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Effective conductivity of anisotropic two-phase composite media
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We derive a new perturbation expansion for the effective conductivity tensor cr, of a macroscopi-
cally anisotropic d-dimensional two-phase composite of arbitrary microstructure. The nth-order
tensor coefficients A'„' of the expansion (termed n-point microstructural parameters) are given ex-

plicitly in terms of integrals over the set of n-point probability functions (associated with the ith

phase} which statistically characterize the microstructure. Macroscopic anisotropy arises out of
some asymmetry in the microstructure, i.e., due to statistical anisotropy (e.g. , a distribution of
oriented, nonspherical inclusions in a matrix, layered media, such as sandstones and larninates, etc.).
General and useful properties of the n-point microstructural parameters are established, and con-
tact is made with the formal results of Milton. We then derive rigorous nth-order bounds on o.,
(from our perturbation expansion) that depend upon the n-point parameters A'„' for n =1, 2, 3, and
4. This is the first time that such bounds (for n ) 1) have been explicitly given in terms of the A'„'.

I. INTRODUCTION

The problem of relating the macroscopic properties of
a material to its microstructure is a classical one in phys-
ics. The determination of the effective electrical conduc-
tivity tensor cr, of a random d-dimensional two-phase
composite medium is the focus of this article. For
reasons of mathematical analogy, the results of this study
translate immediately into equivalent results for the
effective thermal conductivity, dielectric constant,
diffusion coefficient, and magnetic permeability tensors of
such composites.

For macroscopically isotropic two-phase composites
(i.e., o, =o,U), considerable advances in predicting o,
have been made since the pioneering paper of Brown' in
which it was shown that o., depends upon an infinite set
of correlation functions that statistically characterize the
composite. Rigorous techniques employed to attack this
problem include bounding methods, cluster expan-
sions, and perturbation expansions; see also the recent
review article by Torquato. '

The determination of the conductivity tensor cr, for
the more complicated case of a macroscopically aniso-
tropic composite (e.g. , oriented nonspherical inclusions,
layered media, etc.) has been less extensively studied.
Hori" developed perturbation expansions and bounds for
a, These results, however, have some undesirable
features as described below. Willis' derived bounds on
o., for composites containing aligned, ellipsoidal in-
clusions which depend upon the microstructure via the
shape of the inclusions and volume fraction only. More
recent work includes the development of Hashin-
Shtrikman —type bounds by Kohn and Milton' and the
mathematically rigorous and elegant continued-fractions

approach to bounds of Milton see also references con-
tained therein.

In this study we derive a new perturbation expansion
for the conductivity tensor cr, of a macroscopically aniso-
tropic d-dimensional two-phase composite of arbitrary
microstructure. The nth-order tensor coefficients A'„' of
the expansion (termed n-point microstructural parame-
ters) are given explicitly in terms of the set of n-point
probability functions S&', . . . , S,"of the medium. The
quantity S„"(r&, . . . , r„) gives the probability of finding n

points at positions ri, . . . , r„, respectively, simultaneous-
ly in phase i (i =1,2). General and useful properties of
the n-point microstructural parameters are established
and contact is made with the formal results of Milton.
We then derive rigorous nth-order bounds on o., that de-
pend upon the n-point parameters A'„' for n = 1, 2, 3, and
4. This is the first time that such bounds (for n ) 1) have
been explicitly given in terms of the A'„'.

II. PERTURBATION EXPANSION OF cr,
FOR ARBITRARY DIMENSIONALITY

Consider deriving a perturbation expansion for the
effective electrical conductivity tensor a, of a random
two-phase d-dimensional composite medium which is ma-
croscopically homogeneous but anisotropic. The method
we use to obtain such an expansion follows one given by
Torquato for d-dimensional isotropic composites which
generalizes an approach due to Brown' for three-
dimensional (3D) isotropic media. The composite medi-
um is a domain of space D of d-dimensional volume V
which is subdivided into two phases: one phase D, ,
characterized by volume fraction P, and isotropic con-
ductivity o, and another phase D2, characterized by a
volume fraction $2 and isotropic conductivity o ~. The lo-
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cal conductivity at position r is given by the scalar func-
tion

o(r)=o, +(cr; —o~ )I"(r), i&j

where the characteristic function of phase i is

1, r&D,
I(() r 0, otherwise .

(2.1)

(2.2)

[cr(r) o, ]-
EL (r) = 1+ E(r)

OJd
(2.4)

and P(r) is the induced polarization field (relative to the
medium in the absence of material i) given by

[o(r)—o. ]P(r)= E(r) . (2.5)

Moreover,
21 drr rU—

4+2
J J

(2.6)

appearing in Eq. (2.3), is the dipole-dipole interaction ten-
sor, where r = ~r~ and U is the unit dyadic. The subscript
5 on the integral of Eq. (2.3) (which is to be integrated
over the sample volume V) indicates that it is carried out
with the exclusion of an infinitesimally small d-
dimensional sphere centered at r. Combining Eqs. (2.4)
and (2.5) gives

As indicated above, each phase is isotropic and hence
macroscopic anisotropy arises out of some asymmetry in
the microstructure, i.e., due to statistical anisotropy (e.g. ,
a distribution of oriented nonspherical inclusions in a ma-
trix, layered media, such as sandstones and laminates,
etc.).

We take the sample, for purposes of generality, to be a
d-dimensional ellipsoid of finite size and shape. Consider
subjecting it to the time-independent applied electric field
Eo(r). The solution of Maxwell's electrostatic equations
for this situation may be formally expressed as an integral
equation using the Green's function for the Maxwell elec-
tric field E(r):

EI (r)=EO(r)+ I dr'T(J)(r —r') P(r'), (2.3)

where the "Lorentz electric field" EI (r) is related to the
Maxwell field by

X(cr, cr—U)( El(r)), (2.9)

where angular brackets denote an ensemble average.
This definition of cr, is equivalent to the one derived from
(cr(r)E(r) ) =cr, (E(r) ), i.e., the averaged form of
Ohm's law.

Following Torquato, an integral equation for the local
polarization P(r) is obtained by combining Eqs. (2.3) and
(2.7). The integral equation is solved for P(r) by succes-
sive substitutions, resulting in an expansion in powers of
/3;, which formally may be expressed as an operator act-
ing on the applied field Eo(r). This relation between P(r)
and Eo(r) is then averaged. As is well known from elec-
trostatics, relations between average fields [such as
(P(r)) ] and Eo(r) are dependent upon the shape of the
sample. Accordingly, one inverts the series for ( P(r) ) in
terms of Eo(r) and then eliminates Eo(r) using the aver-
age of Eq. (2.3). This resulting relation between (P(r) )
and ( Ei (r) ) is localized, i.e., independent of the shape of
the sample and hence involves absolutely convergent in-
tegrals. Thus one may pass to the limit of an infinite
volume without any ambiguity and obtain from this lo-
calized relation, which defines o, [Eq. (2.9)], a perturba-
tion expansion for o., of macroscopically anisotropic
two-phase media of arbitrary microstructure.

The expansion which results after employing this
methodology is given by

(P,)(t), ) (o, —cr, U) '[cr, +(d —1)oJU]

(2.10)

where the tensor coefficients A'„' are integrals over a set
of n-point probability functions associated with the phase
i: for n =2,

zability of a d-dimensional sphere of conductivity o.; em-
bedded in a matrix of conductivity o . The second line of
Eq. (2.7) results when Eq. (2.1) is substituted into the first
line.

The effective conductivity cr, of the composite medi-
um, a symmetric second-rank tensor, is defined through
the averaged relation

O'J d(P(r))= [a, +(d —1)o U]

o d o.(r) —o~P(r)=
2(d —1)n o(r)+(d —1)o, El (r)

A2"= I dr t(r)[S(2'(r) —P;]
d

and for n ~3,
n —1

(2. 1 la)

)(3, I"(r)EL (r), i&j A(i) —
( 1 )ny2

—n d
2'(d —1)

where

J0; 0
o.;+(d —1)o.)

(2.8)
X C„"(1,2, . . . , n), (2.11b)

X II . . . I dr2dr3. dr„

Xt(1,2) t(2, 3) . t(n —l, n)

is a parameter bounded by —(d —1) '~/3~ ~1 and,
apart from a trivial constant, is equal to the dipole polari-

where scaled tensors t(i, j) [defined by (2.6)] stand for
t(r; —rj ) and C„"is the determinant given by
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c(i)
n

S2'(1,2)

S3'(1,2, 3)

S(~'i (2)

S2'(2, 3)

0
S(l) ( 3 )

0

0

0

0

S„"i(1, . . . , n —1) S„"2(2, . . . , n —1) S„"3(3, . . . , n —1) S',"(n —2, n —1) S", (n —1)

S„",(2, . . . , n) S„"~(3, . . . , n) S3'(n 2,—n —l, n) S2'(n —l, n)

(2.12)

Here the n-point probability function'

S„"(1,2, . . . , n)=S„"(r,2, r23, . . . , r, „)
=(I"(ri)1"(r,) I"(r )) (2.13)

gives the probability of finding n points with positions
ri, r2, . . . , r„all in phase i. In (2.13) we have used the
fact that the medium is statistically anisotropic but
homogeneous, i.e., the S„"depend upon the relative dis-
placements r,"=r —r, .

Clearly, the one-point function S'&' is simply the
volume fraction of phase i, i.e., P, . Since the quantity
within the brackets of (2.11a) and the determinant C„"
identically vanish at the boundary of the sample, because
of the asymptotic properties of the S„"(see Ref. 15), the
integrals in (2.11) are shape independent, and hence any
convenient shape (such as a sphere for d =3 or circular
disk for d =2) may be employed for the (infinite) domain
of integration. Moreover, the limiting process of exclud-
ing an infinitesimally small cavity about r; =0 in the in-
tegrals (2.11b) is no longer necessary since C„" again is
identically zero for such values. %'e refer to the sym-
metric tensor coefficients A'„' [given by (2.11)],which de-
pend upon the set S'&', . . .S„",as n-point microstructural
parameters or integ rais. The n-point ten sors A'„'

(n =2, 3, . . . ) generally will not possess common princi-
pal axes. This implies that for general media the princi-
pal axes of the macroscopic conductivity tensor e, will
rotate as the phase conductivity ratio changes, such as
composites with chirality, i.e., composites with some de-
gree of left- or right-handed asymmetry. ' Nonetheless,
there exists a large class of media which has the symme-
try required for all the A'„' to possess common principal
axes (e.g., a random distribution of oriented, identical el-
lipsoids or cylinders in a matrix); in such instances n

point tensor multiplication is commutative. Note that
the lowest-order parameter, A2', depends upon the two-
point correlation function. This is to be contrasted with
the isotropic result in which the lowest-order parameter
is the three-point parameter, i.e., A2'=0.

Perturbation expansion (2.10) for the anisotropic
effective conductivity tensor o., of d-dimensional two-
phase composites is new. It actually represents two series
expansions, one for i = 1 and j =2, and the other for i =2
and j =1. It is useful at this point to compare it to
another perturbation expansion obtained by Hori. "
First, Hori derived his series expression using a different
approach and expansion parameter. Second, the
coefficients of his expansion depend upon derivatives of
the n-point correlation functions. In practice, one mea-

sures the correlation functions themselves, not their
derivatives. One can, by integration by parts, reexpress
Hori's integrals in terms of the correlation functions but
such a procedure is already tedious for the analogous iso-
tropic three-point parameter ' it becomes progressively
harder to carry this out as the order of the n-point pa-
rameter increases. Our expansion enjoys the advantage
of possessing coefficients A'„' given by (2.11) which de-
pend upon the correlation functions themselves. Third,
unlike the n-point integrals A'„', defined by (2.11), the cor-
responding integrals of Hori are generally conditionally
convergent, i.e., they depend upon the shape of the mac-
roscopic sample.

For some subsequent calculations it will be convenient
to use the expansion of the effective conductivity tensor
in powers of 5; =(cr; —cT )/c7J. (Note that 5," is not the
Kronecker delta. ) Employing (2.10) we find through
fourth order that

where
a(i)

= U+ a"6 +a"6"+a"5'
1 ij 2 ij 3 ji

+a~"5;~+0 (5;J ), i&j, (2.14)

(2.15)

(2.16)

A(i) 2

(i) 1 2 U
2 +A"'

3 (2.17)

and

a(i)—~ 1

d

U — A" A"1

J p p
2 3

—
P A". U — A"

—A"+A" (2.18)

III. GENERAL PROPERTIES
OF THE n-POINT MICROSTRUCTURAL

PARAMETERS

Here we shall establish some general and useful proper-
ties of the n-point microstructural parameters A'„'. First,
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A. Relations between the microstructural parameters
in difFerent phases

The n-point microstructural parameters associated
with phases 1 and 2 are related to one another, i.e., A'„"
and A'„' are dependent upon one another. To obtain the
relations between the microstructural parameters, one
first writes, using Eq. (2.10), two difFerent perturbation
series for o.„one with the phase 1 as the host material
(j = 1) and the other with the phase 2 as the host materi-
al (j=2), i.e., one obtains series such as (2.14). The fact
that cr, is invariant to such an interchange of the phases
means that the A'„" are related to the O'„'. For n =2, one
very quickly obtains that

A(&) =A(2) (3.1)

After considerable algebra, one also finds that

A3"+A3 '= (d —1)$,$2U —(d —2)A2 '

(i).A(i) (3.2)

we describe a general procedure which enables one to es-
tablish the relations between the n-point tensor s in
different phases and explicitly give these relations for
n =2, 3, and 4. Second, we study some general tensor
properties of the A'„'. Last, we examine those micro-
structures (isotropic or anisotropic) which produce mac-
roscopic isotropy. In subsections 3 and 8, we make con-
tact with the formal results of Milton. '

y W"'=U, n ~0 . (3.4)

Note that Wo' trivially involves the volume fraction
through the relation Wo"=P, U.

Of the relations (3.1)—(3.3) that we have derived, only
(3.2) can be put in the form of (3.4). If we define the ten-
sors

M =(d —1)$,$2U —(d —2)A~ — A2. A2,
1

1 2

(3.5)

integrals over the n-point correlation functions. The W'„'
and N„are, in fact, related to the A'„' given here. One of
the contributions of this paper will be to explicitly ex-
press lower-order W,"and N„ in terms of our n-point ten-
sors A'„' and thus explicitly express the former
in terms of integrals involving the S„". It turns out
that the weights W'„' depend upon the set
P„Az', A3', . . . , A2'„'+, (and hence upon the set
S2', S3 S2 +i) and the normalizations N'„' depend
upon the set P„Az', A3', . . . , Az'„' (and hence upon the set

upon the sets of the n-point parameters up to the odd-
point parameter Az'„'+, and even-point parameter A2'„', re-
spectively. Working in Hilbert spaces enabled Milton to
deduce properties and relations involving the W'„' and N„
without having to explicitly know the integral forms in-
volving the correlation functions S„". One such relation
concerns the weights, which are given by

A"' —A' '= (d —2)(A' ' —A'")+ A"'A' '
4 4 3 3

p p
2 3

~ =M ' A"M
3

and substitute into (3.2), we find

0i+k=U .

(3.6)

(3.7)
A(1).A(1)

3 2 (3.3) Thus, comparing (3.4) and (3.7) leads one to obtain the
identification

By employing the method described above, one may ob-
tain similar relations for higher-order microstructural pa-
rameters. However, as remarked in Sec. IV on bounds,
the determination of n-point probability functions, and
hence the A'„', for n ~ 5 is presently very difficult (either
theoretically or experimentally) for general microstruc-
tures. Thus the three relations given above are the only
ones of practical value.

Note that relations (3.1)—(3.3) are the anisotropic
counterparts of the relations between the n-point parame-
ters derived by Torquato for the isotropic case (see dis-
cussion at the end of this section). Since the two-point
parameters [according to Eq. (3.1)] are equal, we shall
henceforth (in most cases) refer to them as simply A2
without the superscript.

Milton' has employed the mathematically elegant for-
malism of continued fractions to obtain bounds on o., for
multiphase composites. His treatment leads to a se-
quence of matrices which he refers to as weights W'„'
(n =0, 1,2, . . . ) and normalization factors N„
(n =1,2, 3, . . . ). ' The weights and normalization fac-
tors formally depend upon the microgeometry. However,
he does not express these matrices explicitly in terms of

W(i) —
g (3.&)

However, in order to complete the proof that W", =g, ,
one must show that g, is positive semidefinite, as will be
done shortly. Note that the analogues of (3.1) and (3.3) in
terms of normalization factors and weights can be ob-
tained using Milton's formalism.

B. Tensor properties

l. Arbitrary dimensionality

W'„"~0 (n =O, l, . . . ),
N„~o (n =1,2, . . . ),

(3.9a)

(3.9b)

which Milton obtained. By (3.9) we mean that both the
weights and normalization factors are positive

We now shall study some general tensor properties of
the lower-order microstructural parameters. Along the
way, we sha11 make the connection between Az', A3', and
A4' and Milton's tensors N„W", , and N2, and directly
verify, for n = 1, the tensor properties
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semidefinite. As noted earlier, his weights and normali-
zation factors are not given explicitly in terms of the mi-
crostructure, nonetheless, in the general and powerful
formalism he employs, relations (3.9a) and (3.9b) arise
naturally as constraints on the matrices.

Consider the perturbation expansion of cr, in powers of
5;, i.e., expansion (2.14). Taking the second derivative of
this expression with respect to o. and comparing to the
iterative scheme of Milton gives

N, = —U+d U —
Az

1

1 2

(3.10)

Milton has shown that N, has the additional property

tr(U+N, ) '=1 . (3.1 1)

Note that Az is just the left-hand side of (3.12). That the
depolarization factor tensor Az is a symmetric matrix fol-
lows because Az is symmetric. From (3.11) and (3.14),
one directly finds that tr(Az ) =1. Now using the method
Torquato' employed to show the positivity property of
the three-point parameter in the isotropic case, we may
write the diagonalized form of Az [denoted by ( 3 z ),, ] as

(~„) 1
d

1 BI(r)
4(d —1 )21rzp1$2 s r Br,

2

Equation (3.11) can be shown very easily in our case by
writing

T

(U+N, ) '= —U — Az (3.12)
1 2

and by noting that tr(U)=d and tr(Az)=0. The latter
trace condition follows from Eq. (2.11a) showing the
direct relationship of A1z' to the traceless tensor t(r), Eq.
(2.6).

Next, we consider bounding the elements of A2 and ex-
plicitly proving the positive semidefiniteness of N, . In or-
der to do so, we introduce the intermediate quantity

1 1 Sz(r) —
pz

Az = I dr V —V . (3.13)
2 d —1)vr s r

We refer to A2 as the "depolarization factor" tensor for
reasons given in Sec. IV. Integrating (3.13) by parts and
using (3.12) yields

A*=—U — A =(U+N )
1 1

2 d y y
2 1 (3.14)

This implies the bounds

—(d —1)0102—( ~2);; A—fz . (3.17)

There are microgeometries which attain the extreme lim-
its of (3.16) and (3.17). For example, for needle-shaped
inclusions of infinitesimal cross section oriented along the
third principal axis (see discussion in Sec. IV), we have

—
4142

( ~2)11 ( 2)22 ~ ( ~2)33 (t 1(t'2
2

(3.18)

For disk-shaped plates of infinitesimal thickness oriented
such that the third principal axis is perpendicular to the
plate (see discussion in Sec. IV), we have

( ~2)11 ( ~2)22 4142~ ( ~2 33 4'l4'2

In passing, we note that for spherical inclusions,

(~Z»1=(~2 )22=(~Z )33=-,'

( 2 z ),,
=0 for all i .

(3.19)

(3.20)

Two-dimensional analogues of Eqs. (3.18) and (3.20) are
given in Sec. IV.

From Eq. (3.10), the diagonalized form of N1 is given

(d —1)$,$2+( Az);;

4142 —( ~2);;
(3.21)

Combining the upper bound of (3.17) and (3.21), one
finally obtains that

(N, );;)0, (3.22)

and thus N, is positive semidefinite in the principal-axis
frame. Since N& in any other reference frame is a real
symmetric matrix, and thus is diagonalized with some
unitary matrix, it is easy to show that N, is positive
semidefinite in any reference frame. This proves relation
(3.9b) for n =1. We note that the denominator in Eq.
(3.21) may become zero, and thus the possibility of an
infinity in some or all of the elements of N, is not ruled
out.

Next we turn our attention to the tensor A3' and the
weight tensor W'&'. First, it may be noted that in terms of
the normalization tensor N1, the tensor M of Eq. (3.5)
may be written as

)0 (no sum implied) M=d 1)),$2N, (N, +U) (3.23)

1 1
1 — (Az), , ~0,

1 2

0((A2 );, (1 . (3.16)

where I(r) is the characteristic function of either phase 1

or 2 [cf. (2.2)] and ( A z );; denotes the diagonal elements of
the diagonalized form of Az. The second line of (3.15) fol-
lows from (3.14). Since tr(Az ) = 1 and ( A z ),,

)0, we also
have the upper bound ( A z ),,

( l. In summary,

so that

W"= N ' (N +U)A"(N +U)N1 dz~~ 1 1 3 1 I

(3.24)

Here we have made use of (3.6) and (3.8). Relation (3.24)
could also have been obtained in a manner similar to that
used to relate Az' and N, [cf. Eq. (3.10) and the discussion
above it].
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Consider now studying the positivity properties of the
tensors A3'. Because of the upper bound of (3.17), the ith
diagonal element of the diagonalized form of M [Eq. (3.5)]
may be written as

(N2+U) '= —dp, p2N, (N, +U)

X(A"'—A"')(A', "A"')-'
—N, (N, +U) 'A' '(A3") (3.29)

M;; ~ l(d —1)4 142
—(d —2)4102—4142i (3.25)

or

(3.26)

A',"&0.
Combination of (3.26) and (3.27) yields

W" ~0

(3.27)

(3.28)

which proves expression (3.9a) for n = 1.
Following the same procedure as was employed to get

(3.10), we find after considerable algebra that

Equation (3.26) implies that M is positive semidefinite.
The condition tr(A2) =0 implies that M can never be the
null tensor, unless the volume fraction P; is trivially equal
to zero.

Again, if we use the method of Torquato' (the details
of which are not given here), A3' can be written in quad-
ratic form, thus we find that

Equation (3.29), unlike the previous relations, is restrict-
ed to media in which the n-point tensors possess common
principal axes. As noted in Sec. II, this still represents a
large class of anisotropic media. Note that N2 could also
have been expressed in terms of A4" via the relation (3.2).
%'e shall not explicitly study the positivity properties of
A4' or N2 since the algebra involved is quite tedious.

2. Two-dimensional composites

In two dimensions some special properties hold for the
n-point microstructural parameters A'„'. In particular,
we shall show that all the odd-point parameters A2'„'+,
are scalar multipliers of the unit tensor and all the even-
point parameters A2'„' are traceless. Implications of these
results with respect to the properties of the weights and
normalization factors are then discussed.

First, consider the three-point tensor A3'. From
(2.11b), it is seen that this tensor involves the product of
two t tensors in the integrand. This product is given by

t(1,2).t(2, 3)= 1

~ i2~Z3

cos20& sin20&

sin20& —cos20&

cos2 t93 sin 203

sin203 —cos203

1
2 2r &2I"23

sin2(8, —83) cos2(8, —83)

cos2(8, —83) sin2(8, —83)
(3.30)

Here 0, and 83 are the angles which the vectors r, 2 and
r23 respectively, make with the horizontal axis. Now, in
the principal-axes frame, the off-diagonal terms give in-
tegrated values of zero. But the diagonal terms will give
identical results. So A3' is a scalar multiplier of the unit
tensor: A3'= 3~3'U. in fact, we can assert the general
property that any odd-point parameter Az'„'+& (in 2D) is
proportional to the unit tensor:

(~) — (I)A2~+i=A2~+iU . (3.31)

W"'= W")U .n n (3.32)

Result (3.31) follows because the integrand of this param-
eter contains the product of an even number (2n ) of t ten-
sors. %'hen these tensors are Inultiplied in pairs, one ob-
tains a product of n tensors of the type (3.30) which when
integrated yields a tensor whose diagonal elements are
equal. Interestingly, directionality in the effective prop-
erty does not enter through the odd-point parameters but
must enter through the even-point parameters.

Milton' has shown that the weight tensors have pre-
cisely the same property as the odd-point parameters,
namely,

We can explicitly prove (3.32) for n =1 by writing the
weight tensor as

W', ' —(p, p~U — A2 A2) ' A3'
1 2

' —1/2
1X $,$2U — A2 A2

1 2

(3.33)

Here we have employed (3.5), (3.6), and (3.8). In the
principal-axes frame of A2, we can write

A-A= 0 —
q 0 —

q
=q U,

where q is some scalar quantity. Using this result in con-
junction with (3.31) and (3.33) yields

w(i) —gr(~') U1 1

which proves (3.32) for n = 1. Now since the weights W'„'
are proportional to the parameters A2'„'+, (through lead-
ing order), it is plausible that the weights themselves are
scalar multiplies of the unit tensor for any n; this, howev-
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tr(A2'„')=0 (n =1,2, . . . ) . (3.34)

For macroscopically isotropic media, result (3.34) implies
that all the even-point parameters are identically zero,
1.e., A2n —0.

Property (3.34) implies an interesting property of the
normalization factors. Consider first the first normaliza-
tion N, . Since A2 is traceless, then in the principal-axes
frame it will be diagonal with (A2)»= —(A2)22. Look-
ing at the elements of N1 as given in (3.21) for d =2, it is
clear that

0142+(~2)11 0142+(~2 22
detN, = =1

4102 ( ~ 2 )11 4102 ( 2 )22

This equation states that the first normalization factor
has unit determinant. Using (3.29), (3.31), and (3.34), we
can similarly show that

detN2=1 .

In fact, Milton' has shown that detN„=1 for any n.
This general result arises quite naturally in his formalism.
From the above discussion, it is seen that the traceless
condition on the even-point parameters A2'„' implies that
the N„have unit determinant for any n and vice versa.

C. Isotropic limit

We remark now on the situations in which macroscop-
ic anisotropy degenerates into isotropy. The simplest
case is that of statistically isotropic media, i.e., materials
characterized by correlation functions S,"which depend
only upon the relative distances between the points. For
such media, for example, Sz'(r)=Sz'(r) depends only
upon the distance r = ~r~. Examples of such composites
include distributions of inclusions with hyperspherical
symmetry (spheres or circular disks) and asymmetric ob-
jects which are placed randomly and with random orien-
tation. Note that since

A2~ f drt(r)[S2'(r) —p, ] (3.35)

f dr t(r) =0,
the two-point parameter vanishes, i.e.,

er, will not be proved here since one must have the expli-
cit expressions relating W'„' to the set A2', . . . , A2'„'+, for
all n.

Now consider the even-point parameters Az'„'. From
(2.lib) it is observed that A12'„1 involves a product of an
odd number of t tensors [t(1,2) t(2n —1,2n)]. Per-
forming all the integrations except over position 2 and
employing the same reasoning used to prove (3.31), we
can write

A2'„' ~ fdrt(r) f2„,(r)U,

where f2„,(r) is some arbitrary scalar function of r
which results after integrating over positions 3, . . . , 2n.
Because t is traceless, then we have

A =0, (3.36)

and hence

o, =o.,U, (3.38)

thus recovering the isotropic perturbation expansion of
Torquato (1985).

Macroscopic isotropy can also be achieved for certain
statistically anisotropic materials. (Macroscopic anisot-
ropy necessarily implies statistical anisotropy, however. )

We will explicitly consider d =2 and 3, respectively. In
two dimensions, the tensor t(r), r=(r, 9), is proportional
to the tensor

cos20 sin20
sin20 —cos20 (3.39)

Thus, if S12'(r, O) has a fourfold rotation axis and is in-
variansst the transformation

9-+(90 —0), (3.40)

i.e., a reflection symmetry about the 6=45' line, then the
integral in (3.35) is zero and isotropy is achieved. For ex-
ample, composites consisting of a random but statistically
isotropic distribution of circles, circular inclusions cen-
tered on a square lattice, and oriented but randomly or
periodically arranged squares possess such symmetry. In
more general situations where the fourfold axis is not
present, if S2(r, 8) has reAection symmetry in each qua-
drant about the diagonal which bisects it, then Az'=0.
This seems to be the fundamental symmetry required for
macroscopic isotropy in the 2D case. Using this proper-
ty, one can show, for example, that for circular inclusions
on a regular hexagonal lattice, by rotating the principal
axes of the lattice by 15, one goes to a set of axes in
which reflection symmetry holds in each quadrant. Thus
the bulk property for this lattice will be isotropic, and
hence this set of axes is identified to be the principal axes
for the macroscopic system. For any regular 2n-sided po-
lygon lattice (n )2), by rotating the principal axes of the
lattice by an angle a=+!4n, we can show that macro-
scopic isotropy is achieved. For microstructures consist-
ing of, for example, oriented, nonspherical inclusions
(such as ellipses, rectangles, etc.) either randomly or
periodically arranged, or of oriented laminates, the
effective property is anisotropic.

In three dimensions, the tensor t(r), r=(r, 0,$), is pro-
portional to

3sin Ocos —1 &ac

3 sin csin P —1

3 cos~O —1

(3.41)

if the two-point probability function depends only upon
the scalar r. This is exactly the reason the perturbation
series in the macroscopically isotropic case starts from
n =3, and not from n =2 as in the present case. For mi-
crostructures which possess rotational invariance, it is
straightforward to show that the n-point tensors for n ~ 3
become isotropic, i.e.,

(3.37)
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where we have not written the off-diagonal terms. Now,
if each octant looks identical in the principal-axes frame
and if the transformation In such instances, relations (3.2) and (3.3) reduce to

(3.48)

$~90' —P, 0=0 (3.42)

makes Sz'(r) invariant, then it is easily shown that two
of the diagonal elements of Az[( A z )» = ( A z )zz] are iden-
tical. Now, if the symmetry (3.42) (i.e., 45'-reAection
symmetry) holds in any plane formed by any two princi-
pal axes, then all the diagonal elements of A2 are identi-
cal. Hence, the traceless property of Az ensures that
A2=0. In three dimensions, composites consisting of a
random but statistically isotropic distribution of spheres,
spheres centered on cubic lattices, and oriented but ran-
domly or periodically arranged cubes possess such sym-
metry, for example. Even in more general situations
where cubic symmetry is absent, and each octant does
not look identical in the principal-axes frame, if Sz(r) is
invariansst reflection about diagonal planes which con-
tain the third axis and bisect each quadrant of the xy
plane (for any arbitrary choice of the third axis), the
two-point parameter vanishes. For microstructures con-
sisting of, for example, oriented, nonspherical inclusions
(such as ellipsoids, parallelopipeds, rods, etc. ) either ran-
domly or periodically arranged, or of oriented laminates,
the effective property is anisotropic. As is clear from the
argument above, the symmetry of Sz(r) discussed above
holds true in any dimension.

Finally, we prove that the condition A2=0 is sufficient
for the effective property to be isotropic. This is proved
by showing that the symmetries which make A2=0 also
make A'„' (n ~ 3) isotropic. Consider the case n =3 first.
Employing (2.11b) it is easy to see that the three-point pa-
rameter can be rewritten in terms of the symmetric in-
tegral operator

I [ ~ ]=J dr't(r —r')[ ] (3.43)

as

A" r rC"
3 3 (3.44)

where C3' is the determinant given by (2.12). Now if Sz'
and S3' both possess reflection symmetry in the 1-2 plane
of the principal-axes frame, then I &&=I z2, and hence
( A 3 )» = ( A 3 )zz. If this symmetry holds in any plane
formed by any two principal axes, then all the diagonal
elements of A3' are identical and thus

A"= A "U
3 3 (3.45)

The tensor A4' involves the product of another such in-
tegral operator [cf. (3.43)]. Hence, under the above sym-
rnetry in all the planes, the four-point tensor must also be
isotropic, and by induction for any n ~ 3,

A(i) g (i)U
n n (3.46)

In passing we remark that when the effective conduc-
tivity tensor is isotropic, we have

A~3'=(d —1)~,~zr, U (3.47)

and

&i+4=1

7'i —1'z=(d —2)(k —&i) .

(3.49)

(3.50)

These results were first obtained by Torquato for ma-
croscopically isotropic composites' [however, relation
(3.49) was obtained earlier by Torquato' and Milton' ].

IV. BOUNDS ON THE EFFECTIVE
CONDUCTIViTY TENSOR

Until recently, knowledge of lower-order n-point prob-
ability functions (i.e., SI', Sz', S3', and S4' ) even for ma-
croscopically isotropic media has been virtually nonex-
istent, either theoretically or experimentally. In the last
several years considerable advances have been made
along these lines both theoretically' ' ' and experirnental-
ly, and as a result, effective property relations which de-
pend upon such information have been computed. ' '

It appears, however, that the determination of the S„"for
n 5 of arbitrary media is beyond presently available
technology. Thus series representations of cr, such as
(2.10) cannot be exactly summed. Rigorous methods to
estimate o., must necessarily involve limited micros-
tructural information.

Here we obtain rigorous upper and lower bounds on
tr, . Bounds on effective properties are useful since (i)

they may be used to test the merits of a theory or com-
puter experiment; (ii) as successively more microstructur-
al information is included, the bounds become progres-
sively narrower; and (iii) one of the bounds can typically
provide a good estimate of the effective property, for a
wide range of volume fractions, even when the reciprocal
bound diverges from it. '

In order to derive the bounds we shall make use of a
key observation made by Kohn and Milton, ' namely,
that the scalar effective conductivity u, is a Stieltjes func-
tion. Certain Pade approximants of Stieltjes functions
are known to form converging upper and lower bounds
on the function. Kohn and Milton' noted that particu-
lar Pade approximants of the expansion of the scalar con-
ductivity o, in powers of 5; =(o, —o. )/o, yielded his

nth-order bounds for isotropic media. The even 2m-
order bounds on the scaled conductivity o, /o. are ob-
tained by forming the [m, m] Pade approximant of the
perturbation expansion for a, /o. . in powers of 5;,
whereas the odd (2m +1)-order upper and lower bounds
are derived by forming the [m + l, m] Pade approximant
of the expansion for o., /cr in powers of 6, - and the
[m, m + 1] Pade approximant of the expansion for o, /o;
in powers of 5, ., respectively.

Heretofore, the connection between Pade approxi-
rnants of perturbation series and bounds has only been es-
tablished for the isotropic case. Here we shall establish
such a connection for the anisotropic conductivity up
through fourth-order bounds. Consider first the case of
anisotropic conductivity in which all of the n-point rni-
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crostructural tensors possess the same principal axes, i.e.,
they all commute. As noted earlier, this constitutes a
large class of d-dimensional anisotropic two-phase media,
e.g., random distributions of oriented nonspherical in-
clusions. When such symmetry is present, the aforemen-
tioned Pade approximant methodology used to obtain
isotropic bounds extends directly to this anisotropic case.
Specifically, in the principal-axes frame, the problem
reduces to solving d-independent scalar problems, i.e., ob-
taining the Pade approximants (as described above for
the isotropic instance) for each principal direction. More
generally, one is interested in determining whether the
Pade approximant technique can be extended to aniso-
tropic media in which the n-point parameters do not pos-
sess the same principal axes (see discussion of Sec. II).
For this general situation we propose that the Pade ap-
proximant of the perturbation expansion of scaled con-
ductivity tensor (either o., /o, or cr, /o; ) in powers of 5;
be of the form

—,'AB '+ —'(AB ')

oi4i+oz0z ~

~ i4z+ ~z0i

(~)g=~i&i+~~k

~ i 02+ o 2fi

(4.1)

where g,. is defined by (3.6). Moreover, we let cr'," ' and
a'," ' denote nth-order lower and upper bounds, respec-
tively.

since o, is a symmetric tensor. Here A and 8 represent
polynomials of degree n and m, respectively, in 6;. with
tensor coefficients; superscript T denotes the transpose.
The symmetric form given above then is the [n, m] Pade
approximant for the general anisotropic case. We shall
explicitly show that the [0,1], [1,0], [l, l], [2,1], [1,2], and
[2,2] Pade approximants of the anisotropic analogue of
the particular perturbation series described above for the
isotropic case lead to anisotropic generalizations of the
isotropic first-, second-, third-, and fourth-order bounds.
Although this suggests that such a procedure to obtain
bounds may be extended to derive fifth- and higher-order
bounds, it is not altogether clear that this will be the case.
It should be noted that the first- and second-order bounds
are trivial cases in the following sense: first-order bounds
will only involve the tensor a'&' which is just proportional
to the unit dyadic U and the second-order bounds will in-
volve a&' and az' which always commute. Third- and
higher-order bounds will involve symmetric tensor
coefficients which generally do not commute.

We shall use this Pade approximant prescription in
conjunction with series (2.14) to derive first-, second-,
third-, and fourth-order bounds for the tensor problem.
By definition, nth-order bounds depend upon the set
S&', . . . , S„". In what follows, we will employ the short-
hand notation

(4.2)

(1U) ( )U (4.3)

Recall that odd (2m +1)-order upper and lower bounds
are derived from the [m + l, m] Fade approximant of the
expansion for cr, /o~ in powers of 5; [Eq. (2.14)] and the
[m, m +1] Pade approximant of the series for tr, /o; in
powers of 6;~. Equations (4.2) and (4.3), which represent
the harmonic and arithmetic means of the local conduc-
tivity, respectively, were first derived by Wiener in the
isotropic context. They are exactly attained for parallel
slab geometries: (4.2) being the case in which the applied
field is directed perpendicular to the slabs —the law of
"series resistances" —and (4.3) being the case in which Eo
is directed along the slabs —the law of "parallel resis-
tances. "

B. Second-order bounds

When we take the [l,l] Pade approximant of the series
(2.14), we obtain the expression

x u — a(2)s„.
1

(4.4)

Here a'z' is given by Eq. (2.16). Equation (4.4) for o'z ~ ~r i

(as described below) gives a lower bound o', ' for j =1
and i =2 and an upper bound cr', ' for j =2 and i =1.
These second-order bounds explicitly given in terms of P;
and Az are new (although bounds of this type are implicit
in the work of Willis' for the 3D case only). We can
write these second-order bounds in terms of the first nor-
malization tensor using (2.16) and (3.10) as follows:

(2)~e =(o;U+ (o ) N, ) ((rr ) U+o, N, ) (4.5)

It should be noted that these bounds are identical to the
anisotropic Hashin-Shtrikman variational bounds that
one may obtain by employing the scheme outlined by
Milton. ' Our bounds are explicitly given in terms of
S2', however. Hence, the [1,1] Pade approximants are
indeed rigorous bounds.

The bounds (4.4) or (4.5) are exactly realized for a
variety of model composites, ' one of which consists of
inclusions of "singly coated" ellipsoids in d dimensions.
The inner core and the outer concentric shell make up
the two phases and depending on this composition either
the upper or the lower bound becomes the exact effective
conductivity. These ellipsoids are all oriented in the
same direction, but since they have to fill up the whole
space, they appear in continuously varying sizes such

A. First-order bounds

Forming the [0,1] and [1,0] Fade approximants of the
series described above yields, respectively, the first-order
lower and upper bounds:
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that the ratios of their principal axes remain fixed.
Bounds (4.4) and (4.5) are generalizations of second-order
Hashin-Shtrikman bounds and reduce to the latter in the
macroscopic isotropic limit, i.e., when A2=0.

Willis' explicitly derived anisotropic second-order
bounds, using the Hashin-Shtrikman variational princi-
ple, for the special case of 3D media consisting of orient-
ed ellipsoids in a matrix. For this special geometry, if we
take phases 1 and 2 to be the matrix and included phases,
respectively, we can relate his P tensor to our two-point
tensors as follows:

for the case of composites composed of inclusions (phase
2) distributed throughout a matrix (phase 1). Hence, for
oriented but identical ellipsoids, the second-order bounds
in conjunction with the depolarization factor tensors,
(4.7) and (4.8), give the exact dilute results of Polder and
Van Santen. Of course, the bounds do not give exact
results beyond first order in $2.

We close this discussion on second-order bounds by
making two simple observations. If the depolarization
factor tensor becomes zero for some of the principal-axes
directions, i.e.,

P= 1 1A*=
201 301

1

4142

4

(4.6)
then

(Az )kk=0,

(A2 );;=
a1a2 dt

(r +a, )[(r +a', )(r +a', )]'"
a1a2a3

(A2 );;=

(4.7)

where A2 is given by (2.11a) and A2 is given by (3.13) or
(3.14). He shows that P for this geometry is simply a
constant tensor depending only upon the shape of the el-
lipsoid, and explicitly obtains an expression for an ellip-
soid of circular cross section in one plane and an elliptical
cross section in the other two planes. In fact, P is trivial-
ly related to the well-known depolarization factor tensor
for an ellipsoid (although Willis himself does not explic-
itly note this) which turns out to be exactly A2, (3.13) or
(3.14). In two dimensions, A2 would just correspond to
the depolarization factor tensor for an ellipse. For 2D
and 3D ellipsoids, we respectively have the elliptic in-
tegrals

( ~ 2 )kk 4102

and hence from (4.4) we find that

(~,"")kk= (~ ),
which is exactly the first-order upper bound (4.3). This is
not unexpected since this corresponds to a geometry of
either infinitely long needles or parallel slabs for which
the depolarization is zero in the direction along the nee-
dles or slabs. Furthermore, if a11 but one of the diagonal
elements of A2 are equal to p1p2, then because A2 is
traceless,

( P2)„=—(d —1)$,$2

in the remaining z direction. Substituting this result into
the lower bound (4.4), we find

( (2L)) 1 2
e zz

dt

(r +a, )[(r +a', )(r +a2)(r +a'3)]'"

(4.8)

which is just the first-order lower bound. Again, this is
not surprising since it corresponds to the conductivity for
parallel slabs perpendicular to the slabs.

where the a, are the semiaxes of the ellipsoids. (Note
that Willis considered the specific case of a, =a& with a3
arbitrary. ) For the 3D cases of needle-, disk-, and
spherical-shaped inclusions, we have given the diagonal
elements of both A2, and A2 in Eqs. (3.18), (3.19), and
(3.20), respectively. For 2D needles oriented along the
second principal axis, (4.7) gives

(A2 )„=1, (A2 )22=0,

( ~ 2 )11 4142 ( ~ 2 )22 4'142

For circles, a, =a2 and (4.7) easily yields

(~2 )11=(~2 )22= —,
'

( ~2)11 ( ~2)22

(4 9)

(4.10)

For microstructures other than oriented ellipsoids, the
depolarization factor tensor will not be as simple as (4.7)
or (4.8), but rather will depend upon S2(r) in a nontrivial
manner. Thus bounds (4.4) or (4.5) are generalizations of
Willis' bounds for arbitrary microgeometries.

It should be noted that the second-order bounds (4.4)
or (4.5) are exact to first order in the volume fraction p2

C. Third-order bounds

where

+5z, c2 [(1—$,52, )c2

+(b3+$1b2)52, ] '
c2 (4.11)

b, =y, u+a,"',
c =P, U —b

(4.12)

(4.13)

and

b = —(P,U+2a"'+a"') . (4.14)

The [2,1] Pade approximant (third-order upper bound) is
given by

By following the aforementioned prescription for odd-
order bounds, the [1,2] Pade approximant (third-order
lower bound) is obtained as

~(3L )

= (1+0'1&21)U
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(3U)

= (1+$252, )U

+g2 (2).( (2) (2)g )
—I.a(2)

21a2 a2 a3 21 2 (4.15}

U+ N '/(o) N
0102

(4.16)

(T(3U) [o o U+ ( o )N 1/2( o ) N 1 /2]

.[(o ) U+N1/2( o )Pl/2] 1 (4.17)

We found that the third-order bounds we obtained by ap-
plying Milton's scheme' are identical to the third-order
bounds presented here.

D. Fourth-order bounds

Finally by taking the [2,2] Fade approximants of series
(2.14), we can obtain fourth-order bounds as

~(4)
C7e =—'AB '+ —'(AB ')

2 2
(4.18)

where

A=U+p(, "S +p(,"S,', ,

B=(U+q"5 +q"5; )

p(i) y U+q(i)

(l) (i)
y

—la(l)+(y U y
—la(l)) q(l)

q(i )(a(i)a( l)(tl a(i)) —1

1 2 2 i 3

X(y, U a,"'—a,"'a',"),

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(i) — ~—
1( a(i) +a(i) (i)

)q — ~; a3 a2 q, (4.24}

For reasons given immediately below, it is conjectured
that (4.18) represents rigorous fourth-order bounds for
general anisotropic two-phase media given, for the first
time, explicitly in terms of the two-, three-, and four-
point correlation functions: (4.18) yielding o', ' for
i =1,j =2, and o', ' fori =2, j =1, when o.2) o. ].

where a2'
' and a3 ' are given by Eqs. (2.16) and (2.17},re-

spectively.
We claim that (4.11) and (4.15) are bounds since we

have shown that they are precisely equal to the rigorous
third-order lower and upper bounds that are obtained
from the variational principles of minimum potential en-
ergy and minimum complementary energy, respectively.
This derivation will not be given here, however. The
third-order bounds presented here in terms of our two-
and three-point parameters are entirely new. We note
that for isotropic media, these bounds reduce to the well-
known Beran ' ' and Silnutzer' ' bounds for d =3
and 2, respectively. In terms of the normalization tensor
N, and the weight tensors g, , these bounds may be writ-
ten as

(3L)—[(o ) U+N —1/2( —) N
—1/2]
1

+(o,o,u+ &o) (o),N, ).N, ]

[ o,o,N, + & (r & & o & ~+o, ( ( o ) U

+(o)~N)) N2] (4.25)

In light of the fact that the general result (4.18) reduces
to rigorous bounds in the isotropic limit and in the aniso-
tropic case in which the microstructural tensors com-
mute and because of the connection we have established
between lower-order Pade approximants and lower-order
anisotropic bounds, it is conjectured that (4.18)
represents rigorous fourth-order bounds for general an-
isotropic media.

In a sequel to this paper, we shall consider application
of these bounds. Specifically, we will study a certain dis-
tribution of parallel cylinders of finite aspect ratio.

V. CQNCLUDING REMARKS

We have derived a new perturbation expansion for o.,
of a macroscopically anisotropic d-dimensional compos-
ite of arbitrary microstructure through all orders in the
perturbation parameter. The n-point microstructural pa-
rameters A'„' which arise are given explicitly in terms of
multidimensional integrals over the set of n-point proba-
bility functions S()'), . . . , S„" (i =1,2). We studied gen-
eral properties and relations involving the A'„'. Practical-
ly, it is very difficult to ascertain the A'„' for n ~ 5 for gen-
eral microstructures. Thus an exact solution of cr, is gen-
erally out of the question. Using nontrivial but limited
information (such as A2", A(3', and A4" ), bounding
methods provide a means of estimating cr, even when the
phase conductivities widely differ. ' ' We derive
rigorous first-, second-, third-, and fourth-order bounds
on a., by employing a Pade approximant methodology.
This is the first time that such bounds have been explicit-
ly given in terms of the A'„'. Elsewhere we sha11 compute
these bounds for a certain distribution of parallel
cylinders of finite aspect ratios.

The Hilbert-space formalism of Milton' complements
the approach we have taken to the problem. Milton does
not express his weight and normalization factor tensors
( W'„' and N„, respectively) explicitly in terms of integrals
over the n-point correlation functions. In this sense
Milton's results are forrnal in that one could not directly
compute cr, either theoretically or experimentally from a
knowledge of the n-point correlation functions. On the
other hand, the tensor properties and relations involving

First, in the isotropic limit, these Pade approximants
reduce to the fourth-order bounds derived by Milton.
Furthermore, we have applied Milton's scheme' to gen-
erate fourth-order bounds and found them to be identical
to (4.18) when the microstructural tensors possess com-
mon principal axes, i.e., when they commute. For such
symmetric media, our [2,2] Pade approximants are much
more compactly written in terms of the normalization
factors N 1 and N2 and the weights W", [cf. Eqs.
(2.16)—(2.18), (3.10), (3.24), and (3.29)]:

(4)
Oe = [o,(&o)N, +(o),)
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the W'„' and N„arise quite naturally in his formalism for
any n. This is to be contrasted with our results. %'e ex-
press all the A'„' in terms of integrals over the S„"and re-
late lower-order A'„' (n =2, 3,4) to his weights and nor-
malization factors. However, in our approach the tensor
properties are much more difficult to obtain because of
their explicit dependence upon the S„".
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