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Correlation functions of one-dimensional quantum systems
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A number of one-dimensional quantum systems like interacting fermions or spin chains can be
described in terms of a generalized quantum sine-Gordon Hamiltonian. The transfer-matrix formu-
lation of critical two-dimensional models also frequently leads to sine-Gordon Hamiltonians. We
compute here the different correlation functions of such a model using a real-space renormalization
technique. Our renormalization calculation gives us the exponents of the correlation functions as
well as the corrections to the usual power-law behavior due to marginally irrelevant operators. Ex-
cept on the critical line, where logarithmic corrections exist at all length scales, the correlation
functions decay like power laws, with amplitude corrections from the marginal operators. The loga-
rithmic corrections always appear at short length scale. The complete crossover between the two
behaviors is given by our equations. The implication of our calculation for physical systems like the
one-dimensional electron gas, quantum spin chains, and two-dimensional statistical systems is dis-
cussed.

I. INTRODUCTION

In one-dimensional quantum systems an ordered
ground state with a broken continuous symmetry cannot
exist, due to strong zero-point quantum fluctuations.
Typical examples of this behavior are interacting fer-
mions in one dimension' or Heisenberg quantum spin
chains. In a mean-field-like approach these systems
would exhibit symmetry-breaking phase transitions at
nonzero temperatures, however the order is destroyed by
quantum fluctuations even at zero temperature. Never-
theless, the tendency of the system to order manifests it-
self in different correlations functions which in many
cases exhibit power-law decay at long distances, frequent-
ly with nonuniversal exponents. Correspondingly, there
are generalized susceptibilities which show power-law
divergences as T—+0.

Similarly, broken continuous symmetries are forbidden
in two-dimensional systems at nonzero temperatures, in
this case due to thermal fluctuations. However, in some
cases, below a certain temperature, quasi-long-range or-
der, characterized again by power-law decay of correla-
tion functions, exists. The most prominent example of
this type of behavior is the two-dimensional XY model,
and the associated two-component Coulomb plasma. '

In all the above examples, the power-law decay of
correlation functions is related to the fact that the asymp-
totic long-distance properties of these models are de-
scribed by a Gaussian model, or equivalently by a nonin-
teracting massless boson theory. The Gaussian model
also describes the critical properties of a number of two-
dimensional models with a broken discrete symmetry like
the eight-vertex and Ashkin-Teller models. However,
in all these cases there are corrections to this ideal behav-
ior, coming from marginally irrelevant operators. As we
shall show, these terms lead quite frequently to logarith-
mic corrections to the long-range behavior of correlation
functions. These corrections can be important in the

determination of the phase diagram of weakly coupled
chains, e.g. , quasi-one-dimensional conductors' or
quasi-one-dimensional magnets. The corrections are also
of significance if one wants to determine exponents nu-
merically from finite-size calculations. "

It should be mentioned here that even though power-
law correlations do occur frequently in low-dimensional
systems, they are by no means universal. There are well-
known examples where fluctuation effects are strong
enough to lead to exponentially decaying correlations:
the O(n)-vect or model with n &2 in two dimensions, '

for example, or quantum spin chains with integer spin. '

On the other hand, power-law correlations do not univer-
sally imply an underlying noninteracting boson model:
Wess-Zumino type models' (and some particular
spin-chain models related to them ') do exhibit power-
law correlations, however, the underlying field theory is
not a noninteracting Bose field. Logarithmic corrections
in this last case have been studied by AfBeck et a$. '

Corrections to the leading power-law behavior of ener-
gies in the presence of symmetry-breaking perturbations
have been considered previously, ' ' and logarithmic
corrections have also been found in the spin-correlation
function of the two-dimensional XY model. In this pa-
per we compute the diff'erent correlation functions of a
generalized sine-Gordon mode1 orito which the different
physical systems related to the Gaussian model can be
mapped. Our computation will give the long-range be-
havior of the correlation functions, including the different
corrections, as well as the complete crossover between
the short and large distance behavior. In all cases fluc-
tuations play a major role and simple treatments such as
straightforward perturbation expansions or RPA are
insufficient. We therefore use a real space renormaliza-
tion technique similar to that of Kosterlitz or Nelson
to perform the calculation.

The plan of the paper is as follows. In Sec. II we intro-
duce the model and the different correlation functions we
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will consider in the following. We give the renormaliza-
tion equations for the coupling constants. In Sec. III the
lowest-order renormalization equations are obtained for
the most general case. Their behavior is studied in detail
in some particular cases. In Sec. IV our results are ap-
plied to one-dimensional interacting fermions, quantum
spin-chains, and two-dimensional critical systems. Final-
ly in Sec. V we examine some consequences of our results.

II. GENERALIZED SINK-GORDON MODEL

ical plane gp
—~g&~+jge~=0. This plane separates the

two behaviors go ~+~. For go ~—~ the quantum
Iluctuation (kinetic energy) term in (2.2) is suppressed and

~g&~ increases under renormalization. Therefore one has
long-range order of the P field, and correlations of 0 de-
cay exponentially at large distance. The behavior for
gp~+ oo is obtained from the transformation $~0. The
average values of the ordered fields are given by

We consider the generalized sine-Gordon Hamiltonian

2gy
H =Ho+ dx cos 8

(22ra )

gp & 0 Q=vrl+8,
g (0 P=Q

(2.7)
2gg

2 f dx cos&80(2na).
where Ho is defined by

(2.1) ge(0 0=2rl&8,
go~+ oo 0 g 0g6}

II = f dx (uK)(2rII) + —(&„p)
27K K

(2.2)

[P(x),II(x')]= i5(x —x ') . (2.3)

In order to regularize the theory we have to introduce a
short distance cutoff a. We introduce the abbreviation

where 2rII(x)=B„0 is the momentum density conjugate
to

The case g&=0 (or g&=0) corresponds to the usual
case of a Kosterlitz-Thouless transition. There is (for
g&=0) a line of fixed points gp, g&=0 if gp & Igyl.
gp ( ~gy ~

there is a renormalization to strong coupling
with go ~—~, which gives the same ordered fields as be-
fore.

III. CORRELATION FUNCTIONS

K =1+go/2mu . (2.4) A. Renormalization of the correlation functions

For go =go=0 u is the velocity of the low-energy excita-
tions of H, whereas K determines the exponents of
different correlation functions, see Sec. III. H is invariant
under the transforniation $~0 g&~ge, K~1/K.

To describe the physical properties of our system we
will consider the correlation functions

R, (ri —r2)= exp[ —K, U(ri —r2)],
where

(3.1)

In the absence of g& and g& terms the functions R,- are
easily computed:

R p
=2( T, cos[&2$(r, ) ] cos[&2$( rz }]),

R, =2( T, cos[&20(r, )]cos[&20(r2 ) ]),
R2 =2( T, sin[&20(r i )] sin[&20(r2)] ),
R 3

=2 ( T, sin[i/2$( r i )] sin[ i/2$( r 2 ) ]),

(2.5)

(x —x') +(u ~r 2.'~+a)—2'" 2

with Kp=K3=K, K, =K2=1/K. If r »a then

U(r) —ln(r/a) .

(3.2)

(3.3)

= —y&(l)yp(l),

dye
dl

=ye(l)yp(l»

(2.6)

where we have introduced y for g /mu, and expanded to
lowest order in yp. From these equations one finds a crit-

where r =(x,u2. ), and T, is the time-ordering operator.
The generalization to other correlation functions will be
given in Sec. III D.

From a perturbation expansion of the correlation func-
tions we have previously derived the renormalization
group equations for the change of the effective coupling
constants under a change of the cutoff a~e'cz

dyo
=ye(l) —y&(l),

F, (r, ae, g (l))=I, (dl, g (l)), .

F, (r, ae'+"', g (1+dl)), (3.4}

where the different g (l) are the solutions of (2.6), for an
infinitesimal transformation a(l +dl)=a(l)e . Here and
in the following a always denotes the initial short-

We will use this approximate form of U in the following.
Let us consider the functions F, (r, r2)=R;(r, —

r2) exp[K; U(r, r2)—]. In the absence—of g& and ge, F,
reduces to the constant 1.

If we now include the interactions g& and g& and com-
pute I' perturbatively, the development is divergent for
large r, —r2. To handle such a situation we use a method
similar to that of Kosterlitz. If r, —r2-a the develop-
ment in powers of g&, g is convergent and for small
enough coupling constants F; —1. We will thus try to
find a function I; such that
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F~(r, r, g(1n(r/a))) =O(1), (3.5)

provided that the couplings g are still small, and repeat
(3.4) until the cutoff a(l) reaches r, we obtain

distance cutoff, whereas the rescaled cutoff is written as
a(l) =ae . If we use

I = ]n(r/a)
F, (r, a,g(a))= g I, (d. l,g(l))

I=0

= exp f 1n[I(dl, g (1))]
0

The algebra is left to the Appendix, and we obtain

(3.6)

Ro(r)=

R, (r)=

R~(r)=

R, (r)=

exp —K In(r/a)+ f dl I y&(—l)+ '[y&(—l) —y&(l)] 1n[r/a(l)]]

exp IC '—1n(r/a)+ f dl I+ys(l) —
—,'[y~(l) —ye(l)] in[r/a(l)]I

exp —K '1n(r/a)+ f dl I
—ys(l) —

—,'[y&(l) y&(l)] i—n[r/a(l) ]I

exp —K 1n(r/a)+ f dlI +y&(l)+ 2[y&(l) —y&(l)] 1n[r/a(l)])

(3.7)

From (2.6) we obtain

—,
' f dl(ye —y&)ln

yo( l) =b /I tanh[61 + artanh( 5/yo ) ]I,
y&(l) = b, /t sinh[Al + artanh(b /yo)]],

(3.1 1)

= —
—,'yo In(r/a)+ —,

' f yo(l)dl .

As K = 1+yo/2 we have

Ro= —L ) 'L2L3 ',

(3.8)
where b, =(yo —y&)' is an invariant of the renormaliza-
tion equations. We have from (3.10}L3= 1/L2.

&- 70=3'y

In this case yo(l) =yo/(1+yol) and

R i
= LiLpL3

0!

R2= —L]L2 L3
(3.9)

L, =L, =(y /y )' '

If r~ ~ then yo —1/l and

(3.12)

R3= L& L2 L3 Ro(r) =—1n ~ (r/a),
(3.13)with

L, (r)= exp —,
' f "'"

dlyo(l)

L2(r)= exp —,
' f dl[ys(l) —y&(l)]

L 3 ( r ) = exp —,
' f dl [y s( l ) +y &( l ) ]

(3.10)

R, (r) =R2(r) =R3(r) =—1n' (r/a) .a

All the correlation functions decay with the same ex-
ponent, but logarithmic corrections enhance R& z 3 over
Ro.

2. 6~0
Equations (3.9) and (3.10) give the correlation functions
to lowest nontrivial order in the coupling constants.

B. Solution for some particular cases

The general solution for the correlation function will
be given in the next subsection, but it is interesting to
study the equations for some simple cases. We treat here
the limiting case y&=0. We limit ourselves to yo y&,
i.e., the case where a fixed point at finite coupling exists.
Other cases can be treated similarly provided that one
limits oneself to sufBciently small distances, so that one
remains in the range of validity of the renormalization
equations. We will denote in the following the initial
values of the coupling constants by y and by yf the final
ones, i.e., those for l = ln(r/a).

Equations (2.6) are easily solved:

In this case we have

L&(r}=[cosh(bl)+ sinh(bl)]'

L 3 =C3 tanhI [6l + artanh(5/yo)]/2],
(3.14)

with C3=1/tanh[ artanh(b, /yo)/2]. Then, from (3.9)

R =—L 'I

(3.15)

R] =R2= Li
CX

As now we have y&&yo, R3 and R
& 2 are no longer de-
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generate. There are two different qualitative behaviors
depending on the values of l = ln(r/a). If b, l «1 one
can expand the hyperbolic functions and it is easy to
check that to lowest order in b. the results (3.13) are
recovered. Thus, for short enough length the system
behaves as if the couplings were isotropic (5=0). In par-

I

ticular all the correlation functions decrease with the
same exponent, up to logarithmic corrections. At an
"anisotropy" length given by 1n(r/a)=1/b, there is a
crossover from a regime of isotropic correlation functions
to a regime dominated by the anisotropies. By using
Al » 1 one can expand I 1 and I.2 and Ands

1/2

1+2 y — +O((a/r)»)
yp+5 r

1/2

1 —2
yo ~ a +O((a/r ) )

25
yp+6 r

[1+O((a/r) )] .

1+6/2

Ro(r) =C, ' [( I+yo/b, ) /2] r
' 1+5/2

R3(r) =C3[(I+yo/b, )/2]

1 —b, /2

R1(r) =R2(r) = [(1+yo /b, )/2]'

(3.16)

Thus the correlation functions decay with different ex-
ponents: 1+5/2 for Ro and R3, 1 —b, /2 for R, and R2.
There are no logarithmic corrections but rather power-
law corrections to the main divergence which become
negligible when r —+ ~. The fact that logarithmic correc-
tions have existed up to the "anisotropy" length manifest
itself in the prefactors of the different correlation func-
tions. If we go closer and closer to the isotropic limit the
prefactors enhance R1 2 3 over Rp.

C. General solution

We will now solve the complete Eqs. (3.7) and (3.10).
We will restrict ourselves to yp & 0 y g & 0, y &

&y z and
I.

a'=(ye+yy)' —yo»,
b2 —

(y y )2 y2)0
(

2 b 2)1/2
q=

(3.17)

The solution of (2.6) is given by

yfo =b sc[F( arctan(yo/b), q ) —a ln(r/a) iq], (3.18)

where sc(x iq) is a Jacobi elliptic function. Moreover we
have by straightforward integration of (3.10)

yp
—y&+y &0. Other cases can be straightforwardly ob-

tained by the same method. We introduce

L, (r)=

L2(r)=

2yy

[(y f2 +a 2
)(y f2 +b 2

)]1 /2 +y f2
y

2 +y
2 +y

2

f +( f2+ 2)1/2

yp+yq+y~

' 1/4

(3.19)

yp+y~
f+( 2+b2)1/2

1/2

If the system is not on the critical plane the renormaliza-
tion Eqs. (2.6) leads to strong couplings. Therefore the
solution (3.19) is only valid for length scales shorter than
the correlation length of the ordered phase. For larger
length scales one can use the renormalization equations
to map the problem onto the exact solution of Luther and
Emery for a particular value of the coupling constants.

If the system is on the critical plane the couplings
remain weak and the solution (3.9) is valid at arbitrary
length scales. On the critical plane we have yp =y& —yg.
In terms of the variables yo and y =y&+ys the Eqs. (2.6)
become

dyp
ypy

(3.20)

These are the standard Kosterlitz-Thouless equations.
The problem is then similar to that of the Sec. IIIB:
there are power-law correlation functions, with correc-
tions to the amplitude coming from the marginal opera-
tors. The only case where logarithmic corrections appear
at arbitrary length scales is yp =y . This corresponds to
yo =0 and yp =yy or y& =0 and yp = —y, i e., a pure
Kosterlitz- Thouless transition line.

D. Generalization to other correlations functions

The calculation of the previous section can easily be
generalized to other correlation functions such as

yp . R; b" (z, r) = ( T [Ot b(z, r)O, . b (0,0)]), (3.21)
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where

i (a+2P+b(/2B)
Oa, b

In the absence ofy and y interactions we have

(3.22)

a 2+ b 2

ah CX

e 2iab Arg(r)
a, b

J

2 b2x exp — J y0(l)dl . (3.25)
2 0

R a', b'
g g e

—(a K+b /K)U(r) Ziab Arg(r)
a b a a' b b' e (3.23)

iV 2$(r( ) iM2$( r& ) —iV 8$( r3 )

)Te 'e 'e (3.24)

(or the equivalent term with $~8). Of course such terms
are also absent from the correlation functions if y&=0
(resp. ye =0). By using the same method as in the appen-
dix we find, for a&1,b&1

where Arg(r) is the angle between r and the x axis.
If we now include the y& and yB interactions we can

use the same method as above. If a&1(b&1) there are
no first order terms such as [see (Al)]

On the critical Kosterlitz-Thouless type lines the correla-
tion functions R' have logarithmic correction factors

b2 2 /r2
a, b —b )/2ln'" ' )~2(r/a) (fory()=0, y0=~y&~) or ln(' ' (r/a)

(for yp 0——, y = —lysi). For example, for y, =o, y0=yt„
b = 1, a =0 this formula gives an exponent —,

' for the loga-
rithmic correction, in agreement with (3.13) for R, 2 3..

for yB=0 there is no erst-order term for the 0 correlation
fv.ictions. On the other hand, as y&&0 formula (3.25)
cannot give the exponent of the logarithmic corrections
for a =1.

The case where a = 1 or b = 1 can be treated by a slight
generalization of Sec. III A, the only change being the ap-
pearance of the angular part in functions containing both
P and 8. This angle-dependent part is not renormalized.
As an example, we will give results for the case
a = l, b&1. It is more convenient to introduce linear
combinations of the 0 operators. We will then consider

R (+ ) ( T [+2y( )] ib)/29(z, —r) cos[+2y(0 0)] ibv 29(0,0) )
r

R', '= ( T sin[&2(t(z, r)]e ' "'sin[&2$(0, 0)]e' ' ' '')
7

with the result

(3.26)

R(+)—
1,b

R'1 b'=

1+b

1+b
A

1 b-e2(b~rg{r) exp I diy (I)dl — f y (I)di

('

1 b—
0 2 0

E

(3.27)

IV. PHYSICAL SYSTEMS
The generalized sine-Gordon Hamiltonian (2.1) can be

related to a variety of one-dimensional quantum systems
or two-dimensional classical systems.

A. Interacting fermions in one dimension

We use the standard "g-ology" description of one-
dimensional interacting fermions. ' As the important

processes are those close to the Fermi surface, the spec-
trum is linearized around k~ and —kF. The interactions
between electrons are parametrized by constants. If the
band is not half-filled (no umklapp process), one can show
that all the processes at the Fermi level can be described
by few constants. ' The complete one-dimensional Ham-
iltonian then is

k, cr, r
UF( « &F )a„koa„ko—
—1

gl(( o, o' g )i o, —o' +, ki —,k2, ' +,k&+2k&+p, o' —,k1 —2k —p, o.
k

1 'k2'p

+& ' g (g2((&o o +g2ifio o )p+ o(p)p ( —p)+L ' g gfa+ k a k a k + a+ k, (4.1)
p, a', a k), k2, p, ~

where

Xa,, k+, , a;k,
k

(X)—L
—1/2 y a ikz

k

(4.2)

r =+ denotes right- and left-going fermions, o.=+ indi-
cates spin up and down, and a„k (a„k ) is the annihilation
(creation) operator for a fermion in state (r, o )with"
momentum k.
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We now use the boson representation of fermion
operators, introduce charge (p) and spin (o ) density
operators in the standard way, and define the phase
fields.

P (x),8 (x)

In this model y&
—

yo describes the spin anisotropy be-
tween the x —y plane and the z axis, and y the spin-
anisotropy in the x —y plane. For spin-independent in-
teractions y&=yo and y&=0. For repulsive backward
scattering (y& =yo )0), so that y&(1 = ~ ) =0, and using
(3.13) we find the asymptotic behavior

v=p of o

—a~p ~
/2 —ipx[

p~o P a~ SDW +SDW ~ SDWX z r

' 1+K
P

ln' (r la),
(4.8)

In A,B=. . . the upper sign refers to A, and a is a
short-range cuto6' parameter of the order of the lattice
constant. In terms of boson operators the Hamiltonian is
expressed by

a+CDW r

1+K
P

ln ~ (rla) .

H =H +H + f dx cos(&8$ )
2g 1g

(2vra )

2gf
2 f dx cos(&88 ),

(2rra )

where H and 0 are defined by

(4.4)

(g, )'
Q = Vv F 4

1/22''VF+g v

2&VF g
(4.5)

gp g g1]] g2)( +g2

and II is the momentum density conjugate to P,. The
charge part of the one-dimensional Hamiltonian corre-
sponds to the free Hamiltonian (2.2), whereas the spin
part is the complete Hamiltonian (2.1). The physically
interesting correlation functions for the one-dimensional
electron gas are the 2kF charge density wave (CDW),
spin density wave (SDW) or singlet (SS) and triplet (TS)
superconducting Cooper pairing type. These Auctua-
tions are described by the correlation functions'

R;(x, r) = —( T,O;(x, r)0; (0,0)), (4.6)

where ~ is the Matsubara imaginary time, and

The three spin-correlation functions are identical, as ex-
pected by spin-rotation invariance, and decay with the
same power-law behavior as the CDW function. It is
only the logarithmic correction which, for yo &0, favors
spin- against charge-correlation functions. This can also
be found, in momentum space, integrating the first-order
renormalization equations for the correlation functions. '

The pairing correlation functions are obtained from (4.8)
replacing K —+ 1/K . In a half-filled band umklapp
scattering can lead to "frozen" charge Quctuations, i.e.,
the electrons are localized. The correlation functions in
this situation are given by (4.8), with X =0. The correla-
tion functions then have the same aymptotic behavior as
that found for an isotropic S =-,' antiferromagnet [Eqs.
(4.12) and (4.14)]. This is of course expected on physical
grounds: localized electrons interact via an exchange in-

teraction, and therefore their properties are those of the
spin-chain model.

The corrections found here can be important if one
wants to determine which phase is realized in a physical
system. This becomes especially important when inter-
chain coupling it taken into account to describe quasi-
one-dimensional systems. '

B. Quantum spin chains

A rather general Hamiltonian describing quantum spin
chains is

2lkFx
e

OCDw (x& r) = exp[ —i&2/ (x, r)]cos[&2$ (x,r)],
N

H = —g [(S;S;"+,+S,AS(+, )+J,S S +i D(S ) ], —

2ik~x
e

OsDw (xq7 )
X 7TCX

2ikF x
e

OsDw (xq 7 ) =
&(X

2ikFx
e

OsDw (x, r)
z &A

exp[ —i&2/ (x, r)]cos[&28 (x,r)],

(4.7)

exp[ —i&2/ (x, r)] sin[&28 (x,r)],

exp[ i &2$ (x, r)] —sin[ &2/ (x, r) ] .

Oss and OTs are obtained with kF=0 and replacing
P ~8 . The spin part of the correlation functions corre-
sponds to the four functions R; of (2.5), whereas the
charge part is easily obtained. '

(4.9)

where S; =S(S+1), and the index i labels consecutive
lattice sites. D =O,J, =1 is the isotropic ferromagnet,
D =O, J,= —1 is the isotropic antiferromagnet (after a
spin rotation by ~ around the z axis on every second lat-
tice site), and in general there is both exchange and
single-ion anisotropy, but the model is isotropic in the xy
plane.

In a certain region in the parameter spaces D,J, the
model (4.9) has a massless excitation spectrum. In this
region the long-range behavior of diferent correlation
functions is believed to be governed by the Hamiltoni-

n3, 31,8,9,32
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H = dx uE mH +2' K

2gy+ z cos(&2m/)
(2ma)

(4.10)

with u, K,g& functions of D,J„and S(g&=J, ), and
m =1(m =2) for S integer (S half-odd integer). The
operators +II are related to the operators used in Ref. 32
by $=2&SQ„ Ii=g, /(2&S ). In the massless region
one has g&(l)~0 for l ~ 0D under renormalization,
whereas outside the massless region g& increases with in-
creasing /. For half-odd integer S and D =0 the massless
region is —1~J, &1, ' ' whereas for integer S the
lower limit of the massless region (for D =0) occurs at
J, ,) —1 (Refs. 17 and 32) [numerically one finds

J, , = —0. 1 for S = 1 (Refs. 34—36)]. For S ) —,
' and arbi-

trary D the boundaries of the massless region have to be
determined numerically.

Obviously, the Hamiltonian (4.10) is of the form (2.1),
with g&=0. Consequently, we can use the results of Sec.
IIIB to obtain correlation functions. For half-odd in-
teger S the spin operators (more precisely, the part of
them giving the slowest decay of correlation functions)
are

S+(x)=e ' ' ', S'(x) =e' cos[v'2$(x)] . (4. 1 1)

On the critical line, i.e., the boundary to the antifer-
romagnetically ordered phase, we then have (after going
back to lattice operators)

(S„SO ) =( —I)"(S'So)=—ln'~ (x/a),
whereas inside the massless phase there are corrections to
the asymptotic power laws of the form (3.16). Another
interesting operator is the dimerization of the nearest-
neighbor exchange which intervenes for example in the
spin-Peierls transition. Its continuum representation is

(4.12)

( —1)"(S+S +i +S„S„++,) = sin[&2'(x)] . (4.13)

Again using the results of Sec. III 8, one obtains for the
corresponding correlation function

((S„+S.-„+S.-S.+, )(S,+S;+S;S,+ ) )

For integer S,S+(x) takes the same form as in (4.11),
however, the argument of the cosine term in the Hamil-
tonian is changed. After a simple transformation of the
fields $~2$, 8—+8/2 and using the results of Sec. III D
we find for the spin correlations on the boundary between
the massless and the singlet phase

1/4

(S+So ) = — in'~ (x/a) . (4.15)

+A, ,S s +, +A2S S +2], (4.16)

where the S; are spin- —,
' operators. After a Jordan-

Wigner transformation" we find a Hamiltonian of the
form (2.1) with the identifications (neglecting renormal-
ization effects due to the continuum limit)
f —gg, gy

=k)+ X2,gp =A, i.
For A,2=0 (4.16) is the XI'Z model, solved exactly by

Baxter. ' Through spin rotations, all the diA'erent critical
lines of the model can be transformed into (4.16) with
y=0, ~k, ~

~ l. One then has the model (4.9) with S =
—,',

and the preceding results can be taken over. It is also of
some interest to consider the correlation function of the
operator for anisotropy in the xy plane. One has

S S„"+,—S S„+i = sin[ v'88(x) ] . (4.17)

For the isotropic antiferromagnet (A. , = —1) one has
K(i = 00 )=1, and from (3.25) we find

((S„S„,—S„'S;,)(S,"S,—SOS', ))= — I '( / ) .
X

The exponent of the logarithmic correction is the same as
that foun, d for the two-dimensional XY model, to which
the present model is related for S =1. Contrary to the
case of half-odd-integer spin, the S' correlation function
and the correlation function of the dimerization operator
(4.14) always decay exponentially for integer S. The
above results (4.12), (4.14), and (4.15) are straightforward-
ly generalized to time-dependent correlation functions:
one simply replaces x ~[x —(ut) ]'

Another model that can be transformed into (2.1) is the
generalized anisotropic spin-chain model defined by

H = —g [(I+@)S;S;"+,+(1—y)SfS~+,

=(—1)"—ln (x/a) . (4.14)

One should note that in the present antiferromagnetic
case one has g& & 0, and consequently the roles of
sin(/2$) and cos(+2/) are interchanged with respect to
Sec. III B. We therefore find the same asymptotic behav-
ior for the three components of the spin-spin correlation
functions (4.12), as to be expected for an isotropic model.
The different logarithmic factors in (4.12) and (4.14) can
play an important role in discussing the competition be-
tween antiferromagnetic and spin-Peierls order in weakly
coupled magnetic chains. These logarithmic corrections
have not been taken into account in previous work on
this problem. Of course, the correction terms found
here are closely related to those found in the analysis of
finite-chain data. "'

(4.18)

For y =0 the model (4.16) has been studied numerical-
ly by Emery and Noguera. ' They find a massless phase
in a large part of parameter space, and determine correla-
tion exponents, taking into account explicitly correction
terms of the type discussed in the present paper.

C. Two-dimensional systems

Following the derivation of Ref. 42 one can see that
the Hamiltonian (2.1) gives the partition function of a
two-dimensional Coulomb gas of charges and magnetic
monopoles. This model is related to the two-dimensional
eight-vertex and Ashkin-Teller models and a generalized
Villain model. ' ' In the continuum limit the partition
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function of these different models reduces to those of a
generalized Gaussian model, and can be shown to be
equivalent to the trace over the imaginary time of the
time evolution operator of the quantum Hamiltonian
(2 2) 8,45

In Ref. 8 the quantum-field operator

0~ M (r) = exp [iN(t '(x, r) + i2MO'(x, r)], (4.19)

=1OAT= —.(01o—0 10) . (4.20)

As in the preceding section, one has g& &O,g&=0, and
therefore at the end of the critical line of the Ashkin-
Teller model, or equivalently, for the four state Potts
model, the correlation function of this operator behaves
as

(OAT(r)OAT(0) ) ——ln (a/r) .
r

(4.21)

A complete description of the physical quantities associ-
ated to these difFerent operators for the various two di-
mensional models can be found in Ref. 8.

V. CONCLUSION

We have computed here the different correlation func-
tions of a generalized sine-Gordon Hamiltonian, using a
real-space renormalization technique. The long-range be-
havior of the different correlation functions is a power
law with a nonuniversal exponent which depends on the

is introduced, which for two-dimensional classical sys-
tems corresponds to a spin operator and a vortex excita-
tion operator with vorticity M at site r. The correspon-
dence between the notations of Ref. 8 and ours [see
(3.22)] is N =2a, M =b /2 and x =2/K.

As an example, consider the XY model which corre-
sponds to a Gaussian Hamiltonian with a vortex operator
of vorticity 1. In our model this leads to a term
cos(&80). The XI' model is therefore described by the
Hamiltonian (2.1) with g&=0. The spin-spin correlation
function is given by a spin operator with X = 1, in terms
of the P' operators. In terms of the P operators this cor-
responds to a =

—,', and therefore by using (3.25) we find

an exponent —, for the logarithmic correction at the criti-
cal point, in agreement with the result of Kosterlitz.

Many physical quantities of other two-dimensional
models can be described in terms of a linear combinations
of the 0, b operators, ' and therefore in terms of the
correlation functions of Sec. III D. For example, the en-
ergy operator in the Ashkin-Teller model is given by

R -b, (T/e)", (5.1)

where b, comes from the amplitude corrections [see
(3.16), )M from the power-law behavior of the correlation
function and e is the physical cutoff of the system (for ex-
ample the bandwidth for an electron gas)]. Due to the
amplitude corrections the apparent energy scale of the
correlation functions e' =eA " can be considerably
different from the real one. This is particularly important
close to a point where logarithmic corrections appear,
since in this case 5 can be very small [see for example
(3.16)].

APPENDIX: A RENORMALIZATION
OF CORRELATION FUNCTIONS

We derive renorrnalization group equations in a way
similar to Refs. 6, 24, and 25. We compute the functions
I', in a development in powers of g& and g&. We find, for
example for Fp

parameters of the Harniltonian. In addition to this power
law and for certain values of the coupling constants loga-
rithmic corrections can appear. Our computation allows
us to obtain these logarithmic corrections which are of
the form ln (r/a) and to find the exponent v. This ex-
ponent depends on the correlation function considered,
but is independent of the coupling constants.

Away from the critical point the logarithmic correc-
tions are replaced by corrections to the amplitudes of the
correlation functions. The asymptotic behavior is simply
a power law (up to power law corrections decaying at
large r), but the amplitude of the correlation functions are
different (even for correlation functions with the same ex-
ponent). In particular the amplitudes depend on the dis-
tance from the critical point and diverge for some corre-
lation functions when the parameters approach their crit-
ical values. In fact this indicates that there is a crossover
from a power-law regime with logarithmic corrections to-
wards a pure power-law regime, but different amplitudes
for difFerent correlation functions. The full crossover as a
function of the length scale is given by our calculation.

As discussed in the preceding section, our results apply
to a large class of quantum one-dimensional or classical
two-dimensional systems, to which the sine-Gordon
Hamiltonian can be related. The corrections we find are
important to take into account for the numerical or ex-
perimental determination of critical exponents. More-
over the amplitude corrections can also be important. In
presence of a cutoff (thermal cutoff for example) the
Fourier transform of the correlation functions will
behave for small frequency and momentum as

—KU(r& —r2 ) 2gtt) iV 2$(r) ) i+2/(r&) —i+8/(r&)
~Ro(r) —r2)=e ' ' — dx3dr3 T,e ' e ' e

(2~a)

4m

2
dX3d&3 dX4d&4 iv 2$(r)) —i%2$(r&) iv 8 &$(r3)4—iv 8e4$(r4)

~Te 'e 'e ' 'e

12
1 g8

4m
t

f i+2/(r() —i+2/(r&) i+8@&0 (r&) —i+8449 (r4)
~

CX Q
(A 1)
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Computing the average values we find

2KU(r~ —r&) yp d r3 —2ICU(r& —r&) 2KU—(r& —r3)
Fo(r, r2—)=1—e e ' 'e

2' a

(A2)

Fo(r, r2)=—1 —y&dl+2(K~ &
—ye)U(r, r2—)dl

dX3d +3 2KU'( r —r ) —2KU'( r —r ) —2KU'( r —r )+y e 1 2 e 1 3 e . 2 3

2 3 —4K 3—4/K

+ K U(r, —r~) f — — U(r, —r2) f2 a e a 2 a Q cX

where U has been introduced in (3.2). The two last terms in (A2) arise from the standard cumulant expansion ' ' and
give rise to the renormalization of the coupling constants. The term of first order in y& is important to take into ac-
count for the renormalization of the correlation functions. This term only appears in correlation functions of operators
exp(ia&2$) with a =1 and does not contribute to the renormalization of the coupling constants. 1 means that the

domain of integration over r3 excludes two circles of radius a around r, et r2. If one changes a to a =me ', one finds

&2
' 3 —4K &2ye,

( )
f+~ dr r

3—4/K

(A3)

where

4—4K
A

4—4/K
I

CX

ye =ye
CX

(A4)

I (a'/a, y&,ye)
2 2

yy yo= exp —y + ln(r/a) — ln(r/a) dl .
2

(A5)

and U' is the function U with the new value of a. The
Eqs. (A4) are nothing but the renormalization Eqs. (2.6)
for the coupling constants y& and y&. From (3.4) and
(A3) we deduce

Therefore we get

Fo(r) = exp f [—y&(1)+—'y~(l) —'ye(l)]dl, (A6)

A similar derivation can be done for other correlation
functions and we obtain (3.7).
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