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Gutzwiller dynamic susceptibility:
Consequences for the transport properties of transition metals
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We calculate the dynamic susceptibility g(q, co) of the Hubbard model using the boson representa-
tion of Kotliar and Ruckenstein. The energy and momentum dependence of y(q, co) are the same as
in the random-phase approximation, but the Gutzwiller mass enhancement (m */m) and spin Lan-

dau parameter are included. Combining this with the Kaiser-Doniach expression for the resistivity
p' " of a transition metal we obtain a T term in p' which scales with (m */m ) in accordance
with experiment and has the correct magnitude.

INTRODUCTION

Recently we have examined quasiparticle interaction
effects in He from the standpoint of the "almost local-
ized" description originating in the works of Gutzwiller, '

Brinkman and Rice on the metal-insulator transition and
revived in the context of the liquid state of He by Ander-
son and Brinkman and, more recently, Vollhardt.
Starting from the functional integral representation of the
Hubbard model introduced by Kotliar and Ruckentein,
in which the Gutzwiller approximation appears as a sad-
dle point, we calculated the free energy and two-particle
vertex to one-loop order in the Auctuations around the
Gutzwiller mean-field result. We obtained the coefricient
of the T lnT component in the specific-heat and the
superfIuid transition temperature as a function of pres-
sure, and obtained satisfactory agreement with experi-
ment for both quantities.

In this paper we examine another response function,
namely the dynamic spin susceptibility within the preced-
ing approach. This quantity is of interest not merely in
the context of liquid He, but also from the point of view
of transition-metal magnetism where the Gutzwiller and
spin-fluctuation descriptions ' have traditionally been re-
garded as incompatible. The spin-fluctuation approach
to the dynamical spin susceptibility y(q, co) relies on sum-
ming a geometric series of particle-hole diagrams. As the
resulting y(q, co ) is peaked at low frequencies and
momentum transfer (at least for isotropic systems), the
system may be regarded as demonstrating ferromagnetic
spin tendencies. Furthermore, these spin fluctuations,
which for a transition metal arise predominantly from the
d-band, scatter s-p conduction electrons inelastically, giv-
ing rise to a resistivity proportional to T at low tempera-
tures. ' In contrast, the Gutzwiller approach emphasizes
the way in which local electron-electron repulsion inhib-
its electronic motion, increasing the efFective mass of the
carriers. Incorporating dynamical effects into this pic-
ture has hitherto been problematical.

In the following section we calculate y(q, co) using a
novel dynamical mean-field approach. Simply stated, in

the presence of a momentum- and frequency-dependent
external magnetic field h (q, co), the boson fields them-
selves acquire a q, co dependence even at the mean-field
level. However, to evaluate the susceptibility only re-
quires a knowledge of the free energy to second order in
h (q, co), and to this order most of the Bose fields are stat-
ic and determined by the h =0 values. After minimiza-
tion with respect to the remaining fields, some straight-
forward algebra is all that is required to obtain y(q, co).
The method is rather more transparent than that based
on functional derivatives of the Gaussian free energy (see
Ref. 11 for an elaboration of this technique) although
both methods lead to the same result.

In Sec. III we examine the resistivity p' " due to s-d
scattering in transition metals using the variational solu-
tion of the Boltzmann equation derived by Kaiser and
Doniach, ' with our y(q, co) as the only input. We calcu-
late the T term in p' " and discuss the correspondence
with experiment.

DYNAMIC SUSCEPTIBILITY

ft~f~~=p&~pta+dt di ~

while the hopping factor z; is defined by

(3)

The Hubbard model can be written in the following
form:

H= gt, f,t f z,"z +Used, td, gf,~ f, p, —
ll, J, O

where p; =p+o.h; is the chemical potential modulated
by the external inhomogenous and time-dependent field

h;. The spin-cr band electrons at site i are represented by
creation operators f, and have hopping matrix elements

t; while U denotes the on-site Coulomb repulsion. The
boson operators e, , p, , and d; label the empty, spin-o.
and doubly occupied sites, respectively, and are forced to
satisfy the following constraints:

gp; p; +e, e, +d, d; =1, (2)

39 4630 1989 The American Physical Society



39 GUTZWILLER DYNAMIC SUSCEPTIBILITY: CONSEQUENCES. . . 4631

The partition function can be written in terms of functional integrals as follows:

Z =+De, Dp; Dd;dA. ;dA, , Dft Df, 5(a. rg(p, &+p, &)
—arg(e, +d;))exp — drL(r)p

l, CT
0

(4)

where gauge invariance has been ensured by including into the functional integrations a 5 function involving the phases
of the Bose fields and the constraints are included via the Lagrangian multipliers A, ';", X'; ' and p; . The Lagrangian ac-
tion is written

r

L(r) —g e,. (r)c1/Ore (r)+.d,. (r)(8/Br+ U)d, .(r)+ gp. (r)dIBrp (r).
l 0'

+i A', " ,$p,. (r)p,. (r)+e; e, +d, d; —1 . +ail, '; '[f, (r)f; (r) —p; (r)p; (r) —d; (r)d;(7)]

+ g t,,f ~(r)f, ~(r)z, ~(r)z, (r)+$f ~(r)(&l&r p, ~)f ~(—r),

which, after the following gauge transformations and changes of variable (see Ref. 13)

e, (r) =x, (r)exp[i 0, (r)],d, (r) =y, (r)exp[i/, (r)],
p; (r)=q; (r)exp[i', ( )r],f; (r)=f (r)exp[ iy; —(r)+i8, (r)],
a;(r)=iA;'"(r)+, i9;(r),P; (r)=i A;''(r)+, i8;(r) iy; (—r),

becomes, on invoking periodicity of the bose fields, a sum of a fermion part

Lf(r)= $f, (r)[B/&r —p, (r)+/3, (r)]f; (r)+ $ f, (r)f, (r)t,,z, (r)z (r)
l, O

and a bose part

Lb(r)=g a;(r) x;(r) +y;(r) +gq; (r) 1+Uy;(r—) —gP; (r)[y;(r) +q; (r) ]

Performing the integration over the Fermi fields and introducing the Fourier transforms on the fields we obtain

F&= —TQTrlnA (k„k2), (10)

where

A (k, , k2)= ( iso p)6(k—„k2—)+T[f3 (k, k~) —crh(k, ——k~)]+T gtpz (k, —p)z (p —kz)

and q is shorthand for (q, co).

At the mean-field level, and to second order in the magnetic field, it is straightforward to show that only the spin-
dependent fields P and q depend on H(q, co), all the others being given by their h =0 mean-field values. The boson
part then becomes

Fb=a(x +y )+aT g q ( —ki)q (ki) —y QI3 + Uy —a —T g gq ( —ki)P (ki —k2)q (kz) . (12)
o, kl k

1 k2 o-

Minimizing the action with respect to the spin-dependence fields according to the variational principle, we obtain

BFIBI3 ( —k)=O=BFIIBP ( k) Ty 5(k) —T—gq—(k —k )q (k ),
k2

BFIBq ( —k)=O=dFIIBq ( —k)+2aT q (k) —2Y gP (k —ki)q (ki) .
kI

Differentiating further with respect to the external field yields

go [(1/2T )8 FIIBh (k)Bq( —k)+(a —P)Bq (k)/Bh (k) —qBP (k)/Bh (k)]=0,

go [8 F&/Bh (k)BP( —k) —T dn (k) ldh (k)]=0 .

(13)

(14)



4632 T. C. LI AND J. W. RASUL 39

Inserting the expression for E& together with the relevant mean-field values yields, in the half-filled limit, to

go c}P (k)/c}h (k) = —U[(1—I)(2+I)/(1+I)][i}n
&

(k)/Bh (k) —c}n &(k)/Bh (k)],
o'

go Bn (k)/Bh (k) = TQH(k, )H(k+k, ) gcrBP (k)IBh (k) —2
k)

(15)

in which I = U/U„and the mean-field propagator is
given by

H(k)=[ —ice p+P—+z tk]

where tk denoted the band energy, the mean-field mass
enhancement is given by

z =[1—(UIU, ) ]

U, =16T g ti, H(k)
k (kF, cu

normalized by the Gutzwiller factor (1—UIU, ) . We
note that for small U the spin Landau parameter ap-
proaches UN(0) and the standard RPA result is
recovered.

RESISTIVITY OF TRANSITION METALS

To obtain the resistivity contribution arising from ex-
change scattering of s-p electrons off the d electrons, we
substitute y(q, co) obtained earlier into the Kaiser-
Doniach expression, ' modified by Jullien et al. ' to al-
low for diFerent s-p and d-electron Fermi momenta (kF

C

and kF respectively)
d

denotes a critical value of the coupling at which the
effective mass becomes infinite. The field-dependent oc-
cupation number is defined by

p =(pOIT) f den co 2 (co)I[[exp(Pcs) —1]

X [ 1 —exp( —Pco ) ]], (22)

n (k)=T+q (k —k, )q (k, )+y /T .
k)

(17)

Introducing the mean-field Lindhard susceptibility
xo(q, ~),

y (q)= —TQH(q+k, )H(ki),

where 3 (co) denotes the imaginary part of the q-
averaged, d-electron spin susceptibility

2kF

3 (co)=(2/kF )f dq q Imp(q, co), (23)

and the constant po may be written as

po
= [JN, (0)/4] ( v, /n, )[m, /( n, e r~ )], (24)

we obtain for the full spin susceptibility y(q, cg) defined
by

y(q, co)=+~rein (q, co)/Bh (q, co), (19)

f0
= pI (2+I)I(1+I)—

Our expression for y(q, co) has the familiar random-
phase approximation (RPA) form but with the mean-field
spin Landau parameter f0 (Ref. 15) entering the denomi-
nator. Consequently, since the spin Landau parameter
tends to a value of —3p/4 [where p =N(0)gk « t„ is

the only parameter that depends on the details of the
bandstructure], as U~ U, the system experiences spin
fluctuations that are quite long lived but not critical un-
less p )—', . The spectral density Imp(q, co) has the famil-
iar peak at small q and co, but with a Fermi velocity re-

the following form after some manipulation:

g(q, ~)=go(q, ~)/[1+[f0/N*(0)]go(q, co)], (20)

where N*(0) is the renormalized density of states at the
Fermi level and the Gutwiller spin Landau parameter is
given by

where N, (0) is the s -p density of states and J is the s -p -d
exchange constant. The number of s-p electrons (atoms)
per unit volume is denoted by n, (v, ), m, is the conduc-
tion (s-p) electron mass, and the inverse lifetime for con-
duction electrons 1/rF is equal to their Fermi energy.

C

We can simplify matters by looking first at the high-
temperature behavior of the resistivity. Although the
mean-field boson theory treatment given here is unlikely
to be reliable for all temperatures, the theory has a simple
high-temperature limit in which the effects of correlation
vanish completely and the susceptibility is given by the
Curie law

p=p (vr /2)I&[g, f, ](m*lm) (Tle~ )

where ez denotes the bare d-band Fermi energy and
d

(25)

y(q, co=0)=1/(2T) .

Following Jullien et al. ,
' the Kramers-Kronig relation

may be invoked leading to the result that the resistivity
saturates at a value p =2mpo. In fact p will prove a
more convenient resistivity scale for our purposes.

The T term in p' is obtained by expanding A (co) to
leading order in co so that

I, [g,f, ]=(1/g )J '
dx x l[1+f,y(2k~ x, co)/N*(0)] (26)
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involves the ratio g( =kF /kF ) and the spin Landau pa-
c d

rameter. For a parabolic band with g = 1, this factor
ranges from 2.4 for fo =0.7 to 5.2 for fo =1. The essen-
tial point to note is that the T term scales with the
square of the effective mass enhancement as I& depends
only weakly on U/U, compared with I*/m. The scal-
ing of A with (m*/m) was pointed out long ago by
Rice' who invoked Baber scattering to explain this. In
the context of the heavy-fermion (HF) systems several au-
thors have obtained this scaling law. ' Both these ap-
proaches and the one given here have in common the
scattering of fermions by bosons representing the long-
wavelength modes of the system. However in the HF
theories the scattered electrons play a part in the heavy
band formation while in the present problem the dom-
inant resistivity arises from light electrons weakly cou-
pled to the strongly correlated band. Consequently, the
ratio p/T to m*lm is expected to differ between the
two systems. We can compare with experiment more
readily if we introduce the specific-heat coe%cient

y=2vr N*(0)/ 3=~ l(2eF *),

where ez *=@~I/I* is the effective d-electron band-
d d

width. Choosing units such that kz = 1, we find that the
ratio of 2 ( =p/T ) to y is given by

A /y =p „(2I, [g,fo ] /m. ) . (27)

We may compare this with the ratio obtained in heavy
fermion theories, e.g., that of Coleman, ' where for a
spin- —,

' system A/y =9pU/4, with pU denoting the uni-

tary scattering resistance. Setting pU equal to 350 pQ cm
yields the observed value for HF systems

A/y2=10 pA, cmmJ mol K

For our problem it is p rather than pU which deter-

mines the size of 3 /y and from experiments on Pd (see
Ref. 14 for references) we take p to be 50 pQ cm. Set-
ting fo

= —0.9 and taking g= 1 we obtain (assuming a
parabolic band)

A/y =0.5&&10 pQcmmJ mo

in reasonable agreement with the experimental value for
transition metals given by Rice. ' More recent measure-
ments of A for Pd (Ref. 18) are still in accord with this
value.

In summary, we have calculated the Gutzwiller dy-
namic susceptibility of the Hubbard model starting from
the boson representation of Kotliar and Ruckenstein.
For a parabolic band the response is peaked at low q and
co but with an energy scale renormalized according to the
Gutwiller approximation. Taking g(q, co) as input to a
standard formula describing s-d scattering in transition
metals, we obtain a T component in the resistivity which
scales with the square of the mass enhancement in agree-
ment with long-standing experiments. The ratio A /y is
smaller than in HF systems by an order of magnitude,
reAecting the fact that light s-p electrons dominate the
resistivity.
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