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Nonlinear oscillations in electrochemical growth of Zn dendrites
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Electrochemical deposition can produce interesting patterns ranging from random fractals to or-
derly dendrites. We have studied the electrical signals due to the deposition of Zn ions in a cell with

ZnSO4 electrolyte. In the dendritic regime, the current (voltage) exhibits periodic oscillations with
constant applied voltage (current). The frequency is proportional to the applied voltage V and the
electrolyte concentration n. We relate this behavior to the side-branching nature of the dendrites.

Electrochemical deposition has been found to produce
a variety of intriguing patterns. ' Brady and Ball' and
Matsushita et al. , first studied the fractal character of
the deposits and found them to be similar to those ob-
tained by diffusion-limited aggregation (DLA). Subse-
quent studies by Grier et aI. and Sawada et al. have
found other patterns depending on the applied voltage V
and the electrolyte concentration n. Both groups studied
the deposition of Zn in a thin cylindrical cell with ZnSO4
electrolyte and constructed a morphology diagram ac-
cording to n and V. Fractal structures are observed at
low values of n and V, and dendrites at higher values of n

and V. Between them is a so-called "dense-radial" or
"homogeneous" pattern which has a fractal character at
short-length scales and a smooth outer envelope for the
whole structure. Sawada et a/. have found additional
patterns labeled "open" and "stringy" at the highest
values of n and V. The boundaries between these
different regimes are quite vague and their locations are
different for the two studies. The reason is not well un-
derstood.

To improve the understanding of this interesting prob-
lem, we have chosen to study the Auctuations (noise) of
the associated electrical signals. We reason that since the
growth of the deposit is determined by the current-
density field at the cathode, it would be revealing to study
how the total current Auctuates for different n-V condi-
tions. In particular, different noise power spectra might
be associated with different morphologies. This paper re-
ports our main results: We find that whenever dendrites
are formed, the cell current I exhibits periodic oscilla-
tions even though the applied voltage V is held constant.
Similarly, V oscillates when a constant I is applied. For
increasing orderliness of the dendrites, the magnitude of
oscillation is larger (up to 10% of the average signal) and
the coherence time is longer (up to several minutes). The
frequency f ranges from below 1 Hz to above 50 Hz, and
it is roughly proportional to the product nV. We also
suggest an explanation for the phenomenon and discuss
how the difFerent patterns might be related.

Similar to Refs. 3 and 4, we use a thin cylindrical cell
made of lucite, with a diameter of 9 cm and a thickness of
0.13 mm. ZnSO4 solutions of different concentrations are
used as electrolytes. A Zn foil lining the cylindrical wall
serves as a ring anode and a 1-mm diameter Zn wire in-
serted along the cylinder's axis is used as a cathode (other
electrodes were tried but the results were less reproduci-
ble). A small resistor in series with this two-electrode cell
is used to monitor the deposition current. Either a con-
stant V or a constant I can be applied to the circuit, and
the conjugate quantity (I and V, respectively) is recorded
digitally as a function of time. The typical sampling rate
is 512 sec '. Power spectra (~ V(co)~ or ~I(co)~ ) are ob-
tained by fast Fourier transform. After confirming that
oscillations occur in both the constant- V and the
constant-I experiments for a wide range of concentra-
tions, we made systematic measurements using constant
V.

Figures 1(a)—(d) show typical time domain data ob-
tained for various n.-V conditions. The current Auctua-
tion 6I is normalized by the estimated average cell
current I. Figure 1(a) shows the behavior for high values
of nV. There are sharp downward spikes at frequencies
well above 10 Hz but the coherence time is no more than
a few cycles. The morphology of the deposit is similar to
what Sawada et al. called "open. " An example of such
pattern is shown in Fig. 2(a) [see also, Fig. 3(a) in Ref. 4].
For lower values of n V, the waveform is more symmetri-
cal, the frequency is lower, and the coherence time is
much longer (can be of order 10 min), as seen in Fig. 1(b).
The deposit pattern associated with such oscillations is
characterized by long straight three-dimensional den-
drites, as depicted by Fig. 2(b) (see also, Fig. 4 in Ref. 4
and Figs. 2(c) and 2(d) in Ref. 3). As one further lowers
either n or V, the frequency continues to decrease and the
waveform evolves to that shown in Fig. 1(c), which is
characterized by sharp upward spikes. The deposit pat-
tern is still dendritic as in Fig. 2(b). Upon further lower-
ing of n V, the current fIuctuations become more like ran-
dom noise, as shown in Fig. 1(d). Correspondingly, the
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ments to probe all the patterns suggested by Refs. 3 and
4. The first series has V=7 V and n between 0.01 and 1

M. The second has n =0. 1 M and Vbetween 2 and 25 V.
Oscillations are observed above 0.075 M in the first
series, and above 3 V in the second series. Compared
with the n-V diagram in Ref. 3, both values fall in the
transitional region between "fractal" and "dendrite. " In
most of these measurements, the oscillations are coherent
over many cycles, and the first few millirneters of growth
is a ring of radially directed dendrites as shown in Fig.
2(b). Although f changes continuously with time, its
range is quite reproducible. At later times, different glo-
bal structures develop and large variations occur from
run to run. Consequently, we use the frequencies during
the first 3 min to characterize the dendritic growth for
each set of n-V conditions. Figure 5 shows a log-log plot
of f versus nV. The large vertical bars are due partly to
the time dependence of f, and partly to the broad band
behavior shown in Fig. 3(a). We note that both the
constant-n and the constant- V data can be approximated
by the same straight line with unity slope, which suggests
that f ccnV

Since we have observed a strong correlation between
the coherence time of the oscillations and the orderliness
of the dendrites, it is reasonable to hypothesize that the
oscillation frequency is the side-branching frequency.
Ideally, one would like to confirm this hypothesis by
direct visual observation. Unfortunately, this proved to
be a formidable task. The charge transfer in one oscilla-
tion corresponds to about 10' Zn atoms which have a
volume of several cubic microns, and it is distributed over
many dendrites. A microscope with enough magnifying
power does not have a field of view large enough to locate
the fast growing tips which advance with typical veloci-
ties of 1-100 pm/sec. Trying to determine the side-
branching wavelength alone was impossible because the
branches thicken as they grow and the smallest features
at the micron level could not be preserved. A simple in-
direct test was to reverse the applied voltage to dissolve
the dendrites. We found that they thinned out uniformly
without current oscillation. This shows that the oscilla-
tion and the dendritic growth are related. Since we also
know that there are no oscillations at low current density,
the oscillations must be associated with a deposition reac-
tion at high current density. We suggest a plausible ex-

O. f

nV {MV}
10

FIG. 5. Oscillation frequency vs the product n V. The dashed
line indicates a linear dependence. X indicates data obtained at
fixed concentration n =0. 1 M, the other data are obtained at
fixed voltage V=7 V.

planation below.
We note that the electrode-electrolyte interface is a

double layer in which the cations and the negatively
charged electrode are separated by water molecules. ' A
voltage V, exists across this microscopic capacitor. In
the absence of an applied voltage, the deposition-
ionization reactions Zn ++2e~Zn take place at equal
rates with an exchange current density jo of order 1

mA/cm or less. In the experiment, the applied voltage
V brings cations to the cathode which increases the inter-
facial voltage V, and causes a net deposition to occur.
The cell is roughly ohmic in the limit of small V. Howev-
er, because of the small diameter of the cathode, a typical
cell current of 1 mA corresponds to a very large current
density J=250mA/cm at the cathode. The fact thatJ))jo means that a large amount of charge is piled up
across the double layer and the interfacial voltage V, is
far above its equilibrium value. Under such conditions, it
is likely that the double layer is driven into a nonlinear
regime and a dielectric breakdown can deplete the
charge. The repeated charging and discharging of the in-
terfacial capacitor will thus lead to current oscillations.
Since the resistance between different dendrites is very
small, their oscillations can be phaselocked to give a large
observable effect. In addition, one would expect each
burst of discharge to nucleate a new set of side branches,
thereby coupling the electrical oscillation to the side-
branching morphology.

The above picture is consistent with all our observa-
tions: (i) The oscillations occur only for large deposition
current density J or n V; (ii) since the breakdown thresh-
old should be roughly the same for all concentrations, the
time to reach the threshold is inversely proportional to J,
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and hence f ~J ca nV; (iii) as the dendrites grow longer,
more current Aows into their sides and less to the tips,
thus f decreases with time (Fig. 4); (iv) for very large J or
n V, new dendrites are nucleated rapidly, the pattern be-
comes more disordered, and coherent oscillations cannot
be sustained.

Implicit in the above discussion is the assertion that
the driving field 6 for dendritic growth is the applied
voltage, i.e., the system obeys the Laplace equation
V 4=0 where 4 is the Coulomb potential. Since the
Laplace equation is equivalent to a diffusion equation
with an infinite diffusion length, '" the problem is similar
to the standard diffusion-controlled growth problems,
such as solidifications from supercooled liquids or super-
saturated solutions. " The difference is that in those
problems, there is a "true" diffusion length lD (=D/v-
where D is the diffusion constant and v the tip velocity)
that characterizes the distance over which the driving
field decays. In the electrochemical problem, however,
the long-range nature of the Coulomb potential fixes an
"effective" diffusion length /& equal to the distance be-
tween the electrodes, because that is the distance over
which the potential falls off. In either case, the side-
branching wavelength A, is proportional to foldo where I
is the diffusion length appropriate for the system and do,
the capillary length, is a material dependent constant of
order 1 A." For electrochemical growth, / =/& is of or-
der 10 A, so A, should be of order 1 pm. A side branch-
ing frequency f in the range of 1 —100 Hz would imply a
tip velocity in the range 1 —100 pm/sec, consistent with
what we observed. Furthermore, since v ~ J ~nV, we
should expect the f cc nV behavior shown in Fig. 5. It is
interesting to note that in those problems with a true
diffusive length, I = lD =D /u implies A, cc 1/V'u and
f cc u

~ . The three-dimensional Ivantsov formula" pre-
dicts that 6 ~p logp =p =p//D in the limit of small Pec-
let number p, where p ( o: A, ) is the tip radius, and hence
b, ~ &v and f ~ 6 . This is in contrast to the f ~ b, be-
havior of electrodeposition in the dendritic regime. '

While the above discussion can explain the dendritic
growth behavior, we may wonder why other patterns
such as the DLA and the "dense-radial" structures are
also observed. The reason, we believe, is that the equa-
tion V +=0 only describes one limit of the problem
where true diffusion effects can be ignored. It is well
known that because the cation and anion concentrations
(n+ ) in the double layer are nonuniform, the Aow of an
electric current alters the concentration gradients (Vn+)
and gives rise to diffusion currents. If the electrode sur-
face has a feature of size R, the resulting n+ would vary
exponentially over the distance R, making the electrode-
electrolyte interface much thicker than the original dou-
ble layer. ' The relaxation time ~ needed to develop this
diffusive layer is just the diffusion time R /D. ' Howev-

er, since the electrode surface is continuously growing, it
may not allow enough time for the concentrations to
equilibrate. Specifically, if the surface grows a feature of
size R in time t, n+ can relax around it only if ~&&t.
Since R =vt, this implies R «D/v:—/z. Hence, for any
growth velocity v, /D defines a crossover length scale:
true diffusion is relevant for structures smaller than /D

but not for those larger than /D. For the former regime,
Kessler et a/. " and Sander have shown that the system
is described by two Laplace equations V p+=0, where
p+=k~ T lnn++q+N are the chemical potentials of the
cations and anions, and q+ are their respective charges.
The 1nn+ term gives the diffusion currents. In the latter
regime, the diffusive layer is out of equilibrium and,
therefore, has associated with it a higher free energy.
This is equivalent to having a high effective surface ten-
sion between the electrode and the electrolyte. In the
bulk of the cell, away from the diffusive layer, the system
is simply described by V @=0. An important difference
between the two regimes is the effect of the diffusive lay-
er. Clearly, when the concentration gradient is spread
out over a distance as large or larger than the surface
features, the interfacial energy associated with the
growth is small and insensitive to the crystalline anisotro-
py. This would lead to DLA-like patterns. Conversely, if
the concentration gradient does not have enough time to
equilibrate and spread out, the interfacial energy becomes
larger and more sensitive to the anisotropy. In this case,
the growth pattern should be dendritic. " In other words,
we expect the V p+ =0 regime to have a fractal structure
and the V +=0 regime to have a dendritic structure.
For high enough tip velocity v, /D becomes comparable to
the tip radius, and only dendritic growth can take place.
This expectation is in agreement with the recent observa-
tions by Sander et a/. ' For smaller values of v, we would
expect a crossover between the V p+ =0 problem and the
V +=0 problem, characterized by the length /L, . This
may indeed explain the "dense-radial" pattern because,
according to Sawada et a/. , fractal behavior in such a
pattern occurs below a length scale (they called 5) which
increases for decreasing n. So we may identify this length
as /D. In addition, the smooth outer envelope of the
"dense-radial" pattern may be just the "solid" phase in
the V2&9=0 problem. (Grier et al. have also suggested
that the finite resistance of the deposit helps stabilize the
smooth envelope. )
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