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Internal oscillation frequencies and anharmonic effects for the double sine-Gordon kink
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A simple derivation of the small oscillation frequency around 4m-kink solutions of the double
sine-Gordon equation is presented. Small corrections to these frequencies due to anharmonic eAects

are also numerically and analytically investigated. The analysis is based on energetic considerations
and on the mechanical interpretation of a 4m kink as two point particles connected by a spring.

I. INTRODUCTION

k, =tanh Ro X2 4sech Ro- (3)

From numerical studies on the small oscillation prob-
lem around solution (2) it is well known that besides a
zero mode frequency (related to translational invariance)
there is an additional bound state corresponding to inter-
nal oscillations of the two sine-Gordon solitons around
the center of mass of solution (2). Slightly different
analytical expressions for the frequency of such oscilla-
tion have been derived. "' The aim of the present paper is
to present a simple derivation of the small oscillation fre-
quencies around 4m-kink solutions and to study correc-
tions to these frequencies due to anharmonic effects. The
analysis will be based on energetic considerations and on
a mechanical analog of solution (2) as two point particles
connected by a nonlinear spring. ' The frequency of the
oscillations is then computed in terms of the mass of the
particle and of the spring constant of the 4~-kink oscilla-
tor. A numerical investigation of the anharmonic effects
of the 4~-kink oscillations is also performed and com-

The double sine-Gordon equation (DSG)

P«
—P „+1,, sing+(Az/2) sin(P/2) =0,

has received much attention during the past years be-
cause of its connection with several physical phenomena

. such as spin dynamics of superAuid He, '

commensurate-incommensurate phase transitions, mag-
netic chains, domain walls, etc. In both limits k&=0
and A,z=0 Eq. (1) reduces to the well-known sine-Gordon
equation (SG) with exact soliton solutions. For A. &&0 and
hz&0 Eq. (1) has different classes of solitary wave solu-
tions which undergo weakly inelastic scattering. Among
these solutions there is a subclass (4' kink) which can be
expressed as linear superposition of two sine-Gordon soli-
tons

P(x, Ro ) =4 tan '[ exp( —x +Ro)]
+4 tan '[ exp(x +R o )]+2sr,

with 2Ro a constant representing the distance between
the two sine-Gordon solitons, and R o is related to A, , and
A, z in (1) by

pared with results obtained by a perturbation analysis.
As a result we find the same analytical expression for the
small oscillation frequency reported in Ref. 7, while the
corrections to these frequencies due to anharmonicity ap-
pear to be very small.

The organization of the paper is as follows. In Sec. II
we present the derivation of the small oscillation frequen-
cy expression while in Sec. III we study both numerically
and analytically the corrections to this frequency due to
anharmonic effects.

Finally, Sec. IV contains the summary and the con-
clusions of the paper.

II. ANALYSIS

We start by introducing the Hamiltonian for Eq. (1)

H = f P(tb„+P, )+A, ,(a, —cosP)

+Az[az —cos(P/2)]}dx,

where a& and a2 are suitable normalization constants.
Equation (2) is an exact solution of Eq. (1) when Ro is a
constant and A, „A,z are given by Eq. (3). In this case the
Hamiltonian (4) acquires the form

H= —,
' +, + 1 —sech Ro 1 —cos

+4sech Ro[1+ cos(P/2)]Idx,

where the normalization constants a „a2 have been
chosen to give zero energy at /=+2m. . In order to
characterize small oscillations around solution (2), we ob-
serve that for a "wobbler" (i.e., an oscillating 4~ kink) the
distance between the two sine-Gordon solitons oscillates
around their static separation 2Ro. It is therefore natural
to assume for such a solution an analytical expression
given by Eq. (2) but with Ro replaced by a time depen-
dent function R (t) according to

P=P(x, R (t))=4tan '[sinhx sechR (t)) .

By substituting (6) in (5) and performing the correspond-
ing integral one obtains after some computations

H (R, RO) =8[1—(2R /sinh2R)]R + V(R, Ro),
where
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32 from which one sees that

30 Vo =0, (14)

O
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24

i.e., Ro is an extremum for the potential V(R, Ro).
In Fig. 1 V(R, RO) is plotted versus R for different

values of Ro, from which one see that Ro is actually a
minimum for V. (Note also that the potential has a finite
value at R =0).

By inserting Eq. (14) in (12) we get

22

20

18

V(R, RO) = Vo+ ,' Vo'(R—Ro)—
and Eq. (11)becomes

H = riM Ro+—,
' Vo (R Ro ) —+ Vo

(15)

(16)

16

FIG. 1. Different curves of V(R, Ro) vs R for different values
of Ro.

V (R,RO ) = (16/tanh R )[1—(2R /sinh2R ) ]

+(8/sinh R)[1+(cosh R lcosh Ro)]

X [(2R /tanh2R) —1] . (8)

Equation (7) simply represents the total energy of the
wave form (6) expressed as the sum of a kinetic part and a
potential one (note the analogy with particles). We also
note that in deriving Eq. (7) the only approximation made
was the ansatz (6) for the oscillating 4m kink. When 2R is
equal to the static separation 2RO of the two subsolitons
Eq. (7) simply reduces to the rest mass energy of solution
(2)

where we have approximated M(t) with its equilibrium
value Mo and neglected higher order terms in R —Ro.
Equation (16) is just the energy of a harmonic oscillator
in the presence of an external constant potential. The
frequency is then evaluated as

co =3/So —I2(SOCO+Ro)/[2(CO(SOCO —Ro)]I, (17)

which is exactly the same expression as is given in Ref. 7.

III. ANHARMONIC EFFECTS

In this section we study the corrections to the small os-
cillation frequency (17) due to anharmonic effects.

To this end we must take into account the fact that the
mass of the oscillator is a function of time [see Eq. (10)].
By differentiating Eq. (11) with respect to time and ex-
panding the resulting equation in powers of g =R+t) Ro-
up to third order one gets

Mop+coop+ —,
' Vo" g + —,'Mo(g +2@')+—,'Mo'(g +g')g

Mo = 16 I 1 —[Ro /(So Co ) ]I,
where So =sinhRo and Co —=coshRO.

Introducing the instantaneous mass

M(t) =16I 1 —[2R (t)/sinh(2R(t))]I

Eq. (7) acquires the form

H(R, RO)= —,'M(t)R + V(R, RO) .

(10)

+ —'Vo"'g =0 .6 (18)

Introducing the transformation r=cot and expanding g
and co in Eq. (18) in powers of e according to

g=eg, +e f2+
CO —COO+ ECO

~
+6 Q)2+

one derives from (18) a set of equations (after equating

To study small oscillations around 2R o, we let
~R —Ro~ ((1. In this case we can expand the potential
energy around R o as

V(R, RO)= Vo+ Vo(R —Ro)+ —,Vo'(R —Ro) + . . (12)

(here primes denote derivatives with respect to R while
the subscript zero means evaluation at R =Ro). From
Eq. (8) the first derivative of Vis easily calculated as

V'(R, R o ) = 8[( cosh R /cosh R o ) —1]

X [2 cosh R sinhR + sinhR coshR

—R(4sinh R +3)]/( sinh R cosh R),
(13)
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FIG. 2. Oscillatory frequency given by Eq. (20) plotted vs Ro.
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equal powers of e) which can be then solved recursively.
After a lengthy but standard computation (see for exam-

pie Ref. 11) one finally gets for the frequency the follow-
ing expression

(coo~ —cg2)/2coo2e2= —
—,', ( V~" /Vo' )+—,'(Mo'/Mo) —

—,', (Mo/Mo) + —,', ( Vo" /Vo' ) —
—,'( Vo" /Vo' )(Mo/Mo), (20)

where

Vo' = 16[(21+28SO+4SO)/(COSO)]+16RO[(21+42SO+24So)/(COSO)]

Vo"' = 16[(144+288SO+ 164SO+8SO )/(COSO )]—16RO [(144+384SO+ 340SO+ 112St )/(COSO )] .

(21)

(22)

In Fig. 2 Eq. (20) is plotted versus Ro.
To close this section we like to compare this result

with a numerical experiment on the anharmonic motion
of an oscillating 4m. kink. To this end we have numerical-
ly integrated the DSG equation with A, „A.2 in (1) given by
Eq. (3) for different values of Ro. The oscillatory motion
of a 4m kink was started by taking as initial condition ex-
pression (6) with R(t =0)=R, )RO. The frequency of
the resulting oscillation was then computed by following
in time the motion of a point on the 4m.-kink profile.
(This was checked to be an accurate way to measure the
frequency since no radiation (or very little) was generated
in the system.

In Figs. 3 and 4 a plot of the resulting frequency versus
the amplitude of the oscillation is reported for the values
of Ro, respectively, of 2 and 3. The stars in these figures
correspond to numerical results while the solid curves
represent the theoretical values predicted by Eq. (20).

We note that the agreement between perturbation theory
and experiments is quite good for small values of
R ] R o ~ From Figs. 3 and 4 it is also clear that the
anharmonicity in this system starts to be relevant only at
large oscillation amplitudes.

V. CONCLUSION

In the present paper we have given a simple derivation
of the small oscillation frequency around 4m-kink solu-
tions of the double sine-Gordon system. The analysis was
based on the assumption (6) for the wave form of such-
oscillating solutions.

Finally, a numerical experiment on anharmonic oscilla-
tions of 4m.-kink solutions was performed and compared
with the predictions of a perturbation treatment. As a re-
sult we find a good agreement between the perturbative
analysis and the numerical results for small oscillation
amplitudes.
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FIG. 3. Oscillatory frequency of a 4m.-"wobbler" vs

(R& —Ro)=PRO for the value Ro=2. The stars are experimen-
tal points while the solid curve corresponds to theoretical values
derived from Eq. (20).
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FIG. 4. The same as in Fig. 3 but for Ro =3.
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