
tations of two (three, etc. ) oscillators, which is
(-X, etc. ) we deduce that we may neglect double (and
higher) excitations of single oscillators for large
X( = 10 ). Thus, the results of the preceding sections also
refer to spin-bath models. An exact treatment of the
two-site model in a spin bath very recently has been given
by Chvosta. " His results coincide with those given in
Sec. II ~

(E,("="-E,) y ~

VI. SUlVIMARY

FIG. 4. Lowering of the ground-state energy E~
= ' below

the localization energy EL in the multisite model with acoustic
phonon bath as a function of the coupling strength e. Dashed
line: naive approximation 5, =a~. Solid line: variation of dis-
placements 6~. 6/O. =0.2&.

This work emphasizes a peculiar topological property
of mode-assisted tunneling systems, which is laid open by
means of the Fulton-Gouterman transformation. This
transformation is initiated by group theory and is applic-
able if the particle sites constitute a regular representa-
tion of an Abelian symmetry group. It transmutes one of
the three basic Hamiltonian constituents into the form of
a reflection operator (two-site model) or translational
operators (¹itemodel). In this manner it establishes
the effect that whenever the bath wave functions have a
localization around some displaced equilibrium
configuration, they necessarily must have a counterpart
which is localized around the mirror-image equilibrium
configuration. This counterpart must remain finite as
long as the tunneling parameter 6 itself is finite. In this
manner a kind of a bridge is established between different
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displaced equilibrium configurations, and this bridge has
an antilocalizing tendency.

We have investigated this tendency by means of dis-
placed oscillatory trial wave functions and mirror images
thereof. We have considered power-law coupling
strength functions (-0 ) and have given special atten-
tion to the Ohmic dissipation case (m = 1 ). For the two-
site model we have found a logarithmic barrier against
strict localization in the Ohmic dissipation case, localiza-
tion becoming possible only for I &1. In the multisite
model we have found that infrared divergency is over-
come by a phase factor. Again there is no strict localiza-
tion for m = 1, if displaced oscillatory wave functions are
used for the bath. The appearance of this phase factor is
a peculiar new feature in the multisite situation. It has
the effect that the critical power m for the onset of locali-
zation now depends on the dispersion law of the bath
modes. For Q(q)-q (excitonic or optical-phonon bath)
localization arises for m ~0, whereas for O(q)-~q~
(acoustic phonon bath) localization would arise forI ~ —1. Both rn =0 and I= —1 do not seem to be of

relevance in physical systems.
It should be stressed that our results do not seem to be

in convict with the particular kind of symmetry breaking
discussed in recent literature, ' since this broken sym-
metry is not tantamount to a complete localization in one
well. Rather, the outcome of our calculation may be ex-
ploited to give some new insight with regard to the tem-
poral evolution of a strictly localized state for o, )a, .
Since the Fulton-Gouterman ground state falls below the
strictly localized state by an amount E„;,~-E~„, as given
by Eqs. (29) and (30), we may define a time domain i.
given by

r:—(E~„—E,„;„) '=25, 'e exp[4a (QD/b, ) ],

which for a) l, (b./QD)~0 tends stronger to infinity
than any finite power of (AD/b, ). Thus the physical in-
terpretation would be that the strictly localized solution
is stable as long as t &~, which in most practical cases is
far beyond the access of measurement.
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