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Mnlticritical points in the magnetic phase diagrams of axial and planar antiferromagnets
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The magnetic phase diagrams of weakly anisotropic axial and planar antiferromagnets with hex-
agonal crystal symmetry are studied using a Landau-type mean-field theory. Many novel types of
multicritical points are predicted to occur as a result of competition between crystallographic and
magnetic-field-induced anisotropies. These include bicritical, tricritical, tetracritical, and higher-
order multicritical points, which can occur in a variety of combinations in the phase diagrams. The
theory was shown previously to account for the observed magnetic phase diagram of CsNiC13 [Phys.
Rev. Lett. 60, 45 (1988)]. The results presented here may also be relevant for a number of related
materials.

I. INTRODUCTION

The study of the behavior of weakly anisotropic anti-
ferromagnets as a function of temperature and applied
magnetic field has demonstrated a rich variety of phase-
transition phenomena. ' Much interest has been associat-
ed with the spin-flop transition which arises due to a
competition between single-ion anisotropy and the anisot-
ropy induced by the application of a magnetic field along
the easy axis. This results in a magnetic phase diagram
consisting of three regions: paramagnetic, antiferromag-
netic, and spin-flopped phases. All three of these phases
meet at a single point in the phase diagram, the so-called
bicritical point, which represents the intersection of two
lines of second-order transitions and one line of first-
order transitions. Other types of multicritical points
which have been studied include the tricritical point (at
which a line of second-order transitions becomes a line of
first-order transitions) as well as the tetracritical point
(where four lines of second-order transitions meet). Only
one of these types of multicritical points usually occurs
for a given system. Multicritical points are of particular
interest with regard to general descriptions of critical
phenomena in terms of universality classes characterized
by only the space dimensionality d and the number of
components n of the order parameter. Crossover be-
tween diA'erent universality classes and the associated
critical exponents have been much studied in systems
which exhibit the kinds of multicritical points mentioned
above.

In this work a previously developed nonlocal Landau
free energy functional (Ref. 2, hereafter referred to as I)
serves as a basis for a study of the magnetic phase dia-
grams of weakly anisotropic axial and planar antifer-
romagnets. The phenomenological model represents an
expansion of the free energy up to fourth order in the
spin density and is appropriate for the study of magnetic
systems with hexagonal crystal symmetry in regions of
the phase diagrams close to the paramagnetic state.
Complicated phase diagrams are known to result from
general analyses of Landau-type free energies of systems

with multicomponent order parameters. In addition to
the usual diagrams with bicritical or tetracritical points,
the model presented here gives rise to novel types of
phase diagrams which include those with multicritical
points where five lines of second-order phase transitions
intersect and those which exhibit a coexistence of more
than one type of multicritical point, when the magnetic
field is directed parallel or perpendicular to the hexagonal
c axis. Anisotropy terms of fourth order in the spin den-
sity are largely responsible for much of this rich behavior.
In addition, the nature of the magnetic ordering in each
region of the phase diagrams is described. Although the
Landau treatment of phase transitions neglects critical
fluctuations, it is known' that such mean-field theories
account for all of the general features of magnetic phase
diagrams.

The present study arose as an extension of our previous
work using the Landau-type model (which did not in-
clude fourth-order anisotropy terms) to study the mag-
netic phase diagram of the axial antiferromagnet CsNiC13
(Ref. 4, hereafter referred to as II). This material has
hexagonal crystal symmetry and exhibits an unusual type
of multicritical point (with a magnetic field applied along
the c axis) where three lines of second-order transitions
and one line of first-order transitions meet. We show
here that the addition of fourth-order anisotropy terms
can lead to the stability of a new phase and that the phase
coexistence point can become a higher-order multicritical
point.

A class of hexagonal ABX3 materials has attracted
renewed interest recently because of their unusual quasi-
one-dimensional magnetic properties at low temperatures
(see, e.g. , Refs. 5 and 6) and the rich variety of magnetic
long-range order they show at lower temperatures (see,
e.g., I and II and references therein). The principal objec-
tive of this work is to present a general study of the types
of magnetic phase diagrams which result from an analysis
of the Landau free energy which is applicable to a num-
ber of these systems (the phase diagram of CsNiF3 was
studied in I). Some controversy exists concerning the na-
ture of the magnetically ordered phase of the axial anti-
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ferromagnet RbNiC13. We propose two possible explana-
tions of the observed magnetic phase diagram which
may aid in determining the real low-temperature magnet-
ic state. Comments concerning the possible applications
of some of the results to other ABX3 materials, as well as
to several rare-earth metals, are also made.

The remainder of this paper is organized as follows. In
Sec. II the Landau free energy is presented, and some of
its general properties are given. The phase diagrams for
axial and planar antiferromagnets are presented in Secs.
III and IV, respectively. Our conclusions and a discus-
sion of the relevance of the results for RbNiC13 and some
related materials are presented in Sec. V.

II. LANDAU FREE ENERGY

We consider systems which undergo a second-order
phase transition (within mean-field theory) from the
paramagnetic to a magnetically ordered state as the tern-
perature is lowered. It is assumed that the magnetic or-
dering can be characterized by a single Fourier corn-
ponent of the spin density s(r) (in the absence of a mag-
netic field) so that

s(r) =( V/N) g p(r)5(r —R),
R

p(r) =m+ Se '~'+ S'e (2)

where R gives the positions of the magnetic ions, m is the
uniform magnetization induced by an applied field H,
and S and Q are the polarization and wave vectors, re-
spectively, which characterize the long-range magnetic
ordering. Using this expression for the spin density in
the nonlocal Landau-type free energy developed in I for
crystals with hexagonal symmetry (which includes terms
up to fourth order in s) leads to the free energy con-
veniently expressed as the sum of three terms

F =Fl+F~2+F~4 (3)

where Fr includes all isotropic terms up to fourth order
in s, F&2 is the contribution from second-order anisotro-

py terms, and F&4 accounts for all fourth-order anisotro-

py terms. These three contributions to Fare

FI= Ags + —,'Aom +B,s + —,'B2IS.SI + —,'B3m"

+2B~Im SI +B~m S —m H,
F„,= —A, Is, I' —A„m,',
F„=,'E, (m,'Is, I'+ m',—Is,I')+E, Is, I'Is, I'

+ ,' E3 [S,(S* +S'
) +c.c.—]+ ,' E4m, mi-

+ —,'G, IS, I +3G2m, Is, I
+—,'G3m, ,

(4)

(6)

where S =S.S, S~=S„x+Sy, and z defines the direc-
tion of the hexagonal c axis. Temperature dependence
enters in the usual way by assuming that the second-
order isotropic coeKcients can be expressed as

A&=a(T —T&), AD=a(T —To),
where Ao= Ao —A,o has been defined for convenience,

6= Ao —Ag =a(Tg —To) (8)

and IE, I, I G, I
(& IB; I. These relations follow from the

exchange-type origins of the isotropic terms in Fr which
are assumed to be much stronger than the spin-orbit cou-
pling (and other) eft'ects which are responsible for the
terms in F~ & and F&4.

Interesting magnetic phase diagrams are a consequence
of this model free energy as a result of competition be-
tween several important terms. The eAect of the sign of
the term in A, has already been discussed. The term
B2 IS SI is minimized with a helical polarization if B2 )0
and with a linear polarization if Bi (0 (see Ref. 8). The
term 2B4Im SI is usually taken to be positive so that the
configuration SlH is preferred at high field values. For
completeness, we also consider the resulting phase dia-
grams for B& &0 so that SIIH minimizes this term.

The polarization vector S is complex and in general has
six degrees of freedom. We choose here to restrict some-
what the possible configurations of S by writing

a )0 and T& & To. In these expressions, T& is related to
the magnetic ordering temperature and To is related to
the paramagnetic Curie temperature. Terms having the
structure of the magnetic dipole-dipole interaction, which
were shown in I to be responsible for the magnetically or-
dered state of CsNiF3, are assumed here to be negligible
for convenience and have been omitted from the free en-
ergy. Note that the free energy with fourth-order aniso-
tropy set equal to zero, F=Fr+F&2, is identical to the
one used in II and is also consistent with tetragonal crys-
tal symmetry.

In writing the free energy as given by (3)—(6) some as-
sumptions regarding the wave vector Q have been made.
Additional terms which contribute only if 2Q=Ci, where
R is a reciprocal lattice vector, were written explicitly
(for convenience) in the corresponding free energy given
in I. For this case, S may be chosen to be a real vector
(see I) and the terms missing from (3)—(6) serve only to
renormalize the existing terms. Thus, the free energy for-
mulated here is appropriate for the case of 2Q=Cj if S is
taken to be real. Other terms not included here contrib-
ute to the free energy only if 3Q= G or if 4Q =G (see
Ref. 8 and I), and these cases will not be considered ex-
plicitly. For CsNiC13 and the other magnetic ABX3 and
rare-earth materials of interest here, the ordering wave
vector satisfies the relation 6Q=Cx or is incommensurate
with the lattice, and the free energy (3)—(6) is appropri-
ate.

In a local formulation of the free energy, the relations
B,- =B„E,- =E&, and 6, = 6& are satisfied. That these
equalities are not in general true was shown in I (also see
Ref. 8) to be a consequence of the wave-vector depen-
dence of the kernels involved in the nonlocal formulation.
Some of these relations are used here, however, in order
to simplify the numerical calculations but these assump-
tions do not affect the qualitative results of interest.

An axial antiferromagnet is defined by A, )0 (so that
SIIz is the preferred configuration) and the planar case
has A, &0 (so that Slz). The assumption of weak aniso-
tropy implies, for example, that

I A, I, I A, OI (&b„, where
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S=S,+iS2, (9) B =B +—,'E +—,'L,
where S& and S2 are real vectors given by

S,=S cosP( sin 0p, +cos0z ),
S2=S sinPp2,

phase 7

cos P= P/—(4B2S ),
(11) phase 8

(17)

where p&lp2lz. In the following analysis we consider the
two cases Hllz and Hllp, and some motivation for the
above choices for S& and S2 is given in II. These expres-
sions are Aexible enough to encompass a wide variety of
spin configurations, including linearly polarized states
with Sllpz and SJ.p2 as well as elliptically polarized states
(including helical) with Slz and Slp, . Using (9)—(11) in
(4)—(6) gives the following free energy appropriate for the
study of magnetic phase diagrams with Hllz or Hllp, :

cos p=(RE3 PL—)/[t(4B2L E3—)S ],
phase 8

cos 0= (PE3 4RB—2 )/(RE3 PL )—,

cos 0= —(R+E3S )/(LS )

(19)

(20)

F= AgS + —,'(Ao —5A,O)m + ,'BS +(B5—+—,'5Ei )m S

+ —,'(B3+563)m mII+R—S cos Pcos 0+PS cos P

+2B2$ cos P+E3S cos 13cos 0

+ ,'LS cos 13co—s0,
where

(12)

R =2B4(25 1)m —A—,+ ,'E5S-
P =2B4(1—5)m 282S-
L =3G] 2E2 E3

(13)

(14)

(15)

cos f3= —(P +R)/(4BzS2),

where

(16)

with

1 2~ 4 4 4 1 2 2~ 5 2 3

and 5= 1 for Hllz, 5=0 for Hllp, . It has been assumed in
writing (12) that mllH which is justified provided S is
not too large, i.e., for values of T and 0 close to the
paramagnetic region of the phase diagram (see I).

The eight magnetically ordered phases which were
found to minimize the free energy (12) are enumerated in
Table I. In the cases of zero applied field or with Hllz,
phases 5 and 6 are degenerate in energy. This symmetry
is broken by sixth-order planar anisotropy terms which
are not included in the present model. Expressions for P
and 0 appropriate for phases 3, 7, 8, and 9 (see Table I)
are given by the following:

phase 3

with R, P, and L given by (13)—(15).
Consider now which of the phases enumerated in Table

I can appear in the absence of an applied magnetic field.
With the conditions that 5 is not too large and that an-
isotropy terms are small, the omission of fourth-order an-
isotropy terms does not affect the nature of these phases.
F~4 is thus set equal to zero for the remainder of the
analysis in this section for simplicity. %'e consider four
cases depending on the signs of A, and B2. The notation
of Table I will be used. The axial case of A, &0 and
B2 )0 has been considered by Zhu and Walker and is re-
viewed in II. There are two phase transitions as the tem-
perature is lowered. Phase 2 (P=O, 0=0) exists in the
interval T» & T & T», ~here

T~, = T(2+ A, /a, (21)

T~z= T» —( A, /a )(B/2Bz), (22)

and phase 3 exists at temperatures T & T&z, where 0=0
and P is given by (16) with m =0. It was shown in Ref. 9
that at sufficiently low temperatures, P—+ir/3. This is
valid provided the effects of fourth-order anisotropy
terms are small. For the case A, & 0 and Bz & 0, only the
linearly polarized phase 2 is stable and there is a single
phase transition at T=Tz&. For the planar case A, &0
and B2 & 0, only the helically polarized phase 4 exists as
an ordered phase and there is a single phase transition at
T = T&. For A, &0 and B2 &0, there is a single phase
transition to the linearly polarized phase 5 (or phase 6) at
T TQe

TABLE 1. Ordered phases which minimize the free energy (12) where f3 and 8 are defined by
(9)—(11); L, E, and H denote linear, elliptical and helical polarizations, respectively; 0&0(~/2 and
0 (P (vr/2 as given by (16)-(20). Phase 1 is the paramagnetic state, S=0.

Phase

0
Polarization

S

2
0
0
L

3

0
E

lpi

4
n/4
m/2
H
lz

5
m. /2

L
llpi

6
0

m. /2
L

lip" i

7

~/2

lz

9
0
0
L

lp2
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III. PHASE DIAGRAMS FOR THE AXIAL
ANTIFERROMAGNET

The equilibrium-state phases of the model free energy
(12)—(15) are determined here for the case of A, )0 and
with an applied magnetic field along the easy axis (Sec.
III A) and also along the hard axis (Sec. III B). For each
of these field directions, the four cases determined by the
signs of B2 and B4 are considered separately. Many of
the following results were determined by numerical
minimization of the free energy with the local-
formulation relations B,=B3=B5 & 0 and E, =E, )0 as-
sumed for simplicity. We denote the critical fields associ-
ated with the boundary between phases i and j by H; and
the multicritical point indicated by the open circle in the
phase diagrams is located at (T,H ).

A. Field parallel to x

(c)

I

I

I

I l
I

I

I I

I

N2 TN I

4

I

'I

I

2 5
I

I I

I

1. B,&0, B4&0

This case was considered in II, with I'"~4=0, and ap-
plied to CsNiC13. Those results are reviewed here and
the effects of adding fourth-order anisotropy terms are
shown to give rise to additional novel types of multicriti-
cal points. This can be expected from a qualitative
analysis of the terms in (12)—(15) which depend on 8. In
the absence of fourth-order anisotropy, only terms pro-
portional to cos 0 exist and, depending on the sign of the
coefficient of this term, the free energy is minimized with
either 8=0 or with 8=m. /2. This described the spin-flop
transition discussed in II. An effect of fourth-order an-
isotropy is to add the term -t. cos 0. This allows for the
possibility that an intermediate phase with 0&0&~/2
minimizes the free energy provided that I is positive. It
is shown below that existence of this intermediate phase 8
leads to interesting consequences for the structure of the
magnetic phase diagram.

Figure 1 shows schematically the four types of phase
diagrams found for the present case where first-order
transition lines were determined numerically. It is
straightforward to derive explicit expressions for second-
order transition boundaries (given below); these results
were also verified by direct numerical minimization of the
free energy. Analytic expressions are also easy to deter-
mine for the multicritical points which involve the inter-
section of at least two lines of second-order transitions.
Figure 1(a) corresponds to the type of phase diagram
found if the parameter t. were chosen to be less than
some critical value LC, ( )0) and is the type discussed in
II (where in that work 85 was chosen to be negative).
Figures 1(b) and 1(c) correspond to increasing L and Fig.
1(d) is the type of diagram found if L is greater than some
critical value LC2 (LC2)Lct). The principal effect of
adding fourth-order anisotropy terms to the free energy is
to stabilize phase 8 in a region of the phase diagram be-
tween phases 3 and 4. This leads to the appearance of a
tricritical point in Figs. 1(b) and 1(c) and a new multicrit-
ical point (solid circle) in Fig. 1(c). The multicritical
point shown by the open circle in Fig. 1(d) is of a novel
type, representing the intersection of five lines of second-
order transitions.

2 t
'I

I
I I

8 I

I

I IL

I

\
I

I

I

FICx. 1. Schematic phase diagrams for H~~z and 3,)0,
B2 &0, B4&0, where (a) L &Lc&, (b) and (c) L&, &L &L&2, (d)
L &Lc2. Dashed lines denote second-order phase transitions
and solid lines denote first-order phase transitions. Shown also
are the rnulticritical point at (T,H ) (open circle), tricritical
point (triangle), and additional multicritical point (solid circle).
Numbered phases are described in Table I.

The critical fields associated with the 1-2, 2-3, and 1-4
phase boundaries, as well as T and H, are not much
affected by fourth-order anisotropy terms. These boun-
daries, with E, =0 and 6;=0, are given by

H~12 =( —3 I /86) [ ~o (83/86)A I ] (23)

H23=(A2/87)'~ [Ao —2(86/B)A I+(88/87)A2],
(24)

H I4 =( —Ag/B~ )'~ [b, +( I 83/B~ ) Ag ],—
where

(25)

and

HI=a(T —T~I), A =2(Ta—T~2) (26)

T = T~, —A, 86/(2a84),
H =mo[b, +(83 85)mo], —

(27)

(28)

where me=A, /(284). The exact expressions corre-
sponding to (23)—(25), (27), and (28) with E; and G, in-
cluded are found to be independent of the parameter I.
Expressions for the second-order transition boundaries
5-8 and 4-8 are presented in Appendix A. Note that the

86=8q+284, 87=88~/82 —86, 88=83 286/8 . —

[Expressions (23) and (24) serve also to correct misprints
that appear in Eqs. (15) and (16) in II.] The multicritical
point is located at
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3-8 boundary is always a second-order transition and that
H48 is independent of L.

Although it is not practicable to determine exact ana-
lytic expressions for the critical parameters Lc, and Lc2,
some progress can be made to estimate these by compar-
ing the critical field H38 and H48. A necessary condition
for the phase diagram of Fig. 1(d) to arise is H4s & H3s.
By comparing the expressions for these critical fields
given in Appendix A, this inequality is found to be ap-
proximately satisfied if L )Lc with

Lc(T)=84[SA, /b, +2a(E 2/8 i)(T —T )/b, ], (29)

where E; ((B; and A, ((b have been used. This result
serves as a crude guide to the stability of phase 8 when
bounded by the two second-order phase transition lines.
The fact that this critical value of L is dependent on tem-
perature is partially responsible for the richness of the
phase diagrams of Figs. 1(b) and 1(c). For Ez & 0,
Lc(0) &Lc(T ) and estimates of the critical parameters
Lc& and Lcz are

Lci=Lc(0)=Lc2 284(E2/8i)Tm/(Tg To) ~

Lcz=Lc(T )=884A, /b, .

(30)

(31)

These relations are reversed if E2 (0.
For quasi-one-dimensional magnetic materials one

finds that ~To~ &&T, T(2. This leads to the conclusion
that LC, =LC2 so that the phase diagrams of Figs. 1(b)
and l(c) result only for a very narrow range of parameter
values. This has been verified numerically using parame-
ter values based on those given for CsNiC13 in II. This
result also implies that H4s —H3s in Figs. 1(b) and 1(c)
would be very small (100 G) for this class of materials.

FIG. 2. Schematic phase diagrams for the both cases of H~~z,

A, & 0, 8, & 0, 84 & 0 and H~~p„A, & 0, 82 &0, 84 &0, where (a)
L &Lc, and (b) L & Lcz For H~~z. , phase 5 is degenerate with
phase 6.

3. B2 &0, B4 &0

2. B2 (0, B4&0

For this case only linearly polarized states are stable
and representative phase diagrams are shown in Fig. 2(a)
for L (Lc~ and Fig. 2(b) for L &LC2. The multicritical
point in Fig. 2(a) is a bicritical point and in Fig. 2(b) is a
tetracritical point. Both are located at (T,H ) given by
(27) and (28). Phase diagrams which also include a tri-
critical point and an additional multicritical point [of the
types shown in Figs. 1(b) and 1(c)] result for intermediate
values of L. The critical field H;z is given by (23) and
H is =H;s =H;4 given by (25). Expressions for the
second-order transition phase boundaries 2-9 and 6-9 are
given in Appendix B. Note that the 2-9 boundary is al-
ways a second-order phase transition and that H69 is in-
dependent of I,. Estimates for the critical parameters Lc,
and Lc2 can be derived following the procedure outlined
above by examining the condition H69 & H29. This yields
the result

Lci =Lc(0)=LC2 484(E6/8 )T /( Tg ——To), (32)

With B4 negative, a magnetic field serves to stabilize
the configuration S~~H so that phase 2 exists as an equilib-
rium high-field state and the resulting phase diagram is
shown in Fig. 3. This type of diagram also arises for the
case of 84 &0 with H~~p, as discussed below and in II.
The critical fields for the 1-2 and 2-3 phase boundaries
are given by (23) and (24), respectively.

l

l

1

I

I

FIG. 3. Schematic phase diagram for the both cases of H~~z,
A, & 0, B~ & 0, 84 & 0 and H~~P„A, & 0, 8, & 0, 84 & 0.

where Lcz is given by (31) and E6=E2+ ,'E3 is assumed-
to be positive. Again, it is clear that Lc &

=-Lc2 if



4494 M. L. PLUMER, A. CAILLE, AND KEVIN HOOD 39

4. B2 &0, B~ &0

Only phase 2 exists as an ordered state, and the 1-2
boundary is given by the critical field (23).

B. Field parallel to p]

1. B2 &0, Bq &0

The phase diagram for this case was considered in II
and is the same as for the case of H~~z, 82 &0, 84 (0 dis-

cussed above and illustrated in Fig. 3. The appropriate
critical fields, with E; =6;=0, are

H~ii =( —A, /B~ )'~ [6'+ A, +(1 83/8~—) A i]
H~23 =( —A2/85)' [6'+ Ag+(85/Bq) A,

—(83/8~)A~],

where 6'=6+ A,o. The corresponding phase diagram in
II shows these critical fields increasing with temperature
since B5 &0 in that work.

2. B,&0, B4&0

Since the applied field is perpendicular to S, and B4 is

positive, the zero-field phase 2 state remains stable at
high fields. No other states exist in the phase diagram,
which corresponds to the case of H~~z, 82 (0, 84 (0 dis-
cussed above. The 1-2 phase boundary is given by the
critical field Hii'z (33).

l
I I

N2 N1

7
i9

I

FIG. 4. Schematic phase diagrams for H~~p&, A, & 0, 8, & 0,
B4 & 0, where (a) L & L~, and (b) L & Lc,.

3. B2&0, B4&0

T = T~i+ A, 85/(2a84),

H =mo[b, '+ A, +(83 85)m(, ], —
(35)

(36)

where mo = —A, /(284). Referring to Fig. 4(b), the mul-

ticritical point at the intersection of the phases 6, 7, 8,
and 9 occurs (again, with E, =G; =0) at

This combination of signs for Bz and B4 produces a
very complicated phase diagram with H~~p, due to the
fact that B2 &0 stabilizes helically polarized structures
whereas B4 &0 stabilizes linear polarization. The result-

ing phase diagrams for the two cases of small L ( & 0) and
larger L are shown in Figs. 4(a) and 4(b), respectively.
For intermediate values of L (not shown), tricritical and
additional rnulticritical points can be present as is easily

imagined in view of the results shown in Fig. 1.
The bicritical point in Fig. 4(a) and the tetracritical

point in Fig. 4(b) are both located at (T,H ) given
(with E; =G; =0) by

The 1-2 and 2-3 phase boundaries are given by the ex-
pressions (33) and (34), respectively. The critical field

corresponding to the 1-6 boundary can be expressel as

H~i6 =( —At, /86)' [b'+(I 83/86)A(, ] —(41)

and the 6-7 boundary is given (with E; = G; =0) by

H~q7 =( —Ag/89)' [b'+(1 B,o/89)A(i], —(42)

where

B9=B6—2B]B4/B2, B )O =B3—2B4/B2 —2B4B6fB2,
B6=B4+Bs
Exact expressions for the critical fields H~z9 and Hl69 are
given in Appendix C and for H~~8 and H(s in Appendix
D. An expression for the critical field H~&9 is straightfor-
ward to derive but is not given here as it represents only a
very small line in the phase diagram and is complicated
to express.

4. Bq &0, Bg &0

T6789 Tm AZB /(2a82 )

+mq A, (86 —,'8)/82—(38)

The phase diagram for this case is as shown in Fig. 2.
The corresponding critical fields are given by (33), (41),
and in Appendix C.

and the multicritical point at the intersection of phases 2,
3, 8, and 9 occurs at IV. PHASE DIAGRAMS FOR THE PLANAR

ANTIFER ROM AGNET
T23s9 = T~ AZB /(2a82 )

H23s9 =H +mo A, (85 —
—,'8 )/82 .

(39)

(40)
The magnetic phase diagrams are determined here for

the case of 2, &0 with an applied magnetic field along
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the easy axis (Sec. IV A) and also along the hard axis (Sec.
IVB). Again, for each of these field directions, the four
cases determined by the signs of 82 and B4 were con-
sidered separately and the loca1-formulation relations

B3 Bs)0 and E] E& )0 were assumed for sim
plicity for the numerica1 analysis.

A. FieLd parallel to p&

1. B,&0, B,&0

The phase diagrams for this case is shown in Fig. 5 and
exhibits several interesting features. The application of a
magnetic field is seen to break the symmetry of the heli-
cal state at the Neel temperature T& in favor of the
linearly polarized phase' 5. This arises because it is
terms of order S which determine the first-ordered phase
that appears as the temperature is lowered. The term
82~S S~ which is responsible for the stabilization of the
zero-field helical polarization is proportional to S
whereas the term 84~m S~ favors the linear
configuration and is quadratic in S. Figures 5(a) —5(d)
represent the results obtained for increasing L„where
again we define L&i and Lc2 such that L &.Lci corre-
sponds to Fig. 5(a) and L )LC2 corresponds to Fig. 5(d).
The structure of the phase diagrams at intermediate
values of L is of a different character from that seen in
Fig. 1, but again these diagrams exhibit a tricritical point
and an additional multicritical point (denoted by the solid
circle). The open circle in Fig. 5(a) represents a bicritical
point and in Fig. 5(d) it is a tetracritical point.

The critical fields corresponding to the second-order
phase transitions in Fig. 5 are (with E; =G; =0)

(b)

H~is =( —Ag/Bs)' [6'+(I—83/Bs)Ag],
H~~7=( —Ag/8, 2)' [b'+(1—Bi3/8, 2)Ag], (44)

H~gs =( —A3/85)' [6'+ A, ( ,'883—/85—85 )/82

+(1 83—/Bs ) Ati],
where

(45)

T =T~ —
—,'|A, ~B„/(aB,),

H =mo[b, '+(8, 3
—8, 2) mo],

(46)

(47)

where mo =
~ A, ~

/(284). Estimates for the critical pa-
rameters Lc, and L~q can be made as before by analyzing
the condition H~&s )Hfs with the results

L„=L,(T )=88,~A, ~/a,

LC2=LC(0) =LC, +284(E2/8, )T /(Tg —To) .

(48)

Note that these expressions are the reverse of the results
(30) and (31), which is responsible for the phase diagrams
at intermediate values of L in Fig. 5 having a structure
different from the corresponding phase diagrams in Fig.
I.

Z B,&0, B,&O

Only the linearly polarized phase 5 exists as an ordered
state (degenerate with phase 6 at H =0), and the 1-5
phase boundary is given by (43).

3. B,&0, B,&0

8,2=88~/82+85, B,s =83+28~85/82,
and A3= A&

—
—,
' A, B/82. Expressions for H~~s and Hels

are given in Appendix D. The multicritical point denot-
ed by the open circles in Fig. 5 is at ( T,H ) given by

7
11

I

T

8

7

The linearly polarized phase (S~~H) is stabilized here at
high fields and the resulting phase diagram is shown in
Fig. 6. Note the symmetry breaking at the Neel tempera-

(c)

8

1

7 i1
11

(d) 'i i I

1

7

FIG. 5. Schematic phase diagrams for H~~p, and A, (0,
82 )0, B&)0, where (a) L &Lci, (b) and (c) Lc, &I &Lc„(d)
L )L&2 (otherwise, as in Fig. 1).

FIG. 6. Schematic phase diagram for the cases of H~)p~,
A, &0, 8, )0, 84&0.
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ture with the application of a field. The 1-6 and 6-7
phase boundaries are expressed by (41) and (42), respec-
tively.

4. B,&0, B,&0

For this case, only phase 6 exists as an ordered state
(degenerate with phase 5 at H =0) with H~i6 given by
(41).

B. Field parallel to z

X. B,&0, B4&0

Here, the zero-field phase 4 is also stable at H&0 and
is the only ordered state which occurs. The 1-4 boundary
is given by the expression (25).

2. B2 &0, B4&0

Only the energetically degenerate phases 5 or 6 appear
in the phase diagram with H', 5

=H « =H
&4 as given by

(25).

3. B,&0, B,&0

The phase diagram for this case is shown in Fig. 7.
The low- and high-field regions are similar to the high-
and low-field regions, respectively, of the phase diagrams
in Fig. 1. This feature arises because at high-field values

the term Bz ~m S~ acts as an efFective uniaxial anisotropy
if B4 is negative and efFective planar anisotropy if B4 is
positive. Figures 7(a) and 7(b) correspond, again, to
L (L&i and I.)Lc2, respectively, with intermediate
values of L yielding phase diagrams with structure as
shown in Figs. 5(b) and 5(c). This follows from an
analysis of the condition H3s )H4s (using results given in
Appendix A), as before, and leads to the results (48) and
(49), with B4 +~B—4~. The critical fields and location of
the multicritical point denoted by the open circles in Fig.
7 are the same as for Fig. l.

4. B,&0, B4&0

Figure 8 shows the phase diagram for this case for
small and large values of L. The results indicate that, as
with the previous case, there is a high-field —low-field
symmetry with the corresponding results for the axial an-
tiferromagnet shown in Fig. 2. Note again that phases 5
and 6 are degenerate for a Geld applied along the z axis.
An analysis of the condition H29 )H~59 (or H69) shows
that for intermediate values of L the same structure of
tricritical and additional multicritical point occurs as de-
picted in Fig. 5. The phase boundaries and location of
the multicritical point denoted by the open circle are
given by the same expressions as for Fig. 2.

2

l

\

l

i

( )

p
\

FIG. 7. Schematic phase diagrams for H~~z, A, &0, 82)0,
84 & 0, where (a) L & L&l and (b) L & L&,.

FIG. 8. Schematic phase diagrams for H~~z, A, &0, Bz &0,
Ba & 0 where (a~ I- & Lci and (b) L & Lcq.
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V. DISCUSSION AND CONCLUSIONS

The analysis of the Landau-type free energy presented
in this work has demonstrated that the magnetic phase
diagrams of axial and planar antiferromagnets can exhib-
it a rich variety of multicritical point phenomena. Much
of the complicated structure was shown to be a conse-
quence of fourth-order anisotropy terms included in the
free energy for the study of crystals with hexagonal sym-
metry. A principal effect of these terms is to stabilize an
intermediate state at the spin-Hop phase boundary. This
leads to the appearance of up to three different types of
multicritical points on a single phase diagram [see Figs.
1(b) and 5(b)], although such configurations are expected
to exist for only a narrow range of parameter values for
many materials. A novel type of multicritical point
where five lines of second-order transitions meet was also
shown to be a consequence of the model with su%ciently
strong fourth-order anisotropy [see Figs. 1(d) and 7(b)].
Phase diagrams with interesting structures were found
even in the absence of fourth-order anisotropy effects [see
Figs. 1(a), 2(a), 4(a), 5(a), 7(a), and 8(a)]; these results also
apply to crystals with tetragonal crystal symmetry.

Multicritical points which represent the intersection of
more than three phases are unusual in the two-
dimensional space of physically accessible thermodynam-
ic fields H and T. That this is possible was shown by
Gufan and Sakhnenko" for a multicomponent order pa-
rameter with the number of components larger than or
equal to three, provided that some of the phases are
separated by second-order transitions. This is not a
violation of the Cxibbs phase rule (which applies to first-
order transitions) due to the fact that the thermodynamic
potentials of the different phases in equilibrium are extre-
ma of the same free energy for the case of second-order
phase transitions. A proper classification of the mul-
ticritical points of our model would require an analysis of
the phase diagrams in a five-dimensional thermodynamic
field space, three of which being the physically inaccessi-
ble symmetry breaking fields conjugate with the three
components of the order parameter S [see (9)—(11)]. The
general topology' and dimensions of the hypersurfaces
of critical points associated with the phase diagram for
CsNiC13 are under study and will be published elsewhere.

The theoretical study in Ref. 4 was motivated by the
experimentally determined magnetic phase diagram of
CsNiC13 based on the susceptibility data of Johnson,
Rayne, and Friedberg. Experimental data for the mag-
netic phase diagram of isomorphic RbNiC13 with H~~z
(showing a spin-flop transition) are also presented in that
work and we attempt here to explain these results with
our model. RbNiC13 appears to exhibit a single phase
transition at T~=—11.2 K. The first neutron diAraction
study' indicated that the ordered structure corresponds
to phase 3; a second study' suggested the structure is
that of phase 2; a third work' corroborated the results of
the first study. Recent specific-heat measurements'
show a single anomaly at T= 11.0 K.

. The two results for RbNiC13 that there is only a single
phase transition and that the ordered state is phase 3 are
not consistent with hexagonal crystal symmetry and
mean-field theory. The ordered phase which first appears

as the temperature is lowered has the direction of the as-
sociated polarization vector S determined by second-
order anisotropy terms. In this case, there is only the
term —A, ~S, ~

so that either S~~z or Slz, in contrast with
the configuration of S or phase 3. Phase 3 can exist only
if the intermediate phase 2 is present, as is the case with
CsNiC13 and as is believed to describe CsNiBr3, CsMnI3,
RbNiBr3, VC12, and Er (see Refs. 17—21). Our model is,
however, consistent with phase 2 being the only ordered
state and there being a single phase transition if 82 &0.
The schematic phase diagram of Fig. 2(a) is in qualitative
agreement with the experimental results of Ref. 7. An al-
ternative explanation of experimental results is that phase
3 exists at low temperature but phase 2 is also present as
an intermediate state as in the case of CsNiC13. This pro-
posal is based on the possibility that T» —T&2 is
suKciently small that the existence of two distinct phase
transitions has thus far been undetected. The schematic
phase diagram for this case (82 )0) is shown in Fig. 1(a).
Further experimental work is desirable to determine if
one of the above explanations is correct.

Detailed experimental results on the behavior of the
magnetically ordered phases near the Neel temperature
in the presence of an applied magnetic field are scarce in
related materials. Phase 4 describes the zero-field or-
dered state of the planar antiferromagnets CsMnBr3 and
Ho. These materials have recently been shown ' to ex-
hibit anomalous behavior suggesting a splitting of the
Neel temperature with the application of a field in the
basal plane, as shown schematically in Figs. 5 and 6. The
class of related materials ' RbVX3 and CsVX3 (X =Cl,
Br, I) also deserve further study to determine the struc-
ture of their associated phase diagrams. The axial anti-
ferromagnets mentioned above which show successive
zero-field magnetic phase transitions similar to CsNiC13
can be expected to exhibit interesting field-induced
phases as well. A spin-Aop transition induced by a field
applied along the c axis has been observed in CsMnI3.

As mentioned in the Introduction, crossover behavior
associated with multicritical phenomena is of interest and
the novel types of phase coexistence points described by
our mean-field model provides a basis for further theoret-
ical study.

ACKNOWLEDGMENTS

Research supported by Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada and Fonds
pour la Formation de Chercheurs et 1'Aide a la Re-
cherche (FCAR) du Quebec. One of us (K.H. ) acknowl-
edges additional support from NSERC.

APPENDIX A

with

B~W]—(A2)

With the magnetic field H~~z, the second-order transi-
tion 3-8 phase boundary can be expressed as

H38 =m[Ao —2(Bq/8 )Ag+(B3 —28' /8)m ],
m =[A,B(482+E3)+Ag&]/[28qB(482+E3)
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and

W =28'(L +2Eq )+ —,'E)Es,

go = go+43, B4/4B2,

gg = gg —2A, B2/4B2,
8 =8 4(8—2) /482,

8,=8,—8(84) /482,
Bs =Bs+48284/482,

B2 —B2 —
—,'Es

B5 B5+ HEI& B2 B2+ pE3+ 4L

(A3)

(A4)

(A5)

(A6)

(Ag)

APPENDIX C

m = —(A,B'+ A iL')/(2848'+L'Bs), (C2)

where B5, B', and I.' are defined in Appendixes A and 8,
and the 6-9 phase boundary is given by

m [ A o+ 2 A, B6/E6+ (8s+ 48~86/E6 )m ],
(C3)

With the magnetic field H~~p„ the second-order transi-
tion 2-9 phase boundary can be written as

Ht29 =m [ A o+2A, Bs /L'+(83+4848s /L')m ],
(Cl)

The 4-8 phase boundary is given by

H&s =m[Ao —(Bs/Bi )A&+(Bs Bs/Bi )m—],
m =( A, + —,

' A(iE2/8, )l(284 —
—,'BsE2/8, ) .

(A9)

(A 10)

m = —
( A, B+AgE6)/(2BqB+E686),

where E6 =E2+ —,'E3.

APPENDIX D

(C4)

APPENDIX B
With the magnetic field H~~p„ the second-order transi-

tion 3-8 phase boundary can be written as

m =( A,B'+ A iL') l(2848' 86L'), —

where

(B2)

B =B+L+2E6 L =L+E6, and E6=E2+ E3

The 6-9 phase boundary is given by

With the magnetic field H~~z, the second-order transi-
tion 2-9 boundary can be written as

H29=m [Ao+2(86/L') A, +(Bs 48486/L—')m ],
(B1)

H t3s =m [ao 2( b s /8 —
) A g + ( b 3

—2b s /8 )m ],
—

[ A, B(482+Es )+ A(, W)
fly

[8[88482 —
—,'E, (48~+Eq )]+bs 8'I

where A&, B, and Ware defined in Appendix A and

ao= Ao+ A, Ei l(482),
b3 =Bq —

—,'E i l(482),

bs Bs+82E, /(482) .

The 7-8 phase boundary is given by

(D 1)

(D2)

(D3)

(D4)

(D5)

H69 m [ Ao+2(Bs /E6 )Az +(Bs 84 s /E6)m ]

(B3)

H7s =m[A o
—Ag(84+Bs)/8, +B„m ],

—[A, + AgE~/(28, )]
[84+ 'Eq84/82+ 'E—286/8 i]—

(D6)

(D7)

m =( A,B+At2E6)/(28~8 BsE6) . — (B4) where 8» =83 28&/82 (8—6) /8, .—
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