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Long-range order without broken symmetry:
Two-dimensional Heisenberg antiferromagnet at zero temperature
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We have calculated the probability distribution for staggered magnetization at T =0 for the two-
dimensional (2D) antiferromagnetic Heisenberg model (2D AFH) on a series of finite lattices up to
26 sites. We find that the singlet ground state of the 2D AFH possesses long-range magnetic order
without broken symmetry. We also study the lowest triplet state and find that it becomes degen-
erate with the ground state in the thermodynamic limit. This state does exhibit broken symmetry
on a finite lattice. The value of the staggered magnetization in the thermodynamic limit is also ob-
tained by extrapolation. We compare our results with the results obtained by other methods and
discuss the relevance to the high-T, superconductive oxide compounds.

As a venerable quantum spin model, the Heisenberg
model has played an important role in our understanding
of Inagnetism since it was proposed in the early times of
quantum mechanics. Last year's vigorous research on
the newly found high-T, superconductive oxide com-
pounds has fueled renewed interest on the two"-

dimensional antiferromagnetic Heisenberg model (2D
AFH). It has been proposed as a basic frame for various
theories about possible new superconductivity mecha-
nisms. ' Many authors start from expanding the Hub-
bard model in the strong coupling limit. This procedure
yields an effective Hamiltonian, which usually has an an-
tiferromagnetic Heisenberg term, plus a hopping term
combined with Gutzwiller-type projection operators to
eliminate doubly-occupied-site states. Thus, a solid
knowledge of this model, especially the knowledge of its
ground state, is now of great urgency; we need to explore
new facts and resolve old controversies.

One longstanding controversy is whether long-range
order (LRO) exists at zero temperature in the 2D AFH.
As early as 1952, Anderson used a semiclassical spin-
wave approach to attack this model, calculating the
ground-state energy and the staggered magnetization.
This approach was then elaborated by Kubo, and later
Oguchi proved that the next order correction to their re-
sults is negligibly small. Qf course, the basic assumption
of spin-wave theory is that LRO does exist, and quantum
fluctuations only cause spins to undergo small Auctua-
tions around a common direction. Before this assump-
tion is confirmed by other techniques, its validity can
only be judged by the consistency between this assump-
tion and the results predicted by it. Under this assump-
tion, a staggered magnetization of 0.303, defined such
that the saturation value is —,', has been obtained. Then
came Mermin and Wagner's rigorous proof that a 2D
Heisenberg model cannot sustain LRO at any finite tem-
perature. It makes the situation at T=O more intrigu-
ing, and many results were published in the years that
followed. Perturbation methods give results of magnetic
order close to preceding value. Variational results do

not seem to appear frequently in the reference lists, possi-
bly because the staggered magnetization value obtained„
0.402, is too high to be believable. ' Nevertheless, we in-
clude variational results in Table I together with other re-
sults obtained by various methods. Ten years ago, Oit-
maa and Betts (OB) published their finite lattice study on
2D AFH and XY model, " in which they claimed LRO
exists in both models. However, for AFH on a square
lattice, only three lattice sizes, i.e., 8-site, 10-site, and 16-
site were used. Later, Monte Carlo simulations on the
2D half-filled Hubbard model showed evidence of LRO
for nonzero Coulomb interaction. ' The half-filled Hub-
bard model reduces to an effective AFH for large
Coulomb interaction. So it seems fair to say that the pre-
vailing perception among physicists is that LRO exists at
T=O for 2D AFH. This perception, however, was re-
cently challenged by Fujiki and Betts himself. ' Based on
work on the triangular lattice, they reanalyzed the LY
data on square lattices up to size 20 sites. Their work
highlighted the difficulty in the extrapolation process.
Whether one finds LRO or not can depend on what kind
of fitting formula one uses. Last year Anderson suggest-
ed that the ground state of the 2D AFH on a square lat-
tice is probably a case of the resonating-valence-bond
(RVB) state. ' His hypothesis further raises doubts about
the existence of LRO. ' Recently, Reger and Young
(RY) performed a world-line Monte Carlo simulation for
the 2D AFH up to lattice size 12 X 12. ' They found that
the staggered magnetization m has a finite value of
0.30+0.02 in the infinite-size and zero-temperature limit.
Meanwhile, Huse' reanalyzed Parrinello and Arai's cu-
mulant series, obtaining a value of 0.313 for the staggered
magnetization. So, the spin-wave approximation, pertur-
bation method, and Monte Carlo simulation all give a
finite staggered Inagnetization around 0.3; Oitmaa and
Bett's original result (derived from their ( X ) /X value)
was 0.42; and Tang and Lin's recent result is 0.245 (Ref.
17); in the latter work seven square lattices up to 26 sites
were used.

To extrapolate the properties of an infinite system from
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TABLE I. The various results for the staggered magnetization of the 2D Heisenberg antiferromag-
net. The numerical results (last three entries in the table) are for the staggered magnetization
m =((m ) )'~ as defined in Eq. (4). In Ref. 11, results for m, were quoted, as pointed out by Huse
(Ref. 16). In the last row, for the present work, only the result for the singlet ground state is quoted.

Method

Spin wave

Perturbation

Perturbation

Author

P. %'. Anderson

H. L. Davis

M. Parrinello and T. Arai

Ref.
Staggered

magnetization

0.303

0.382

0.362

Perturbation D. A. Huse 10 0.313

Variational R. R. Bartkowski 10 0.402

Monte Carlo J. D. Reger and A. P. Young 15 0.30+0.02

Finite lattice J. Oitmaa and D. D. Betts 0.42

Finite lattice S. Tang and H. Q. Lin 17 0.245

Finite lattice S. Tang and J. E. Hirsch Present work 0.25+0.03

where J)0 for antiferromagnetism, and (i,j ) runs on all
nearest neighbors. This Hamiltonian is a special case of
the more general anisotropic Heisenberg model, defined
in this work as

H =4J g [yS,'S'+(I —y)(S;S.+S,~Sy)] .
(i,j)

(2)

When y = —,', (2) reduces to (1), @=1 is the Ising model,
and y=0 is the quantum XY model. We define the z-
direction staggered magnetization as

1
m, =—pe, S

I

the information collected on a series of finite systems is
now a well-established procedure in statistical mechanics.
This procedure usually gives reliable results. Exact cal-
culations on small lattices are an important complement
and check on computer simulations on larger lattice sys-
tems. Possible sources of errors in simulation studies,
such as Reger and Young's, are the Trotter approxima-
tion, the necessity to extrapolate from finite temperature,
and possible metastability in the Monte Carlo simulation;
exact diagonalization does not encounter these problems,
but of course can only reach substantially smaller lattice
sizes. Here we reexamine the exact 2D AFH ground
states and low-lying excited states of seven square lat-
tices, of size N =4, 8, 10, 16, 18, 20, and 26. Those N can
be written as X =l' +m, where I, m is zero or integer,
and l +m is even. The accuracy of the ground states was
checked by acting the total magnetic moment matrix S
and the Hamiltonian matrix H on them, until a genuine
singlet state and an energy accurate to ten digits were ob-
tained.

The Heisenberg Hamiltonian is defined as

H =2J g S;Si,

where e, =+1, depending which sublattice site i belongs
to. We also define the mean-square root of the staggered
magnetization as

m = 6S 2 1/2

which is what actually calculated by OB (Ref. 11) and
RY (Ref. 15) and supposedly, should be equal to the z-
direction staggered magnetization calculated by the
spin-wave approximations and the perturbation methods.
We will call m the staggered magnetization throughout
this work.

The ground state on a finite lattice can be written as

where r runs on all possible spin configurations. We use
eigenvectors of the Ising Hamiltonian as our basis. Every
spin configuration has a z-direction staggered magnetiza-
tion m„whose allowed value is from —0.5 to 0.5. Fol-
lowing what Suzuki and Miyashita did for the total mag-
netic moment S of the XY the model, ' we calculate the
distribution of the probability amplitude n versus m, .
We sum up all a, , where i ) has a particular value of m„
then plot these sums in Fig. 1(a). The results on the four
largest lattices we used are presented. Due to the symme-
try, only the non-negative portion of the distribution is
actually plotted. The data for the 20-site lattice are their
true values, the data for other lattices are scaled so they
will give the same area if a histogram is made.

A glimpse at Fig. 1(a) confirms the existence of LRO.
There is clearly no tendency for the probability amplitude
to peak around 0 as the lattice size increases. It looks
very unlikely that a distribution of 6-function type cen-
tered at m, =0 will emerge in the thermodynamic limit.
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The distribution is essentially Oat from 0 to 0.25, then it
begins to decrease. For example, for the 26-site lattice,
the distribution has a value of 0.08213 at m, =

—,'„while
this value at I,=

—,', is 0.08186. The Hamiltonian and
the ground state of 2D AFH have rotational invariance
in spin space. If a finite staggered magnetization mo ex-
ists, all points (m„,m, m, ) located on the spherical sur-
face m0=m„+rn +I, should have equal probability
amplitude. This spherical distribution will lead to a uni-
form distribution for m, from m, = —mo to m, =ma,
and 0 outside the interval [—mo, mo]. The distribution
showed in Fig. 1(a) is consistent with the preceding obser-
vation. This fatness of the probability distribution is ab-
sent in the systems whose lack of LRO at T =0 is exactly
known. For comparison, the same distribution data of
the 2D XY model on 18- and 26-site lattice, and of the
one-dimensional (1D) AF Heisenberg on 18- and 26-site
chain, are plotted in Fig. 1(b). We set the interaction to
be antiferromagnetic in our calculation for the XYmodel.
It is believed that the XY model has no z-component
magnetization in the thermodynamic limit. " In Fig. 1(b),
more than half of the probability amplitude concentrates
between the interval m, =+—,

' for the 2D XY model. A
similar feature is showed by the 1D AFH. We see that
the cusp centered at m, =0 becomes higher and narrower
as the lattice size increases. The distribution for the
three-dimensional (3-D) AF Heisenberg model on a 16-
site trigonal lattice is also plotted in Fig. 1(b).' It shows
the same Oat feature. Because the lattice is relatively
small and the staggered magnetization in this lattice is
larger than the saturation value 0.5, we see an almost uni-
form distribution from I,=0 to I,=+0.5.

In order to calculate the value of the staggered magne-
tization, we construct a squared staggered magnetization
matrix,

M= geS;

00 I I I I I I I I I

0.0
Sublattice Staggered Mag. vn,

0.5

FIG. 1. (a) The probability distribution for the sublattice
staggered magnetization I,. The results on four lattices are
presented. The lattice sizes are 16-, 18-, 20-, and 26-site. A line
is drawn to guide the eye. For the 20-site lattice, true values are
given. For a11 other lattices, the data are scaled so that a histo-
gram wi11 occupy an area of equal size if it is made. There is no
indication of a peak around I,=0. Instead, the curve is almost
Aat from 0 to 0.25, and only raises very slightly around 0. The
curve begins decreasing at 0.25, possibly going to 0 at mo =0.5
in the thermodynamic limit. This feature guarantees a finite
staggered magnetization but also gives rise to nonvanishing Auc-

tuations in the thermodynamic limit for m, . (b) Probability dis-
tributions for the 2D XY model on a 18- and 26-site lattice, for
the 1D AF Heisenberg chain of 18- and 26-site, and for the 3D
AFH on a 16-site trigonal lattice. For the 2D XYmodel and the
1D AFH, small m, values have dominant probability. These
two models are believed to possess no finite magnetization along
z direction at T =0. For the 3D AFH, the distribution is almost
uniform.

and this matrix is applied to the 2D AFH ground state to
obtain m . The results on our seven lattices, together
with the ground-state energy, are listed in Table II. Our
data fitting procedure is the following: first we try to fit
the data linearly with a dependence N ', N ', and
N, then we pick up the one which gives the best fit,
and add one or two more terms of higher power to the
fitting formula, if the addition will not overdo the fitting.
For those small lattices, the correction terms may be as
large as, or even larger than, the asymptotic value, and to
fit the data too well is equally dangerous as to fit the data
too poorly. In order to make the fitting biased to larger
lattices, we assign a weight proportional to the lattice size
to the data points. The mean squared staggered magneti-
zation I on the seven lattices are fitted with a form

m (X)=m (~ )+a&X '~ +azcV

The second term in the right-hand side of (7) is predicted
by spin-wave theory. ' We searched for a best exponent
from 0 to 2 by using a least-squares method, and found
the best value is 0.495 for our m data, so this term truly
makes sense. The diagonal element of the matrix M is
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TABLE II. The calculated values of the energy and mean-square staggered magnetization, the z component of the mean-square
staggered magnetization for the 2D AFH ground state (singlet S =0) and the lowest excitation state (triplet, S = 1 and S'=0).

Lattice

8
10
16
18
20
26

Energy Eo

—2.000 000
—1.500 000
—1.460 014
—1.403 560
—1.387 972
—1.381 616
—1.368 904
—1.344+0.002

Ground state
Staggered

magnetization

0.500 000
0.375 000
0.338 041
0.276 527
0.268 603
0.257 731
0.233 899
0.064+0.014

z compt.

0.166 667
0.125 000
0.112660
0.092 176
0.089 534
0.085 910
0.077 966
0.021+0.005

Energy E&

—1.000000
—1.250 000
—1.292 820
—1.331 236
—1.331 482
—1.334 919
—1.339 931
—1.344+0.002

Lowest excited state
Staggered

magnetization

0.375 000
0.343 750
0.324 232
0.271 956
0.263 698
0.254 130
0.232 594

z compt.

0.250 000
0.212 500
0.195 347
0.164 607
0.159249
0.153 242
0.139677
0.042+0.008

mo =0.25+0.03 . (10)

This value is smaller than all previous results except the
ones obtained by finite lattice studies, ' but it seems con-
sistent with the tendency of the probability distribution
for the staggered magnetization.

Thus, our analysis confirms that the 20 Heisenberg an-
tiferromagnetic possesses long-range order at zero tem-
perature. But as a singlet, the ground state itself cannot
break the rotational symmetry of the staggered magneti-
zation. For the classical Heisenberg model at T =0, al-
though the Hamiltonian has rotational invariance in spin
space as does its quantum counterpart, the ground state
is infinitely degenerate, and the spins are "frozen" along a
special direction, i.e., the system settles in one of the de-

I I I

i

I I (
i

I I I

o.5

o.o
0.0 0.5

FIG. 2. The extrapolation of the mean-square staggered mag-
netization m for the ground state. Though the line looks
straight vs N ', the correction term proportional to X ' is
taken into account. The limiting value is 0.064 0.014, which
yields a staggered magnetization of 0.25+0.03.

y (s,"s,"+s;s()+ 'y ~,s; '. (&)
l

This form gives rise to the third term in (7). In our previ-
ous calculations' m was only fitted to X ' . In Fig. 2
we plotted the fitting curves for m . The limiting value is

m =0.064+0.014,
which gives a staggered magnetization value as

generate ground states, so the rotational symmetry is bro-
ken when long-range order sets in at T =0. For a quan-
tum Heisenberg ferrornagnet, the z component of the
magnetic moment is a constant of motion, a special direc-
tion is chosen after we choose our basis. In the case of a
quantum antiferromagnet, the situation is totally
different. The staggered magnetization is not a constant
of motion, and its direction changes constantly. In the
isotropic S =0 state, any direction has equal probability
at any time. The two Neel states in our basis do not have
any special meaning for the ground state. As shown by
Kaplan using an exactly solvable model, a singlet without
broken symmetry can possess LRO. The same situation
is clearly shown in Fig. 1(a); there is no peak at the two
Neel states (m, =+0.5); there is also no peak around the
extrapolated mo values, and no tendency to develop a
peak around these values as the lattice size grows. The
same situation also occurs in three dimensions, as indicat-
ed by the results on the 3D 16-site lattice in Fig. 1(b).

The preceding observation indicates that one should be
careful in doing a direct comparison of the results ob-
tained by different methods. On one hand, exact finite
lattice studies"' and Monte Carlo simulation' treat the
ground state of 20 AFH as a singlet invariant under spin
rotation. On the other hand, perturbation and spin-wave
approximation start from a broken-symmetry state. The
perturbation method takes an Ising-like interaction in Eq.
(2) as the unperturbed Hamiltonian. In the spin-wave ap-
proach, it is implicitly assumed that the probability dis-
tribution peaks at the Neel states, and that these two
Neel states will be decoupled in the thermodynamic limit,
i.e., the distribution peaks should grow higher and nar-
rower at the expense of those spin configurations which
have m, around 0, so the tunneling rate between these
two peaks vanishes as X—+ ~. This is very different from
the Aat probability distribution found in Fig. 1.

The spin-wave picture implicitly assumes that an
infinitesimal staggered field has picked out the z direction
as the direction of the staggered magnetization. To un-
derstand the connection with our results, we have to take
into account the effect of the low-lying excited states.
When @=1 in Eq. (2), i.e., in the Ising limit, the ground
state is a doublet. On a finite lattice, the two Neel states
can form two independent linear combinations; one is the
sum of the Neel states, the other is the difference between
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them. When y decreases from 1 and the exchange in-
teraction is turned on, the sum (difference) will become
the ground state by mixing with other spin
configurations, if the lattice has 4n (4n +2) sites.
Meanwhile, the difference (sum) will also become the
lowest excited state by mixing with other spin
configurations. At the Heisenberg point where y=0. 5,
the ground state becomes a singlet, while the lowest excit-
ed state is a triplet. This scenario is similar to what hap-
pens in the 1D case, ' and has been checked by .us
through direct calculations on finite lattices. It is be-
lieved that there is no energy gap for the 2D AFH. Re-
cently, Barnes and Swanson calculated the ground state
and the lowest excitation energies by a projector Monte
Carlo method on lattices up to 8 X 8 sites. Their results
shows that there is probably no energy gap in the thermo-
dynamic limit. Though their extrapolation formula is
different from ours, their energy estimate is very close to
ours. Our results for energies are listed in Table II, and
plotted in Fig. 3. The results indicate the excitation spec-
trum is gapless as predicted by spin-wave theory. For
this triplet state in the S, =0 sector, the probability dis-
tribution of the sublattice staggered magnetization I,
does have a peaked structure, as one would expect from
the following symmetry argument. The total magnetic
moment S is the sum of the two z-direction magnetic mo-
ments Sz and Sz, while the staggered magnetic moment
M is equal to S~

—S~. Noting S~ commutes with Sz, we
have

due to the symmetry between the two sublattices. Thus,
the staggered magnetic moment is perpendicular to the
total magnetic moment. For the triplet states with
S'=+1, M is on the xy plane, for the triplet state with
S'=0, M lies on a plane parallel to the z axis, probably
with a dominant z component. In Fig. 4, we plot the
probability distribution of m, for this triplet state on the
four largest lattices we used. The mean squared stag-
gered magnetization M values for this triplet state on
the seven lattices we used, are also given in Table II. A
simple linear fit of the difference of M values between
the singlet and the triplet shows that this difference AM
can be expressed as

AM =c0+c2% (12)

where c0 = —0.0015+0.0013. Because the difference de-
cays faster than N ', we conclude that the triplet and
the singlet have the same total mean squared staggered
magnetization, besides having the same energy, as one
would expect. It is likely that there are also higher S
states that become degenerate with the singlet ground
state in the thermodynamic limit and have the same total
staggered magnetization. But the z components of the to-
tal mean squared staggered magnetization can be
different in these states. For the triplet, the z component
of the mean squared staggered magnetization can be
fitted very well by using formula (7). The fitting is plotted
in Fig. 5. The limiting value is

S.M =S —S =0, m, =0.042+0.008 . (13)
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FIG. 3. The extrapolation of the ground-state energy and the
lowest excitation energy. We also plotted the results of Barnes
and Swanson (Ref. 23). The limiting value is —1.344+0.002.
We assume that the data have a form of E ( ~ ) +uzi
++4' 4+a,X '.

FIG. 4. The probability distribution for the sublattice stag-
gered magnetization I, for the lowest excited state. The results
on four lattices are presented in the same fashion as in Fig. 1.
The lattice sizes are 16-, 18-, 20-, and 26-site. A line is drawn to
guide the eye. The probability distribution peaks at a value
close to the Neel values I,=+0.5.
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FIG. 5. The extrapolations of the z component of mean-
square staggered magnetization I for the lowest excited state.
The limiting value is 0.042+0.008.

It is interesting that our extrapolated value for the z com-
ponent of the mean squared staggered magnetization for
the S'=0 triplet is about twice the corresponding value
for the singlet.

If a small staggered field h (h ((J) along the z direc-
tion is applied to the system, the energy degeneracy in
the thermodynamic limit of the singlet ground state and
the lowest excited triplet state, and possibly other higher
S states will be removed. The singlet ground state will
mix predominantly with this lowest triplet state. On the
other hand, the triplet state, in turn, will mix with higher
S states. Thus, a broken-symmetry state with a staggered
magnetization polarized along the direction of the field
can be constructed. To calculate the staggered magneti-
zation of this broken-symmetry state under a small field
is an interesting problem for further investigation.

The quantum Auctuations in the 2D AFH model can
be reduced by a weak third-dimensional coupling. In a
real material like La&Cu04, such a weak third-
dimensional coupling is always present. Below a critical
temperature, the Cu-0 planes will be strongly coupled.
This mechanism could stabilize those low-energy states of
the 2D AFH model. If magnetic order does exist on the

Cu-0 plane in La2Cu04 below the Neel temperature, as
indicated by the experiment, one would expect the spins
on the 2D plane to be described by a broken-symmetry
state, a linear combination of the singlet and higher S
states. If this is the case, the description given by the
resonating-valence-bond theory seems to miss certain
essential ingredients, at least before doping, because now
the lowest state is not even a singlet.

In summary, we have calculated the staggered magne-
tization and its probability distribution for the 2D AFH
model at T =0 on a series of finite lattices. From our cal-
culations, it can be concluded that long-range order exists
in this model at T =0. For the singlet ground state, only
the length of the staggered magnetization is meaningful
due to the spin rotational invariance. Our result of the
mean-square root of the staggered magnetization,
0.25+0.03, is slightly below the experimentally observed
0.6ps (Ref. 25) staggered magnetization in La2Cu04,
which corresponds to 0.27 in our unit (full moment of
Cu + is l. lp~). There are, however, two additional
effects: charge Auctuation will reduce the long-range or-
der, and a weak third-dimensional coupling reduces the
quantum Auctuations in the plane and thus increases the
order.
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