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New growth model: The screened Eden model
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A new and tractable model for the growth of tumors is proposed and studied numerically. We
find that the resulting clusters exhibit complicated, nontrivial scaling behaviors, and the Hausdor8'

dimensions of the growing clusters can be tuned by changing the screening parameters of the model.
Our simulation results show that this model can be used to produce both Eden-like clusters and
dift'usion-limited aggregation-like clusters by choosing the proper values of the control parameters,
and may be regarded as a prototype reference to study the relations of the morphology of the aggre-

gate with the growth mechanisms.

INTRODUCTION

The irreversible aggregation of small particles to form
large clusters is a quite general phenomenon occurring in
many scientific fields such as physics (dendritic growth,
electrical breakdown), ' chemistry (Ilocculation of col-
loids, formation of gels, polymerization), medicine
and biology (growth of tumors) etc. It is, therefore, a
subject of increasing interest in recent years to study such
kinetic growth processes by introducing various simple
computer-simulation models such as the DLA (diffusion-
limited aggregation), ' ballistic-driven aggregation, and
the Eden model. In the DLA process, particles are add-
ed to a growing cluster, one at a time, using random-walk
trajectories originating from outside of the aggregate of
particles. The resulting clusters are fractal objects
characterized by a Hausdorff dimension D which is small-
er than the Euclidean dimension d of the space in which
the clusters are grown. The DLA is considered as a
simplified version of those kinetic growth processes in
which the structures of the growing clusters strongly de-
pend on their interaction with an outside environment.
The Eden model is another simple growth model in
which particles are added to one another in a growing
cluster with the prescription that each new particle sticks
on any point of the surface of the cluster with equal prob-
ability. Because there are no external diffusion fields in-
volved in this growth process, the Eden model may be
used to describe another kind of typical growth process
such as the growth of tumors and many other biological
growth processes, in which the constituent subunits are
created inside the growing clusters instead of coming
from the external surrounds. It is apparent that the Eden
cluster is compact and has a fractal dimension equal to
the dimension of space, although the scaling properties of

its surface are nontrivial. ' ' A modified Eden model,
in which a finite lifetime of the growth sites is assumed,
has recently been proposed and studied numerically. The
results obtained, however, have not revealed much novel
features. ' '

In this paper, we propose a new model for the growth
of tumors, which is simple in its growth mechanism but
has a wide range of behaviors. Using Monte Carlo simu-
lations we find that the resulting clusters have nontrivial
scaling behaviors and their Hausdorff dimensions are tun-
able. By choosing various values of screening parameters
of the model we obtain both Eden-like and DLA-like ag-
gregates. Moreover, we find that this model, similar to
the DLA, is not universal in the sense that the scaling
properties are independent of the lattice on which the
clusters are grown. ' In fact, we find that the anisotropy
of the structures, imposed by the underlying lattice, be-
comes more and more obvious as the strength of screen-
ing increases. It is believed that this model does provide
a prototype reference to study quantitatively the relations
of the morphology of the growing clusters with the
growth mechanisms.

MODEL

For specificity, we consider a two-dimensional square
lattice. As a starting configuration we occupied one of
the central sites of the lattice, and all others are left emp-
ty. The perimeter sites are defined as those empty sites
which are adjacent to the occupied ones, and are connect-
ed to infinity by at least one straight channel (a channel
consists of empty. sites along a straight line parallel to the
X axis or Y axis). We, then, group those growth sites into
three different classes as follows: Class I consists of those
perimeter sites which are connected to infinity by only
one straight channel, and class II by two such channels,
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FIG. 1. The schematic illustration of the perimeter of the
screened Eden clusters. Open circles denote the perimeter sites,
and the numbers inside the circles give the corresponding num-
bers of the straight channels (denoted by dashed lines).

and class III, by three possible channels. In our two-
dimensional case there are three classes defined while in
high dimensional space we have, in general, 2d —1

classes of perimeter sites (see Fig. 1). The growth rule of
the model is defined as follows.

(i) Choose with probability P, a site from class I, P2
from class II, and P3 from class III.

(ii) Occupy the site, where P;(i=1,2,3) are the control
parameters of the model, and each of them changes be-
tween 0 and 1 with a normalization condition g,. P, =l. .

Our model can be visualized in some practical situa-
tions. Imagine, for example, a growing cluster which
grows under the stimulation of the light. Suppose that
the light incident to the surface of the cluster is parallel
to the X axis and Y axis. It is, then, reasonable to assume
that the growth takes place only at such sites of the sur-
face which expose to the incident rays, and the growth
probability for any of the perimeter sites is proportional
to the light Aux arriving at the site. Needless to say, the
shadowed sites of the surface are no longer active and
cease to grow further. This model is evidently a
simplified version of the real growth processes in the
medical and biological worlds, and may be regarded as a
revised Eden model.

According to the definition of the model we see that
the growth sites of class III are the most exposed ends of
the growing clusters; those of class II are less exposed
and even less the sites of class I. It is easy to note that
the definition of the perimeter of our model is different

than that of the Eden model in that the empty sites,
which are adjacent to the occupied ones but not connect-
ed to infinity by any of the straight channels defined
above, are not perimeter sites any more in our case. In
view of that the P s represent the growth probabilities of
different portions of the growing cluster, the physical
relevant cases are obviously that P, P2 P3 due to the
fact that the most exposed sites have the largest growth
probability. Thus it is possible for our model to simulate
the growth processes with various screening effects by
suitably tuning the values of P s. For example, in the
limiting case of P, =P2=P3 the model is equivalent to
the ballistic aggregation model producing a compact
cluster, and in the case of the P& =P2=0 and P3=1 one
finds a cross-shaped object with its Hausdorff dimension
being D=1. What is in between those two limiting cases
is of considerable interest. Our numerical results do re-
veal a rich source of nontrivial scaling behaviors of the
model.

SIMULATIQN RESULTS

Monte Carlo simulations on this simple model have
been carried out for some special values of parameter P;.
In Figs. 2(a), 2(b), and 2(c) we show three typical clusters
grown on a 2D square lattice with P& =0, P2=P3=0.5;
P1 0 P2 =0.2 P3 =0.8' and P] =0 P2 =0.1 P3 =0.9.
The results indicate that the morphology of the aggregate
varies with different values of P, 's and DLA-like clusters
are formed. We also calculate the Hausdorff dimensions
for the corresponding clusters. Our results are obtained
from the radius of gyration R:

g (r, —r ) N(N —1)

i and j running over all sites in the cluster and r; being
the vector from the origin to the ith site. R is a charac-
teristic length of a cluster of N occupied sites and has a
power-law dependence on the number of the particles for
sufficiently large X: R~ -N' . Table I shows the results
obtained for six clusters grown on a square lattice for
P, =0, P2 =P3 =0.5. The Hausdorff dimension D shown
in the tables of this presentation are all obtained by using
a "least-squares" procedure to fit the values of 1n(R ) and
the corresponding values of ln(N). We find a mean value

TABLE I. Results obtained in two-dimensional simulations on a square lattice with P& =0, and
P2 =P3 =0.5.

Number of
particles

for cluster 50%
Hausdorff' dimension (D)

65% 80% 95%

1634
1640
1730
1780
2034
2500

Avg. 1886

1.854
1.868
1.794
1.770
1.785
1.748

1.803+0.034

1.848
1.822
1.831
1.827
1.878
1.798

1.834+0.028

1.867
1.836
1.842
1.818
1.892
1.782

1.821+0.046

1.792
1.817
1.830
1.859
1.761
1.755

1.802+0.051



4574 YU JIANG, HU GANG, AND MA BEN-KUN 39

~~@NPP
]PR

(cj

FIG. 2. Two-dimensional clusters obtained using the screened Eden model: (a) The cluster of 2032 particles with P~ =0,
P2=P, =0.5; (b) the cluster of 1805 particles with P] =0 P2=0.2 Pg=0.8' (c) the cluster of 1814 particles with P& =0 P2=0.1,
Pq =0.9.
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FIG. 3. Dependence of radius of gyration on cluster size dur-
ing the growth of the cluster shown in Fig. 2(a).

of D=1.803+0.043 from clusters obtained during the
last 50% of the cluster formation. Figure 3 shows how
the radius of gyration increases with increasing cluster
size during the growth of a cluster of 2034 particles under
the conditions used to obtain Fig. 2(a). To investigate
how the structures of the cluster are related with the
screening parameters P s, we also calculate the Haus-
dorff dimensions of the growing clusters for P j =0,
P~:0 05~ P3:095~ P] 0~ P~:0 1~ P3 0 9~ P):0~
P~ =0.2 P3 =0 8' P1 0 P2 =0.3 P3 =0.7' and P& =0
Pz=0.4, P3=0.6 as well. In Table II, we show the re-
sults obtained from four clusters for P, =0, Pz =0.1, and
P3 =0.9. Table III shows the results obtained for various
values of ratio of Pz/P3, indicating that, with P, =0
fixed, the fractal (Hausdortl) dimensions of growing clus-
ters tend to decrease as the values of ratio Pz/P3 de-
crease. However, to discuss the asymptotic property
more accurately, one should use clusters of larger size
that require a more capable computer or effective algo-
rithm. It will be our future work.

Nevertheless, we have investigated the critical behav-
iors of the model for different values of ratio Pz/P3, and

found a rich source of ramified structures which are ob-
served in DLA and other aggregating processes. The fol-
lowing points can be concluded. (1) This model indeed
produces DLA-like clusters with their fractal dimensions
less than the space dimension. The resulting clusters also
show strong screening effect, which result in the random-
ly branched structures of the growing clusters. (2) By
varying the control parameters P s, one can obtain vari-
ous aggregates with different. Hausdorff dimensions. It
seems that the Hausdorff dimension of the growing clus-
ter may decrease continuously with decreasing Pz/P3,
and as Pz/P3 goes to zero the corresponding Hausdorff
dimension seems to approach the limiting case of D= 1.5.

It should be noted that our results depend on the detail
of the lattice structure, which is similar to the DLA clus-
ters. Since there are no complicated diffusion fields in-
volved in our model, one may expect that this model can
be dealt with more easily than the existing aggregation
models such as DLA. For example, in our model one
may readily calculate the generalized dimensions defined
b 15 18

X(e)
D = lim(q —1) 'ln g p, (e)i /1n(e),

e~O i=1
(2)

where the growth probabilities of the perimeter sites, p;,
are related to the parameters P. by

; =PJ/ QNkPk (3)

NiP'f +N~P(+N3P)
X /ln(1/N) .

(N, P, +N~P~+N3P3)
(4)

Here we have made use of e = 1/N and N =N,
+Nz+X3, which is the number of unscreened surface
sites. Thus, as long as the scaling behaviors of the distri-
butions X are known one may calculate the generalized
dimension D~ from Eq. (4). This is in contrast to the
DLA processes in which both X,- and p; are unknown.

the ith site is in class j where X; is the number of growth
sites in ith class. We find

D = lim (q —1) 'ln
Pf~ oo

TABLE II. Hausdorff dimensions obtained for P& =0, P& =0.1, and P3 =0.9.

Number of
particles

for cluster 50%
Hausdorff dimension (D)

65% 80%%uo 95%

1604
1800
1980
2250
3000
3600

Avg. 2372

1.615
1.639
1.645
1.624
1.665
1.654

1.640+0.025

1.592
1.631
1.662
1.637
1.623
1.644

1.631+0.036

1.598
1.629
1.630
1.622
1.617
1.620

1.619+0.022

1.643
1.611
1.634
1.661
1.633
1.628

1.635+0.029
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TABLE III. HausdorA' dimensions obtained from two-
dimensional simulations for different values of the control pa-
rameters, P;. The result shows that D varies with P;.

N= 2000
P2 /P3

Hausdorff dimension
50%'

1

19
1

9
1

4
3
7
2
3

1.558+0.042

1.640+0.025

1.693+0.031

1.727+0.033

1.755+0.041

1.803+0.034

'Last 50% of clusters formed.

In conclusion, we have presented a new computer-
simulation model for the growth of tumors. Using this
model we are able to study the role of screening in the de-

velopment of the ramified structure of the growing clus-
ter. We have performed numerical investigation on the
connection of the morphology with the growth mecha-
nism, and found that the Hausdorff dimension of the
cluster is tunable.

The revised Eden model does present complicated
DLA-like structures which are important and practical in
nature, although its growth mechanism is essentially
different from that of DLA. Moreover, the new model is
more e%cient in producing growing clusters than DLA,
and is, thus, much easier to treat numerically. It is
worthwhile to point out that the present model can also
be regarded as a revised ballistic aggregation model in
some sense. In fact, one can obtain a growing cluster
similar to those obtained in this paper, by "shooting"
particles with a probability distribution from four direc-
tions in 2D square lattice. This suggests that a mean-field
theory may be possible for describing the complicated be-
haviors exhibited in our model. These ideas are planned
to be discussed in a separate paper.
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