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Magnetic line groups. II. Corepresentations of the magnetic line groups isogonal
to the point groups C„,S2„,and C„h

Milan Damnjanovic, Ivanka Milosevic, and Milan Vujicic
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The irreducible corepresentations of the 13 families of the magnetic line groups isogonal to the
point groups C„, S2„,and C„q are derived. As an illustration the degeneration of the magnon ener-

gy bands is discussed.

I. INTRODUCTION

Line groups' are the symmetry groups of physical sys-
tems with translational periodicity in one direction. The
usual examples are polymers and quasi-one-dimensional
systems. Also, these groups can be used to analyze
three-dimensional crystals in an analogous way as the
point groups are applied, when only one direction is of in-
terest (e.g., in study of some subsystems, especially in
cases with high anisotropy ). When spin is considered,
the time reversal 8 becomes nontrivial additional opera-
tion, and the magnetic line groups should be used.
Hence, there appears the interest for the corepresenta-
tions of the magnetic line groups.

It is well known that each magnetic group is of the
form L'+gBL'=L(L'), where L' is the index-two sub-
group which can be represented by linear operators in the
Hilbert space, while the second term is the coset which is
represented by antilinear operators in the same space.
The magnetic group is called grey group, if g can be
chosen to be the identity, and black and white group oth-
erwise.

All the nonequivalent irreducible corepresentations of
the magnetic group L(L') can be found by the method of
e induction, based on the knowledge of the irreducible
representations of the group L'. It has been shown that
the group L' of the magnetic line group, is always a line
group. The irreducible representations of the line groups
are known, which enables one to use the *-induction
method to construct the irreducible corepresentations of
the magnetic line groups.

Until now only the corepresentations of the grey mag-
netic line groups have been found. In this paper we
derive the corepresentations of the families of the mag-
netic line groups whose isogonal point groups are C„,
S2„,and C,~.

In Sec. II it is explained how the method of e induc-
tion is adapted to this purpose, and in Sec. III the tables
of the irreducible corepresentations are listed. A brief
summary of the necessary results of the previous papers
is given in the Appendix.

II. 4 INDUCTION ADAPTED TO LINE GROUPS

e induction is a procedure by which one can construct
all the irreducible corepresentations of a black and white

d(h)
d(h)=

0
0

d*(h)

and for each element g eh of the coset an antimatrix:

0 d(g ) d(h)
d(gBh) = I 0 Ko

0
de*(h )

0 d(g )

0
d*(h) 0

0 ds(h)

Note that here the homomorphism is preserved. In the
theory of corepresentations one omits Ko, but it is impli-
citly encountered in calculations.

For the representations of type 1* this construction is
reducible representation which is reduced to two
equivalent irreducible corepresentations:

d(L(L'))= Id(h), d(gh)=Zd*(h)~h HL'I .

For the representations of types 2*a and 2*b e induction
gives the irreducible corepresentations. The only
difference is that in case 2*a one can utilize the
equivalent Wigner's form

d(h) 0
0 d(h)

magnetic line group L(L') out of all the irreducible repre-
sentations of its subgroup L' of index 2. Let
d(L')= Id(h) ~h HL'I be an irreducible representation of
L'. The e -g-conjugated irreducible representation is
defined by

ds'(L') = Id*(h) =d*(g 'hg ) ~h H L'I,
where g is a coset representative. When d*(L') and
d(L') are equivalent, then there exists a unitary matrix Z
such that ds'(h)=Z 'd(h)Z, 'for each h from L', and
ZZ*=+d(g ). The plus or minus sign determines type
I* or 2*a of the representation d(L') (these are types I
and II in Wigner's classification). When d*(L') and
d(L') are not equivalent, then one has type 2*b (III) rep-
resentation.

The procedure of e induction is completely analogous
to that of induction. Namely, one forms a matrix of dou-
ble dimension for each element h of L':
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for each element h of L', and

0 Z d'(h) 0
—Z 0 0 d'(h)

for the elements of the coset. However, in the tables the
original e-induction form is presented, sparing the calcu-
lations of Z in 2*a case.

To determine the type of d(L') one uses Dimmock's

character test: d(L') is of type 1*, 2*a, and 2*b iff the
quantity X=(1/~L' ) gh~LTr[d(gh) ] is equal to 1, —1,
and 0, respectively (here ~L'~ stands for the order of L').

Obviously, the problem of construction of the irreduc-
ible corepresentations of L(L') is reduced to calculation
of X for each irreducible representation of L', and deter-
mination of Z in the case when X= 1. In the case of the
line groups, X can be calculated easily since the infinite

TABLE I. Irreducible corepresentations of the line groups Ln~. Here L'=L{n/2)~ = [(C'„~2~t+Fr(2spIn)) ~s =0, 1, . . . , n/2 —1;
t =0,+1, . . . ] with P'=(n/2)Fr(2p/n), g ={C„~p/n).

Corepresentations Type

p (n /2, L'=L(n/2)p

( C'„~z ~Fr (2sp /n ) + t )

The pairs of -g-conjugated irreducible representations of L' forming 2*b corepresentations: (0A Oc4 ) (k c4 k 3 ),
( / A / A ), where m'= —m —p for —p —m E( —n/4, n/4) and m'=n/2 —m —p for n/2 —m —p E( —n/4, n/4).

() AO

O~n/4 2 a
0 —1

1 0 ( —1)'I

m E(P, n/4) 2)f:b
0

—ima

1 0 M(m, s)

m. /a ~ —p/a 1 )
t + Int(2sp/n)

0 ~n /4 —p/2

0 —1

1 0 ( 1 )s + t +Int(2sp/n)I

l, 3 m E( —p/a, n/4 —p/2)

k E (0, n/a)
k m m C( —n/4, n/4)

2Q b 8'*(2p7T/na, m )

8'*(2pk /n, m )

( —I)'K [rt/a, Fr (2sp/n)]M(m, s)

K [k, t +Fr (2sp /n) ]M (m, s)

p ~ n/2, L'=L(n/2)p — /2

The pairs of -g-conjugated irreducible representations of L' forming 2*b corepresentations: (0A, O A ), ( k A, k A ),
( / 3 / c4 ), where m'=n/2 —m —p for n/2 —p —m E( —n/4, n/4) and m'=n —m —p for n —m —p E(—n/4, n/4).

t

OAO

O~n/4 2 a
0 —1

1 0 ( —1)'I

m E(0,n/4)
0 —ima

1 0 M(m, s)

m. /a ~n/2 —p/2 ( 1 )t +Int(2sp/n)

O~n/4 —p/2 2 a
0 —1

1 0 1 )s+ t + Int(2spln)I

l, A m E(n/4 —p/2, n/2 —p/2)

k E-(0, 'tr/a)
m E (

—n /4, n l4 )

2+b 8'*(2p~/na, m )

8'*(2pk /n, m )

(
—I )'K[m/a, Fr (2sp/n)]M(m, s)

K[k, t +Fr(2sp/n)]M(m, s)
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TABLE II. Irreducible corepresentations of the line groups L,np. Here
L'=L"n~&2= {(C„'~t+Fr(sp/2n))~s =0, 1, . . . , n —1; t =0,+1, . . . ], g =(E~ z). The pairs of s -g-

conjugated irreducible representations of L' forming 2*b corepresentations: (0A, 0 A ),

(q A, z A ), ( ~, A, z, A ), where m'= —m —p/2 for —m —p/2&( n—/2, n!2] and
m'=n —m —p/2 for n —m —p/2H{ n /—2, n/2].

oAo

Corepresentations Type ( C'„~Fr ( sp /2n ) + t )

0 An/2

oA m H(O, n/2)
0 1

1 0 M(m, s)

m/a A —p/4 2 a
0 —1

1 0 ( 1 )
t + Int(sp /2n )I

vr/a An/2 —p/4

0 —1

1 0 1 )s + t + Int(sp/2n)l

„/, A m E(—p/4, n/2 —p/4)
0 —1

1 0 ( —1)'K(m/a, Fr (sp /2n ) )M(m, s)

k E(o, m/a)
m E ( —n /2, n /2 )

0 e ikQ

1 0 K(k, t +Fr (sp /2) )M (m, s)

sums occurring in the expression for X are sums of the
trigonometric functions. Namely, whenever one-
dimensional representation of L is considered, X is found
using the equality (5 is the Kronecker's symbol):

tt —1

g exp(i 2~ms /n ) =n
s=0

while for the two-dimensional representations besides this
the following sum appears:

n —1

g cos(2rrms/n+P)=n cosP g 5
zCZ

Instead of the method for determination of Z originally

TABLE III. Irreducible corepresentatious of the line groups L,n~. Here L' =L"n ~„+~I~2= {( C„'
~
t +Fr(sp /2n ) )

~
s

=0, 1, . . . , n —1; t =0 +1, . . . ], g =(E
~

—'). The pairs of sc-g conjugated irreducible representations of L' forming 2*b corepresenta-

tious: (oA OA ), (z A, k A ), ( ~, A, ~, A ), where m'= —m —(p+n)/2 for —m —(p+n)/2C( n/2, n/—2] aud
m'=(n —p)/2 —m for (n —p)/2 —m E( n/2, n/2]. —

oAo

Co representations Type (C'„~Fr {sp/2n)+ t)

OAn/2

oA m H(O, n/2)
0 1

1 0 M(m, s)

n. /a A —(n +p)/4

0 —1

1 0 1 )t + Int[s(p +n)/2n]I

n. /a A(n —p)/4 2 Q

0 —1

1 0 1 )s + t + Int[s (p + n)/2n]l

, A m E( —(n +p)/4, (n —p)/4) 2 a
0 —1

1 0 ( —I )'K [rr/a, Fr(s (p +n)/2n )+ t]M (m, s)

k E(0, m. /a)
k ~m m E (

—n /2, n /2)

0 —ika,

1 0 K[k, t +Fr(s (p +n)/2n )]M(m, s)
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suggested, the direct calculation of Z is made. The
method was e6'ective due to the fact that the matrices of
the irreducible representations of the line groups are ei-
ther diagonal or o6' diagonal.

TABLE IV. Irreducible corepresentations of the line groups
L(2n }', Ln'. Here L'=Ln = I(C'„~t}~s =0, 1, . . . , n —1;
t =0,+1, . . . j, g=(oi, C2„~0). The pairs of -g-conjugated ir-
reducible representations of L' forming 2 b corepresentations:
(OA, OA ) (kA, kA ) (/ A, „/ A ).

III. RESULTS AND DISCUSSION Corepresentations Type (C: I t)

The line groups isogonal to C„(n =0, 1, . . . ) are Ln~
(p =0, 1, . . . , n —1); the line groups isogonal to Sz„are
L(2 n ) (n =0,2, 4, . . . ), Ln (n = 1,3, 5, . . . ); finally the
line groups isogonal to C„z are Ln/m and Ln„&2/m
(n =0,2, . . . ) and L(2 n ) (n = 1,3, . . . ). Black and white
magnetic line groups derived from Ln are L,n, L, n

and only for n even Ln' In. the class of L(2n) (respec-
tively, Ln ) are the black and white groups L(2 n )' and
L, (2 n ) (Ln' and L, n, respectively). In the class of
Ln /m [L(2 n ), respectively] are Ln /m ', L,n /m
(L(2n)', L, (2n)), and Ln'/m', Ln'/m, L, n/m Fina. l-

ly, the black and white groups corresponding to
L(2k)k/m are L(2k)k/m', L(2k)I, /m', L(2k)k/m.

For each of these magnetic line groups, Tables I—XIII
containing all the irreducible co representations are
presented. Basically, the same symbol of the irreducible
representation of L' is retained to denote the e-induced
corepresentation of L(L'). In case 1* this symbol is
barred, while in cases 2 a and 2*b it is double barred.

o A()

0 An/2

A m E-(P, n/2)

/, A m H(p, n/2)

n/a AO

m/a An/2

k E( —m/a, rr/a)
k Am m &( —n/2, n/2)

2 Q

0 —1

1 0

p
—ima

1 0

p
—ima

1 0

0 —1

1 0

p
—ima

1 0

( —1)sI

M(m, s)

( —1)'M (m, s)

1 )s+tI

e'"M(m, s)

TABLE V. Irreducible corepresentations of the line groups L, (2 n ), L,n. Here
L'=("„„'„"' "„dd )= I(C'„~t}, (ol, C2„C'„~t)~s =O, l, . . . , n —1; t =0, +1, . . . (, g=(E~ —'). The pairs of

-g-conjugated irreducible representations of L' forming 2*b corepresentations: (o A „+/2, 0 A /& ),
(OA —,OA: ), ( /, A, „/, A ), („/, AO, „/aAO ), (k E,k E ).

Corepresentations
—+

OAO

Type (C: It) (o g C~„Cn It)

oA —m H(p, n/2)
0 1

1 0 M(m, s) +M(m, s+ —')

0 1

1 0 ( —1)'I
i 0

( —1)' 0 i

0 —1

1 0 ( —1)'I
1 0

( —1)' 0 —1

~+
~/a ~ n/2

0 —1

1 0 { 1 )s +II +( 1 )s+E)I

m E(p, n/2)
0 —1

1 0 ( —1)'M (m, s)
1 0

+( —1)'M(m, s+ ) 0

Eo k E(p, m/a)
p eika

1 0 K(k, t)
0 1

K(k, t)

Eto k E.(0,m/a)
0 K(k, 1)
I 0 (

—1)'k (k, t)
0 1

{—1)'d
1 p c(k, t)

—kP k&(o, vr/a)
k Em m C(0 n/2)

0 K(k, 1)
I 0 k(k, t)f (m}

0 1
c(k, t}f(m)
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TABLE VI. Irreducible corepresentations of the line groups Ln /m ', L(2 n )'. Here
L'=Ln= I(C'„~t)~s =O, l, . . . , n —1; t=0, 1,2, . . . I, g=(rrI, ~O). The pair of +-g conjugated irreduc-
ible representations of L' forming 2*b corepresentation: (k A, k A ).

Corepresentations

k Ao k E( m/a, ~/a)

I A /2 kE( —~/a, ~/a)

Type (C'„
i t)

ikta

( 1 )se tkta

k E( —~/a, m. /a)
m m E(p, n/2)

0 1

1 0
e'""M (m, s)

The type of the representation is given in the separate
column of the tables, and in cases 2*b the pairs of e-g-
conjugated representations are listed in the caption of
each table. In the next column the matrix of the corepre-
sentation of g is given. The rest of each table contains the
matrices representing the elements of L' in the con-
sidered corepresentation.

In order to facilitate the use of the tables, most of the
matrices are written explicitly. Only the following abbre-
viations are introduced:

cx =2&/n

1 0I 0

M(m, s)=
imsa

0
0

e
—imsa

ikta 0

e
—ikta

ika im a

0
0

W(k, m)=

TABLE VII. Irreducible corepresentations of the line groups Ln '/m '( n =2p). Here
L'=(„' ~' ~~;dd")=[(C*~t), (crhC2~C~~t)~s =O, l, . . . ,p —1; t =0,+1, . . . I, g=(C„~O). The pairs of
+ -g-conjugated irreducible representations of L' forming 2 b corepresentations: (p Ap/2 Q Ap/2 ),+ + + +, + —k —k(pAm &QA —m )& (~/a Am &~/a A —m )& (~/a p/2&~/a Ap/2)& (k Em, k E m ).

Corepresentations

A'
Typ (C; It) (oi, Cq~C~~t)

m E(p, n/4)
e

—™~
1 0 M(m, s) +M(m, s + 1/2)

0 Ap/2
0 —1

1 0 ( —1)'I
i 0

( —1)' 0 —i

+
vr/a A 0 +( 1)t

vr/a Ap/2
0 —1

1 0 1 )s+ ti
i 0

( 1)s+t
0 —i

/, A +— m E(p, n/4)
p

—ima

1 0 ( —1)'M (m, s) +( —1)'M(m, s+ 1/2)

Ep k 'E (0 7T/a )
0 1

1 0 K(k, t)
0 1

p K(k, t)

k
kE

/2 k E(p, w/a)
0 1

1 0 ( —1)'K(k, t)
0 1

(
—1)'

1 0 K(k, t)

—kE k H(0, n-/a)
k m m &(O, n/4)

2*b
0 k(k, t)f (m)

0 1
d

1 0 k(k t)f(m)
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K(k, t)
k(k, t)=

0
K(k, t)*

K(k, t)
c(k, t)=

0
K(k, t+1)*

e tmsA

f (m)=
0

0
e ' I

and

X 0
d(~)=

o x*

(note that capital and lower-case letters are used to
denote two- and four-dimensional matrices, respectively).
Also, Int(x) and Fr(x) stand for the integral and fraction-
al part of the number x.

Among other applications, symmetry is used to predict
the degeneracy of the energy bands of the system. In this
context it is interesting to analyze the influence of the
time reversal to the degeneracy (note that in the cases of
the black and white groups, the time reversal is not the
symmetry itself, but combined with some spatial transfor-
mation). If this symmetry (namely ge) is ignored, the
remaining group is L', and the energy bands can be la-

beled by its irreducible representations. Obviously since
ge is the symmetry of the system, the energies labeled by
the representations of types 2*a and 2 b will be addition-
ally double degenerated, and only the dimensions of 1

type representations give right degeneracy.
As an example, we consider the energy bands of the

magnons in the quasi-one-dimensional crystal of VF2. It
has been shown that the symmetry of the spin subsystem
in VF2 is L304. This group is commutative, which in or-
dinary case would imply that the corresponding energies
are nondegenerate. Nevertheless, in the case of magnetic
groups, and corepresentations, this may not be true, and
for VF2 all the energy bands are degenerate (i.e., all the
irreducible corepresentations are two dimensional) except
at the end points of the Brillouin zone.

APPENDIX

Axia/ point groups are the point groups consisting of
the elements that leave an axis invariant (by definition the
z axis). There are seven families of such groups, namely
C„, Sz„, C„h, D„, C„„,D„d, and D„h (n =1,2, . . . ). The
groups C„and S2„are cyclic, with the generators C„and
o.

h C2„, respectively. The groups of all the other families
are semi-direct ( A ) or direct ( II ) products, e.g.,

TABLE VIII. Irreducible corepresentations of the line groups Ln '/m ( n =2p). Here
L'=1„"~Iz

I
~~ ',dd )= I(C~~t), (oqC~~ t)~s =O, l, . . . ,p——1; t =0 +1, . . . I, g=(C„~O). The pairs of s-

g-conjugated irreducible representations of L' forming 2*b corepresentations: {0 A —,0 A + ),
(m/a Am ~m/a A —m )& (k Em &k E—m )'

Corepresentations

+
OA0

Type (ol, C~ ~

—t)

OA
— m E(O, n/4)

0 —ima

1 0 M(m, s) +M(m, s)

=+
OAp 2 Q

0 —1

1 0 ( —1 )'I +( —1)'I

+
m/aA 0

m/a Ap/2 2 Q

0 —1

1 0 1 )s+tI +( 1)$+tI

m C{O,n/4)
0

—ima

1 0 ( —1)'M (m, s) +( —1)'M (m, s)

EO k E(0,m/a)
0 1

1 0 K(k, t)
0 1

0 K(k, t)

E /2 k E(0,~/&) 2 Q

0
I 0 {—1)'k (k, t)

0 1
k(k, )

—kE k E(0,m/a)
m E(0,n/4)

2'b
—imaI

I 0 k (k, t)f im)
0 1

d
1 0 k(k, t)f(m)
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TABLE IX. Irreducible corepresentations of the line groups L,n /m, L, (2 n ). Here
L'(L~2„-~' "„Odd)= [(C'„~t), ( rc„C'„(—t))s =0, 1, . . . , n —1; t =0 +1, . . . ), g=(E~ —'). The pairs of eg-
conjugated irreducible representations of L' forming 2*b corepresentations: ( /, A„+/2, „/, An/, ),

(OAm 70A —m )& (m/a Am &~/a A —m )7 (m/a Ap s~/a Ap ~& (k Emsk E—m )

Corepresentations

+OAp—

Type (cr„C*„
i

—t)

OA
— m E(O, n/2) 2+b

0 1

1 0 M(m, s) +M(m, s)

+
OA n/2 ( 1)s

m. /a Ap 2*b
0

0 —1

1
(
—1)'I

a/a An/2
0 —1

1 0 1 )s+tI
1 0

1 )s+t
0 —1

/, A — m E (0,n /2)
0 —1

1 0 (
—1)'M (m, s) +( —1)'M (m, s)

Ep k E (0 7T/a)

E /'2 k E(O, m. /a)

e ika

1 0

0 eika

1 0

0 1

0 K(k, t)

0 1
( —1)'

1 0 K(k, t)

—kE k & (0,v/a ]
k m m &(pn/2)

0 K(k, t)*
I 0 k(k, t)f (m)

0 1
d

1 0 k(k, t)f (m)

TABLE X. Irreducible corepresentations of the line groups L, n /m ( n =2p). Here L' =L"(2p)~ /m =
[ (C'„~Fr (s /2)+ t),

(cr„C'„~ Fr(s/2) t) ~s =0—, . . n —1;—t =. 0, +1, . . . ), g =(E~ —'). The pairs of s -g-conjugated irreducible representations of L' form-

ing 2*b COrePreSentatiOnS: (0Am spA —m ) ( /aEm s~/aEp —m ), (k Ems —kE —m ).

Corepresentations

+
OAp—

Type (C'„~Fr (s/2)+ t) (cr„C'„~ Fr (s/2) —t )—

OA
— m E(O, n/2) 2 +b

0 e ™a
1 0 M(m, s) +M(m, s)

+
OAp— +( —1)'

0
0 —1

1 0 (
—1)'+'K(m/a, Fr (s /2) )

0 1
( —1)'+'

1 0 K(m/a, Fr(s/2))

0 —I
I 0

( —1)' 0
( 1 )

t + Int(s/2)d
0 1

0 1
1 )

t + Int(s/2)d
( —1)'

/ E P m&(On/4)
0 —I
I 0 (

—I)'k(m. /a, Fr(s/2)) f (m)
0 1

+( —1)'d
I 0 k(~/a, Fr(s/2))f (m)

Ep k e(0,m-/a)
0 eika

1 0 K(k, Fr(s/2)+ t) 0 1

0 K(k Fr(s/2)+t)

0 eika

1 0 ( —1)'K(k, Fr (s/2)+ t )
0 1

( 1)
1 0 K(Fr(s/2)+t)

—kE k E(p, m/a)
k m m ~(pn/2)

0 K(k t)*
I 0 k(k, t +Fr (s/2) )f (m)

0 1
c(k, t +Fr(s/2))f (m)
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TABLE XI. Irreducible corepresentations of the line groups L(2p)p /m '. Here
L'=L(2p) = I(C„'iFr(s/2)+t)is =O, l, . . . , n —1; t =0, 1,2, . . . }, g=(trl i0). The pair of -g-
conjugated irreducible representations of L' forming 2*b corepresentation: (k A, k A ).

Corepresentation

k AQ k E( —~/a, m/a)

Type (C'„ iFr(s/2)+t)
ik(Fr(s/2)+ t )a

k Ap k E( —~/a, m/a) 1 )s ik(Fr(s/2)+ t)a

kA k E( —m/a, m/a)
m E(O, n/2)

0 1

1 0
ika(Fr(s/2)+t )M (m S)

C h =C„ te, t7t I.
Generalized translations are three classes of groups gen-

erated by (C„"il/n), (o, i —,'), and (Eil) and denoted by
n/r, T„and T, respectively. [We use Coster's symbol
(Riu +t) for these transformations, to denote that an or-
thogonal transformation R, leaving the z axis invariant, is
followed by a nonzero translation along the z axis for a
distance (u+t)a, a being a length unit, while U and t
determine the fractional and the primitive translation. ]

Obviously, n!r is related to the occurrence of a screw
axis, T, indicates the existence of a glide plane, and T is a
group of pure translations.

Line groups describe the symmetry of the systems that
are translationally periodical in one direction. Every line
group L has an invariant subgroup T of pure transla-
tions. The factor group L/T is isomorphic to axial point
group Q, which is called the isogonal point group of L.
More precisely, every line group L can be expressed as

TABLE XII. Irreducible corepresentations of the line groups L (2p)p /m '. Here,
L'=(~LI2~' ~~;d'd")=((C~it), (o„C2~C~it)is =O, l, . . . ,p —1; t =0, 1, . . . }, g=(C2~i —,'). The pairs of
+ -g-conjugated irreducible representations of L' forming 2*b corepresentations: (Q A p/2 0 A p/2 ),+ + + + + —k —k
(QAm sQA:m )s (m/a Am s~/a A:m )s (~/a A 0 & ~/a A 0 )s (k Em sk E m ).

Co representations

A'
Type (C,*it) (cT„C2pC~it)

0 A — m E (0, n /4)
0 e ™a
1 0 M(m, s) +M(m, s+

2 )

Q Ap/2 2+b
0 —1

1 0 ( —1 )'I

n. /a AQ
0 —1

1 0 (
—1)'I

i 0
( —1)' 0 —i

~+
m/a ~ p/2 ( 1 )s+t +( 1 )s+t)

/, A — m E(0,n /4) 2+b
e

—ima

( —1)'M (m, s) +( —1)'M ( m, s + —' )

k
"E k E(0,~/a)

0 eika

1 0 K(k, t)
0 1

0 K(k, t)

Ep/2 k E(O, m/a)
0 eika

1 0 ( —1)'K(k, t)
0 1

( —1)'
1 0 K(k, t)

—k ~ k H(O, n/a)
k Em mE(0 n/4)

0 e ™aK(k,t)
I 0 k(k, t)f (m)

0 1
d

1 0 k(k, t)f(m)
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TABLE XIII. Irreducible corepresentations of the line groups L(2p)p /m. Here
L'=(t~~z-~' ~~',dd )= [(C~ ~t), ( I, C~~t)~s =0, 1, . . . ,p —1; t =0 +1, . . . ), g =(Cz

~

—'). The pairs of e-
g-conjugated irreducible representations of L' forming 2*b corepresentations: (0A —,0A+: ),

(~/a A0 &g/a A0 )s (~/a Ap/2&~/a Ap/2)& {~/a Am ~~/a A m )& (k Em&k E—m )

Corepresentations

+0A0

Type (ohC~~ t)—

m e(p, n/4)
0 —ima

1 0 M(m, s) +M(m, s)

=+
OA p/2 2 Q

0 —1

1 0 ( —1)'I
1 0

+{—1)'

~/a AO 2+b
0 —1

1 0 (
—1)'I

1 0
( —1)' 0 —1

w/a Ap/2
0 1

1 0 ( 1)s+tI
1 0

(
—1)'+'

0

„/, A — m E:(p,n/4) 2+b
0 —e ™a
1 0 {—1)'M (m, s)

1 0
+( 1) 0 1

M{m s)

k ~(0,~/&)
0 etka

1 0
0 1

p K{k,t)

k "Ep/2 k E(p, m/a) 2 Q

0 —K(k, 1)
I 0

0 1
( —1)'d

1 0 c(k t)

—kE k E(0, n. /a)
k m m ~(0 tt/4)

0 e ™aK(k,1)*
I 0 k(k, t)f (m)

0
d

1 0 c(k, t)f (m)

the sum of ~Q~ cosets of T:

where all U; are fractional translations and R; belongs to

An ordinary line group is denoted by the letter L and
the international symbol of the isogonal point group,
which is slightly changed when a glide plane or a screw
axis exists, e.g., instead of n the symbol n~ is used in the
latter case.

Every line group L is expressed as a weak direct prod-
uct of two of its subgroups: L=Zo P, where Z is one of
the groups of the generalized translations, and P is an ax-
ial point group. This means that Z and P commute and
that each element of L is a unique product of one element
of Z and one element of P. Hence, to construct all the
line groups in the factorized form one multiplies each Z
and each P and verifies whether they commute. In the
cases when Z is n/r or T, some restrictions on P appear.
For some line groups several pairs Z and P can be found.
For the line groups that are considered in this paper
these factorizations are (see the beginning of Sec. III):
Ln =n/rC (isogonal to C„; q is the greatest common

divisor of n and p, and r is the solution of the equation
nFr (rp/n) =q which is a coprime relative to n, but less
than n); L(2n)=Th S2„, Ln =TASz„(isogonal to S2„);
Ln /m =T A C„h, L(2 n ) =T A C„ , tL(2k)k /m =(2k)/
I&& Ck& —(2k)/10 S2t, (tsogonal to C„t,).

The axial point groups P, occurring in the above fac-
torizations, should not be confused with the isogonal
point groups. These groups are equal only when Z=T
(symmorphic line groups); otherwise, P is a subgroup of
the isogonal point group Q.

Construction of all the magnetic line groups was per-
formed in the following way: first, all ordinary line
groups were factorized as weak direct products of gen-
eralized translations Z and axial point groups P. Utiliz-
ing this factorization all halving subgroups L' of line
groups L were found: L=L'+ g L'. To this purpose the
halving subgroups of Z and P are combined.

The class of magnetic line groups associated with ordi-
nary 1ine group L consists of L itself, the grey group
L+OL, where 6 is the time reversal, and black and
white magnetic line groups which are of the form

L(L') =L'+geL' .

Linear-antilinear representation appear when a magnet-
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ic group is homomorphically mapped onto a group of un-
itary and antiunitary operators in the state space of a
given quantum system:

8(L')+E7,(ge)8(L') .

A choice of an orthonormal basis Iu„. . . , u„ I in the
state space provides an isomorphic mapping of the above
operator group onto a group of matrices and antimatrices
in the space C". Antimatrices are antilinear operators in
C", and they are of the form A, = A%0, where A is the

matrix factor with the elements a;1 = ( e, , A, e~. ) in the
standard basis

Ie, =(1,0, . . . , 0), . . . , e„=(0, . . . , 0, 1)

while Ko is the unique antilinear operator in C (it is a
generalization of the complex conjugation in C) satisfying
Koe; =e;, i = 1, . . . , n, . and therefore %ox =x * for each x
from C". The operator Ko is unitary, Hermitian and in-
volutive. Also Ko A = A 'Ko for each matrix A.
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