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A unified theory is presented to understand the dynamical properties of photoinduced structure
changes, investigating mainly switching phenomena. The way local microscopic structure changes
induced by optical pumping lead cooperatively to global macroscopic changes 'is clarified. Both the
optical and thermal transitions are discussed, stressing their respective roles and qualitative
differences. The dynamics of the system is described by the kinetic Ising model with rather compli-
cated transition probabilities. When the three-dimensional interaction is large enough and the ener-

gy difference between the two states is small, the nucleation process can be neglected. We apply the
mean fteld approximation to the kinetic Ising model, and the dynamics, including threshold behav-
ior, the relaxation time, and the spontaneous emission are discussed for low temperatures compared
with the lattice relaxation energy. A strong temperature dependence of the dynamics is predicted.
As an application of our theory, the photoisomerization (A-B transition) of polydiacetylenes is dis-
cussed to point out their collective nature.

I. INTRODUCTION

Structural changes as a result of relaxation after optical
pumping have been studied extensively in the fields of
photochemistry and solid-state optics. The investigations
thus far, however, have mainly studied the detailed mi-
croscopic mechanisms of the local reactions or structure
changes. The macroscopic structure changes are only
vaguely understood as the simple summation of the local
reactions. In condensed. matter, particularly in solids, the
interaction between local structure changes brings about
the nonlinearity and can give rise to a new cooperative
phenomenon which is absent in the dilute phase. One of
the most promising candidates for this kind of
phenomenon is photoinduced switching between the two
macroscopically distinct states, which is also important
to their potential applications to erasable photomemory
systems. Photochromism, ' photochemical hole burning,
photopolymerization, ' and photoisomerization " are
examples of the above phenomenon. Experimentally, it is
also found that these phenomena are sensitive to the tem-
perature, and the thermal processes as well as the optical
ones play essential roles in the structure changes. In this
paper we present a unified theory to understand the static
and dynamical properties of this photoinduced switching
phenomenon clarifying the respective role of optical and
thermal processes.

We investigate a simple model which consists of the lo-
calized electronic two levels ~et ) and ~gt ) at every site l
with the Franck-Condon energy E„c. The excited state

~ et ) is coupled with the interaction mode Qt at site l with
the lattice relaxation energy S. The interaction modes at
sites l and l' are coupled with the coupling constant %&I.,
which brings about the collective nature.

Because the relaxation of the interaction mode Qt is
very rapid (within the time of order picosecond), it is
reasonable to assume that Qt is always in equilibrium

with the given electronic state
~ e& ) or

~ gt ) . After in-
tegrating out Qt's, the model is reduced to the Ising mod-
el, where spin-up and spin-down states correspond to ~e& )
and ~gt), respectively. The properties of the system in
thermal equilibrium are, therefore, already known, as will
be summarized in Sec. II. To discuss the nonequilibrium
dynamics of the system, on the other hand, the transition
rates between the two electronic states ~et ) and ~gt )
should also be specified. These transition rates are com-
posed of two contributions, i.e., optical and thermal tran-
sitions, in the model of the photoinduced structure
changes. These two transitions are different qualitatively.
The optical transitions occur vertically with respect to
the interaction mode Qt (Franck-Condon principle),
while the thermal transition rates are governed by the po-
tential barrier height between the two states. As a result,
these two transitions play distinctive roles during the pro-
cesses of the photoinduced structure changes. In sum-
mary, the model of the photoinduced structure changes is
reduced to the kinetic Ising model with rather complicat-
ed transition rates with the external optical pumping.
The energy difference between the two states corresponds
to the magnetic field, and one state is absolutely stable
while the other state is metastable.

Due to the theory of the nucleation process, the initial
metastable state decays to the absolutely stable state with
the creation of the critical droplet. The nucleation rate is
determined by the creation energy of the critical droplet,
and is quite different between one- and higher-
dimensional systems. Previously we studied the linear
chain model, where the nucleation process dominates,
bearing the photopolymerization of diacetylene and
diolefin crystals and photoisomerization of polydiace-
tylene crystals in mind. ' ' We investigated the stabili-
ty of a cluster of excited molecules with size m, and dis-
cussed the dynamical properties of the structure changes
qualitatively based on it. In that model, there is no
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"phase transition" in the thermodynamical sense because
of the one dimensionality, and the interactions between
the excited clusters were not taken into account.

When the three-dimensional interactions are takeg. into
account, on the other hand, the critical droplet becomes
large and the nucleation rate is very small if the energy
difference between the two states is small. In this case,
we can neglect the nucleation process within the time
scale we are interested in, and the phase-transition-like
threshold behavior can be expected. Recent experiments
on the A Btra-nsition in polydiacetylenes (PDA's) re-
vealed the threshold behavior of the transformation rate
as a function of the intensity of the incident light. In this
paper we investigate the latter case, i.e., the switching
phenomenon with the threshold behavior, as a nonequi-
librium phase transition. Because the Auctuation, i.e., the
nucleation process, is small, we propose the mean-field
picture of this phenomenon. We treat the intersite cou-
plings between relevant coordinates in the mean-field ap-
proximation, and the problem is reduced to that of the
single site. The following points are discussed.

(1) The respective role of the optical and thermal tran-
sitions in the dynamics of the structure changes and their
temperature dependence.

(2) The condition of the macroscopic structure change
for the intensity of the optical pumping Io and its dura-
tion time to.

(3) The time required to reach the final relaxed state
after the optical pumping is switched off.

(4) The comparison between the two directions of the
switching.

According to the above items, the photoinduced
switching is classified in the plane of K(—:gi.Kii ) and
S( =S /E„c ), a—nd we discuss the photoisomerization
(A Btransition-) of polydiacetylene crystals from this
point of view.

In Sec. II the model is introduced and its connection to
the kinetic Ising model and PDA's is clarified. The
thermal equilibrium and the optical and thermal transi-
tions are discussed there. Section III is devoted to the
studies of the dynamics of the photoinduced structure
changes in the mean-field approximation. Discussion, in-
cluding the application to the polydiacetylene, and the
conclusions are given in Sec. IV.

Igi & &gil + lei & & eil = 1 , (2.2)

where E„c is the Franck-Condon excitation energy, Qi
the relevant displacement which we treat as the classical
variable, and &S Qi the Stokes shift in the lei & state at
the lth molecule. The coupling constant between the dis-
placements of the lth and I'th molecules is denoted as
K1, and its diagonal element K11 is zero.

The relaxation of Qi to the thermal equilibrium in each
parabola finishes within the time of an order 10 ' sec
(the inverse of the Debye frequency). Therefore we do
not discuss this fast process in this paper, and assume
that Qi is always distributed around the bottom of one of
the parabolas with the distribution functions P's given
below:

&s(Qi) = 1

(2rrk~ T)' exp
(Qi —&i )'

2k~ T (2.3a)

P, (Qi) = exp
1

(2vrk~ T)'
(Q, —a, —&s )'

2k~ T

(2.3b)

where k~ is the Boltzmann constant, T is the tempera-
ture, and 61 is defined by

~i= X &iiQi .
l'~1

(2.4)

To integrate out the interaction modes Qi's, we consider
the partition function Z of the model Eq. (2.1):

(2.5)

where &( I
o. I, I Q I ) is

~(Io I IQI)= X(EFC v SQi)(~l+ 2)
1

~= g lei &(EFc &SQi)&eil+ —'2 Qi —'g&ii'QiQi
I 1, I'

(2.1)

II. HAMILTONIAN AND THE KINETIC ISING MODEL
+

2 X Qi'
2 g &ii QiQi .

1 1,1'
(2.6)

A. Hsmiltoman

The switching phenomena recently found in polydia-
cetylenes, etc., are the result of the accumulation of the
change in the electronic state and the configuration of the
respective molecule due to the optical and/or the thermal
transitions. Therefore we take two electronic states, i.e.,
the ground state lgi & and the excited state lei &, for the
molecule at Ith site. For example, in the case of the A -8
transition of the polydiacetylenes, the electronic state of
the molecule in the B phase corresponds to lgi & while
that in the A phase corresponds to lei &. We start with
the following Hamiltonian to describe the system

g state. (2.7)

The trace Tr(
)

is over the spin configurations and 2)Q is

iii dQi. We shift the origin of the displacement by

&s
Qr =Q(+

2(1 ~)
where K = gi. Kii . The Hamiltonian in Eq. (2.6) is
rewritten using Qi' as follows:

In Eqs. (2.5) and (2.6), we introduce the spin oi which
corresponds to the two alternative g and e states as fol-
lows:

+—,
' e state
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]~[Q'])= X FC- S
1

+ 2' X Q/' —
—,
' X &a Q/Qi' .

1 1~1'

—&SQ/ oi

(2.9)

From this equation, the symmetry of the model with
respect to the following transformation is evident:

0 1~ 0'1

Q! —
Q/

S~S,
+11'~+11' ~

(2.10a)

(2.10b)

(2.10c)

(2.10d)

S
+FC +FC (2.10e)

Equation (2.10a) corresponds to the exchange of g and e
states, and on the line 2E„c=2/(1—K), the model is
symmetric with respect to this exchange. Therefore the
region S:S/F. „c(2(—1 —K) is enough if we choose the g
state properly, though we have discussed a wider range
S ~ 2 simply to make the phase diagram rectangular.

The Gaussian integrations with respect to Q s are easi-
ly performed to give the following result:

Z 0:Tri ~exp (2.1 1)

where the eQ'ective Hamiltonian is given by

~,d[~])=—h Xoi —r'X Jn~«i .
1 1~1'

(2.12)

This is nothing but the Ising model, and the "field" h and
the exchange Jll are given as follows:

SJIl'
k

S
2(1 —Z) '

cos[k (R —R )]1 1'

COk

(2.13a)

(2.13b)

where Rl is the lattice vector of the /th site, and cok is
given by

~k = 1 —K(k) = 1 —g Ei&.exp[i k.(Ri —Ri )] . (2.14)

The summation with respect to the wave vector k runs
over the first Brillouin zone, i.e., —m ~ k, k, k, ~ ~.
From Eq. (2.14), we find

cog —p
—1 L (2.15)

and K should be less than unity for the stability of the
system.

Already much is known about this Ising model. We
summarize below the mean-field approximation on this
model. The mean-field approximation is equivalent to re-
placing Jll by the infinite ranged constant value as fol-
lows:

1 1 SK J
N, N 1 —X N1'(~l )

(2.16)

It should be noted that Eq. (2.16) can be obtained also by
replacing E&& by E: /N in the original Hamiltonian (2.1).

(i) The transition temperature T, in the absence of the
field h is given by

J SK
4 4(1 —K)

(2.17)

(ii) Below this temperature, the free energy F(M) as a
function of the magnetization M = ( o

&
):n,———,

' has
double minima. Applying the "magnetic field" h, the rel-
ative height of the two minima of the free energy
F (M) hM c—hanges, and at last one of the minima van-
ishes. We can expect the switching phenomena only in
the case of double minima in F(M) hM. T—he boundary
of the switching and nonswitching regions is given by Eq.
(A8) in Appendix A. It should be noted that the condi-
tion for the switching Eq. (A8) is reduced to

(2.18)

at zero temperature, which is nothing but the stability
condition of the uniform metastable state against the sin-
gle spin Hip.

To discuss further the nonequilibrium dynamics of the
system, we introduce the stochastic dynamics to the Ising
model (kinetic Ising model). We will specify the transi-
tion rates between the g (down spin) and e (up spin) states
of the kinetic Ising model in the next subsection.

8. Kinetic Ising model

Only the vertical transition with respect to Qi is possible
(Franck-Condon principle), ' and the total transition
probabilities are given by the integral with respect to Qi.
The unit step B(x) appearing in the above expressions
specifies which of e and g is lower in energy for each Q&.

It should be noticed that the above transition probabili-
ties satisfy the condition of detailed balance at each site I

In this section we discuss the transition probabilities
between g and e states. They are composed of two contri-
butions, i.e., the optical and thermal processes.

The transition probability P;~' (sP'~', ) from e state (g
state) to g state (e state) of the 1th molecule via the optical
transitions are given by the thermal distribution function
of excited and ground states P, and P, the probabilities
for the upward (downward) transitions P"P's (P ' "'s) as
follows (the derivation is given in Appendix B):

P;"s=f dQiP, (Qi)[P' "g(Qi)«Fc SQi)

+P,"r (Q, )B(&SQ, E„)], —

(2.19a)

PP', = f dQiPg(Qi)[Pg" e(Qi)«EFc SQi)

+Pg'","(Q( )6(&SQ( EFC ) ] . —

(2.19b)
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p Opt

=exp
p Opt

E —Ee g (2.20)

The emission spectrum I, s(E) [Ig,(E)] when the
initial state is e state (g state) is given by

FC d FC

t/S ' ' v'Sp dowIlI, (E) ccP,

as is given below, because P ' "(QI )'s and P" (Q&)'s satis-
fy the condition of detailed balance for each Q& and we
assume the thermal equilibrium of Q& within g and e
states:

thP,
=exp

pth

E —Ee g

k, T (2.23)

C. Nucleation process in the kinetic Ising model

transition probabilities P'p's due to the activation factor.
The energy differences E, —E, and E, —Eg are the poten-
tial barriers seen from the bottom of the e parabola and g
parabola, respectively. It should be noticed that also
Pp g and P '", satisfy the condition of detailed balance
at each site l:

—Pe

Is, (E) ~Ps

EFC+E
&s

EFC+E
v'S

pUp
EFC+E

&s

d EFC+E
S

(2.21a)

Now we consider the effects of the Auctuations which
enter when the interaction XII. is short ranged. We as-
sume two kinds of coupling constants J~~ and J] for the
exchange integral 1&1. in (2.13b) parallel and perpendicular
to the chain, respectively. Applying the nucleation
theory' to this anisotropic three-dimensional system, the
critical droplet size is

—P
E —E

&s
pUp

E„—E
v'g (2.21b)

Li&—
J2/3 J 1/3

(2.24a)

On the other hand, the thermal transition rates are free
from the Franck-Condon principle. We derive the forms
of the thermal transition probabilities of the lth molecule
as follows. The thermal transition probabilities are as-
surned to be the attempt frequency ~, ' times the activa-
tion factor:

—E
(2.228)

P' =—exp
kBT

' (2.22b)

, &
Energy

where E„E„and E are the energy of the cross point of
the two parabolas, the energy of the bottom of the e para-
bola and g parabola, respectively, for lth site in Fig. 1.
The attempt frequency ~, ' is of the order of the Debye
frequency ( —10' Hz) and is much larger than r„' in
Eqs. (Bl) (-10 Hz). The thermal transition probabilities
P'"'s, however, can be much smaller than the optical

along the chain and

J1/6J5/6
(2.24b)

perpendicular to the chain, respectively. The quasi-one-
dimensionality reflects in the inequality J~ &&J~~ which
results in Lz/Ll =(Jt/J~~ )' ((1. The above arguments,
however, are based on the continuum approximation
which fails when L~ (1, i.e., J~~ J~ ( h~. In this case,
the nucleation process occurs in each chain separately be-
cause the confining potential from the neighboring
chains, which is of the order J~, is small compared
to the energy difference

~
h

~
due to the inequality

1 (((Jl /Jz )' (
~
h

~
/Jt. The one-dimensional nu-

cleation process is quite different from that for higher di-
rnensions. The cost in the surface energy does not de-
pend on the linear size L of the droplet, and the continu-
um approximation cannot be applied. We have already
discussed this case in detail and the readers are referred
to Refs. 12 and 13.

We restrict our discussion to the case L~ & 1 below.
The size X„and the energy E„ofthe critical droplet are
given by

}e)

EFc
2

c=2S j—
J))Jq2

N„-L~(L J— (2.25a)

2
E =E ——-Ash,e FC (&i.E)e-EFc

J J
E„-X„~h — ",

I 2
(2.25b)

The rate ~ ' of the appearance of the critical droplet due
to the thermal fluctuations is given by

2
E9 'x~m -~~ exp

B
(2.26)

FIG. 1. The energy diagram of the localized electronic two
levels ~e ) and ~g ) against the displacement Q~.

When we increase the ratio of the excited molecules n,
from zero to finite value, the probability P„offinding the
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critical droplet is given by

xP -n "=exp — lnCf 8
fh(3

(2.27)

When P„has appreciable values or we are interested in
the time scale longer than or of the order of v. , we can-
not neglect the spontaneous growth of the droplet beyond
the critical size even practically. It is necessary that N„
is large compared to unity for the probability P„ to be
much smaller than unity and the time ~ is quite long.
This means that J~~ Jz is much larger than ~h ~.

Exactly speaking, the system always relaxes to the ab-
solutely stable state and there is no switching if we wait
for infinitely long time. Therefore the switching
phenomenon is a nonequilibrium process depending on
the time scale one is interested in. There are several
characteristic time scales inherent in our model which
will be discussed in the next section. If the lifetime of the
metastable state due to the nucleation process ~ given in
Eq. (2.26) is much longer than these time scales, we
neglect the fluctuation to describe the dynamics of the
photoinduced structure changes. That is, we apply the
dynamical mean-field approximation to the kinetic Ising
model as will be discussed in Sec. III.

P;~'g = F(5+v S )e(EFC —S—v Sb, ),
7.

(3.4a)

F(~)e(&s ~ E„,),—
7'

(3.4b)

where w„ is the radiative lifetime and the function F is
given in Appendix B. Equations (2.21) become

1, ,(E) F(s+ &s )e(E„,—s —&s s)

where I(t) is the optical pumping, and is positive when
the e state is created while it is negative when the g state
is created. The notations P,'" s (P'", ) and P;~' (P'~', )

are the transition probabilities from e state (g state) to g
state (e state) via the thermal processes and the optical
processes, respectively, given in the preceding section
with the site dependent 51 being replaced by the uniform
value A.

In this section we consider the case of low-temperature
T =k~ T—/S (& 1. This case is experimentally relevant be-
cause the systems in which the structure changes occur
have the large lattice relaxation energy compared with
the room temperature. We neglect the finite temperature
effect on the optical transitions. At T =0, only the spon-
taneous emission survives and Eqs. (2.19) become

III. DYNAMICS OF THE PHOTOINDUCED
STRUCTURE CHANGES X5(E—EFC+S+&Sb, ), (3.5a)

N,=6+&s
=rc&Q &+v'sn, ,

where n, =N, /N is the ratio of the e sites.
Solving Eq. (3.1) for (Q ), we obtain

a=lC&Q&=, n, .

(3.1)

(3.2)

Therefore the state is specified only by n, in our mean-
field picture.

We investigate the dynamics of the system under and
after the optical pumping. Our equation which describes
the time evolution of the system is the rate equation for
n, (t):

n, (t) =I(t)+ (P,'",+P,'r't, )[1—n, (r)]

(P,'" +P;~' )n, (t), — (3.3)

We now apply the mean-field approximation to the ki-
netic Ising model. The inAuence from the surrounding
sites on the transition probabilities at Ith site is replaced
by the average value. Therefore 6& in Fig. 1 is replaced
by its average value b, =E(Q) with K= g& K&& and
( Q ) is the average value of the displacement Q&'s over all
the sites. Then, we will concentrate on the total number
of e sites N, . The number of g sites N~ is of course given
by N —N„where N is the total number of sites. The
average value of Q with respect to the thermal distribu-
tion is the location of the bottom of each parabola.
Therefore the mean displacement ( Q ) is expressed by N,
as

(Q ) =—[N, (b+&S )+Noh]

where the energies which appear in the 6 and 5 functions
are nothing but vertical energy differences in Fig. 1 as

E, —E,'=E„,—S—&SS,
E, —E,'=VS S—E„, ,

(3.6a)

(3.6b)

where E and E, are defined in Fig. 1.
Whether the spontaneous emission is possible or not

depends on the relative relation of the two parabolas in
Fig. 1. Figure 2 shows the four cases of the relative rela-
tions of two parabolas. The spontaneous emission is pos-
sible only in cases (a) and (d), and is represented by the

I

I

I

I

I

I

I

I

=
I

I

I

I

I (b)
I

e

I

I

I

I

Ig
I

I

I

I

I

I

I

I (g)
I

S/2+Sz

I

I

I

I

I g
I

I

I

I

I

I

I

I

I (d)
)

FC

FICx. 2. Four types of the relative location between two para-
bolas in the energy diagrams. Downward arrows in {a) and {d)
denote the spontaneous emissions. Cases (b) and {c)are optical-
ly stable in the zero-temperature limit T (& 1.

I,(E) F(h)e(v'S b, E„)5(E+E ——v S b, ),,
T7

(3.5b)
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downward arrows. In cases (b) and (c), the system is opti-
cally stable against the spontaneous emission, and its con-
dition is written as

v'S n=&SIC(g) &E„,&S+v'S S=S+&SrC(,g) .

(3.7)

Using Eqs. (3.1), Eq. (3.7) is transformed into

1 —K 1 —S 1 —K 1
nL = &n, & —:nUS ' K S

(3.8)

At finite temperature, P (Q) and P, (g) have the width
of order (kiiT)'~, and the thermal occupation of the
photon cannot be neglected for

~
+SQ EFC ~

—& ks T.
Therefore the effects of the width of the distributions
Ps(g) and P, (Q) dominate even for ksT «S, but its
effect is restricted to the small region near the crossing
point where the thermal transitions prevail. A detailed
discussion of the effects at finite temperature will'be given
in Sec. IV.

As for the thermal transition probabilities, the activa-
tion energies in Eqs. (2.22) are given by

S K 1
E, —E =— n

2 1 —K

FiG. 3. Characteristics of the structure changes at zero tem-
perature on the parameter space (K,S). Regions A —D are
switching and E—G nonswitching regions.

(n, nU)— (3.9a) The function u (n, ) is explicitly given by

S KE —E =— n—
2 1 —K

'2
u ( n, ) = —exp — (n, nU—)—1 cx 2

t

2
S K

(n, nL)—
2 1 —K

(3.9b)

The ratio of e state n, lies between 0 and 1, and the rel-
ative relations of nl, nU and 0, 1 results in the qualitative
difference in the dynamics of the structure change. Fig-
ure 3 summarizes the results. As was discussed in Sec. II,
the region h &0, i.e., S &2(1—K), is enough to cover all
the cases because of the symmetry of our model for ex-
changing g and e states. However, we extend the plane to
S(2 simply to make the phase diagram rectangular.
The relations 0 ( n U and nL (n U always holds, and there
are three boundaries which correspond to nU =1, nL =0,
and nL =1, respectively. Together with the condition Eq.
(2.18) for switching at zero temperature, the plane is di-
vided into seven regions as is shown in Fig. 3. Here we
stress again that the mean-field approximation works
only when

~
h

~

&&J, i.e., near the diagonal line
S=2(1—K), and fails in the nonswitching regions E, F,
and G.

As has been discussed above, the collective nature of
the system is built-in through the dependence of the tran-
sition probabilities upon n, and Eq. (3.3) is written as fol-
lows:

+ F(h)e(n, nU) —(1 n, )—1

T

—exp ——(nL n,)—1

+ F(&S +6)6(nL n, ) n,—. (3.11)

1 K
CX =

T 1 —K (3.12)

where T=
klan T/S. At low temperature T « 1, a is

much larger than unity except the small region K «1
where the physical properties are almost the same as
noninteracting localized electron-lattice systems. By us-
ing U(n, ), which is the minus of the indefinite integral of
u (n, ), Eq. (3.10) is rewritten as

dU(n, )
n, (t) =I(t)—

dt dn,
(3.13)

We have used the zero-temperature forms for the opti-
cal transition probabilities, and assume that F(b.+V'S )
and F(b, ) are unity except near the crossing point where
they vanish smoothly. The coefficient e is defined as

2

n, (t)=I(t)+u(n, ) .
d
di

(3.10) As is evident from Eq. (3.13), the function U(n, ) plays
the role of the potential, and the system relaxes to a
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minimum of U(n, ) without the optical pumping. It is an
easy task to see that U(n, ) has two minima separated by
the barrier in the switching region while it has only one
minimum outside the switching region in Fig. 3. In this
section we neglect the small shift of the boundaries due to
the finite temperature, i.e., we exclude the region near the
boundaries from consideration. Therefore we base our
discussion on the phase diagram (Fig. 3) at zero tempera-
ture. The functions u (n, ) and hence U(n, ) are different
qualitatively in each region of Fig. 3. We take the region
D as an example, and discuss the dynamics in detail. The
extension to other regions is straightforward.

When we neglect the correction of the order of
exp( —ca) with c being a constant of order unity, the two
minima of U(n, ) are at n, =0 and n, =l. The function
u (n, ) is shown schematically in Fig. 4 in region D of Fig.
3. The negative contribution u (n, ) is the sum of the
Gaussian centered at n, =nl with the width 1/Va and
the contribution from I", ' which is the straight line
starting from the origin (n, =u =0) which vanishes
smoothly at n, =nL. Therefore u(n, ) has the minimum
value u„„„= ~ nL at =" ="I..

The positive contribution u+(n, ) on the other hand, is
only the tail of the Gaussian centered at n, =nU with the
width 1/&a and the contribution from PP', is absent
because nU & 1. Therefore u(n, ) has the maximum value
u,„at n, =n „as follows:

max + max a(nU —1)

~mClx

exp ——(n ~ —1) —1 . (3.14)
r, a(nU —1) 2

Here note that u, „ is much smaller than ~u;„~, and
1 —n „is much smaller than n;„. This difference re-
sults in the difference between the dynamics of photoin-
duced structure changes from n, =0 and from n, = 1. Be-
tween nl and nU, u(n, ) is composed of the tails of the
two Gaussians, and is of the order of exp( —ca) with c
being a constant of order unity. The location n„of the
maximum of the potential U(n, ) is the solution of
u (n, ) =0 which lies between nL and n U, i.e.,

exp — (n—„—n~) +ln(1 —n,„)

u=exp — (n—„nt—) +ln(n„) (3.15)

From Eq. (3.15) we obtain

1n„=—,'( nL+n~) +0
A

1 E 1 ——S/2 1+0
K CX

(3.16)

Note that n„ lies between 0 and 1 in the switching re-
gion, and is a decreasing function of E and S vanishing
on the two lines S=2 and E = 1.

Now, we consider the dynamics of the system under
and after the optical pumping I(t). Starting from the
minimum point n, =0 or 1, we apply the following opti-
cal pumping:

Ip for O~t &tp

0 for tp ~t. (3.17)

The intensity Ip is the rate of the creation of e state
(Io & 0) or g state (Io (0). The product of ~IO and to is
the total number of the e-state (g-state) sites created by
the pumping divided by the total number of sites. In Eqs.
(3.3), (3.10), and (3.13), we neglect the saturation of the
absorption, and a more exact expression of Eq. (3.10) is

I(t)(1—n, )8(nU n, )+—u(n, ) for I(t) &0
n, (t)= .

dt ' I(t)n, 8(n, —ni )+u(n, ) for I(t) (0.

dx =t, 0&t&t,Io+u x
ne(t) =t —tp, tp &t

n, (to) u (x)

(3.19a)

(3.19b)

where n; is the initial value of n„and is 0 or 1.
At first we consider the optical pumping from the ini-

tial value n; =0. From 0 to n„, the function u (n, ) is neg-
ative and there are two cases according to the sign of the
integrand in Eq. (3.19a).

When Io is less than ~u;„~, IO+u(n, ) becomes zero at
two values n, and n2 (Fig. 4), and the following integral
diverges:

(3.18)

Here, we assume the constant pumping Eq. (3.17) with
the restriction that n, does not exceed nU from below (n,
does not exceed nl from above).

Then the differential equation (3.10) can be integrated
as follows:

llm = ao
n,

&

—0 "n; Io+u(x)
(3.20)

FIG. 4. Schematic figures of the function u(n, ) in the D re-
gion of Fig. 3.

Equation (3.20) means that however long we apply the
optical pumping, n, does not exceed the value n&, i.e.,
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dx
cr r«(Io)= „ I + ( )

(3.21)

As a function of Io, the threshold time t„ is inversely
proportional to Io for large Io and diverges as
Io~ ~ u;„~ +0 as is shown in Fig. 5. The asymptotic
form of t„near the diverging point I,h is given as fol-
lows:

n, (to) &n, . After the pumping is switched off, the sys-
tern always relaxes to the initial value n; =0. Therefore
we cannot switch the system from the initial value n; =0
to the final value nf = 1 however long we continue the op-
tical pumping as long as the pumping intensity Io is less
than the threshold value I,h

= ~u;„~ =nl lr, . After the
switchoff of the pumping, n, relaxes to its initial value
n; =0 within the radiative lifetime v„because the spon-
taneous emission'dominates at low temperatures.

When Io is greater than
~ u;„~, on the other hand,

Io+ u (n, ) is always positive between n, =0 and n„, and
n, (t) is monotonically increasing without the saturation
for 0&t &to as is evident from Eq. (3.19a). After we
switch off the optical pumping at t =to, n, relaxes to the
final value nf =0 when n, (to) &n «adnto nf =1 when

n, (to)) n« Th. erefore there is a critical value of the
duration time to above which the system is switched from
n; =0 to nf = 1, which is determined by the following in-
tegral:

thermal transitions, and it is slow in the early stage and
will be accelerated gradually because the activation ener-

gy decreases and I"",increases as n, increases. There-
fore the relaxation time ~ is determined mainly by the
early stage and is given by

e
r, exp —'(x n—

U ) dx
(to)

rt lx
exp —[n, (to) —nU]anU —n, to 2

(3.23)

CX

7 exp —[n, (to) —nU], (3.24a)
a[nU —n, (to )] 2

Here note that the relaxation time ~ is strongly depen-
dent on the number of the excited molecules n, (to) just
after the switchoff at t =to as well as the temperature and
material parameters.

The dynamics of the system with the optical pumping
from the initial value n; =1 can be similarly analyzed.
The differences come from the fact that the spontaneous
emission is forbidden near n, = 1. As the result,
I,h =u,„given in Eq. (3.14) is small compared with Eq.
(3.22b), and is strongly temperature dependent. The re-
laxation after the switchoff of the optical pumping occurs
only through the thermal transitions for both directions,
and the relaxation time ~ is given by

t„-(Io Ith )— (3 22a) to n, = 1 when to & t,„(IO) and

with

(3.22b)

rt lx
7 exp —[n, (to) —nL ]

lX ne tp llL
(3.24b)

Now we discuss the relaxation after the switchoff of the
pumping. If the duration time to is shorter than t„(IO),
n, relaxes to 0 accompanied by the spontaneous emission
within the radiative lifetime ~„. If to is longer than
t„(IO), on the other hand, n, relaxes to 1 after the
switchoff. The relaxation proceeds only through the

to n, =0 when to ) t„(IO) or Ip & Ith.
We have discussed the dynamics of the photoinduced

structure changes in region D of Fig. 3. The extension to
other regions is straightforward. The location of nL and
nU defined in Eq. (3.8) almost determines the dynamics.
We show in Fig. 6 the shape of the potential U(n, ) for
the respective region as well as the location of nI and n U.

U(n, ) U(n, )

I

nL Q

U(n, ) Q (n, )

=Ae
flU

FIG. 5. The threshold behavior of the switching in the inten-
sity (Io)—duration time (to) plane. In the hatched region, the
system can switch to the other state.

FIG. 6. Schematic figures of the potential function U(n, ) in
the switching regions A —D at zero temperature. Thick lines
along the abscissa mean the spontaneous emission occurs in the
relaxation processes.
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Thick lines along the abscissa mean that the spontaneous
emission occurs in the relaxation process. It would be an
easy task to imagine the dynamics of the system with the
optical pumping for regions A, B, and C as we analyzed
for region D. In the discussion above, there are three
characteristic time scales: (1) The radiative lifetime r„,
(2) the inverse of the pumping rate Io ' or the duration
time to, and (3) the characteristic lifetime due to the
thermal transitions r&=r, exp(a). One should compare
these three time scales with r given in Eq. (2.26) to
judge the applicability of our mean-field theory.

In the nonswitching regions E, F, and 6, the excited
molecules are rapidly deexcited to the ground state
through the thermal transitions in region E and through
the spontaneous emission as well as the thermal transi-
tions in regions F and 6. Although the mean-field ap-
proximation fails in these regions, the above distinction
between region E and regions F and 6 remains true when
we consider the relaxation of a single excited molecule.

(4.3a}

(4.3b)

(4.3c)

In Fig. 7, the switching region C and then region D
disappear as the temperature increases. The switching

IV. DISCUSSIQN

A. Phase diagram and dynamics at general temperature

(4.1)

In this section we discuss the finite temperature e6'ects
on the phase diagrams and on the dynamics of the pho-
toinduced structure changes. First, we list below what
occurs generally when the temperature T is raised.

(i) The switching region shrinks and is located at the
large K and small S (IC =1, S=0) part of the parameter
plane.

(ii) The location of the minima of the potential U(n, )

departs from the end points n, =0 and/or n, =1 toward
the middle.

(iii) The relative importance of the thermal transitions
increases drastically, and hence the relaxation time be-
comes shorter.

(iv) Due to the thermal distribution of Q around the
bottom of the potential of the parabola with the width
(k&T)', the spontaneous emission is always possible.
Therefore the criteria by nI and nU become ambiguous
with the width of an order of 6n, which is obtained by
equating the shift of the parabola M with (ks T)'~~:

5b, = 5n, =(ks T)'i

0

From Eq. (4.1), 5n, is given by

5n, = T .1 —K ~= (4.2}

Taking into account the above situations, we discuss
the phase diagram at finite temperatures. ' ' We show in
Figs. 7(a) and 7(b) the two typical phase diagrams with
(a) T=0.05 and (b) T=0.3. It is easily seen that the
change between Figs. 7(a) and 7(b) occurs at T= ,'. The-
shaded regions represent the crossover region between
the radiative and nonradiative regions, and are given as
follows using the criterion Eq. (4.2) with the factor —,

'

chosen rather arbitrarily:

FIG. 7. Characteristics of the structure changes at (a)
T=0.05 and (b) T=0.3 on the parameter space (E,S). The
dark regions represent crossover regions between the radiative
and nonradiative ones.



39 THEORY OF PHOTOINDUCED STRUCTURE CHANGES 4481

region B with strong intersite interaction K survives the
thermal fluctuations. However, the spontaneous emission
is possible both near n, =0 and n, =1, and the threshold
intensity I,h defined in Sec. III is very large. Therefore
we conclude that in order to obtain the switching
phenomenon with reasonable pumping intensity, one
should keep the temperature low compared with the lat-
tice relaxation energy.

The dynamics in the case of finite temperature will be
discussed in detail in a forthcoming paper taking also the
time-resolved emission spectra, Auctuation effects, and
applications to the real system into account.

B. Comparison with experimental results on PDA

As an example of the application of our theoretical
model, we discuss the photoisomerization (A-B transi-
tion) of various polydiacetylenes (PDA's). There are
many kinds of PDA crystals according to their side
chains. PDA's are, however, rather distinctly classified
into two type, i.e. , A (blue) form and B (red) form. The
following experimental facts have been obtained.

(1) The A form is the low-temperature phase while the
8 form is the high-temperature phase. There is a first-
order phase transition at T, ( —330 K) with the hys-
teresis. There are some PDA's whose A-B transition is
accompanied by the order-disorder transition of the hy-
drogen bonding between the side groups.

(2) The absorption energy due to the 'B„exciton is 1.9
eV in the A form and 2.3 eV in the 8 form, respectively.
The emission of light is observed only in the 8 form with
the Stokes shift 0.4 eV.

(3) Some PDA's, e.g., TCDU, ETCD, and PDA-(10, 8),
-(12,8), and -(14,8), show the photoinduced isomerization
from A to 8 form not from 8 to A form. The following
facts have been revealed. (3a) The photoinduced absorp-
tion is observed in the A form with the lifetime ~-50 ps.
(3b) The photoinduced ESR signal is found indicating the
triplet excited states. (3c) The conversion efficiency P„ii
from A to 8 form as a function of the energy of the in-
cident light of PDA-(12, 8) rises, not at the energy of the
'B„exciton (-1.8 eV) which contributes the absorption,
but at the energy of the 'A~ exciton. (3d) The conversion
efficiency P„ti is a strongly nonlinear function of the in-
tensity Io of the incident light with the duration time to
being fixed. Tokura et al. found the relation Pzii 0-IO
while the recent investigations have revealed the thresh-
oldlike behavior around an intensity I,h. (3e) The conver-
sion efficiency (()„~ from A to B form by the two laser
pulses depends on the time interval of the two pulses.

It should be noted that our model is too simple to de-
scribe the photoinduced A-8 transition in PDA s in de-
tail. The effects of the triplet exciton, the hydrogen
bonding of the side groups, etc. are neglected, and the
discussion below is of serniquantitative and rather phe-
nomenological nature. Therefore we determine the pa-
rameters E„c,S, and K tentatively as follows. We regard
the B form as the state with n, =0. From (2) above we
have the following equalities:

EFc 2.3 eV,
S

EFc 1.9 eV,

(4.4a)

(4.4b)

S=0.4 eV .

From Eqs. (4.4) we obtain

S=S/EFC=0. 17,
K=0.91 .

(4.4c)

(4.5a)

(4.5b)

The detailed values of S and K have little meaning when
one considers the roughness of our model, but it can be
said that the PDA's are characterized by the strong cou-
pling between the local structure changes and the non-
linearity derived from it, which is also verified experimen-
tally as has been listed in (3a), (3d), and (3e). The point
(K,S) in Eqs. (4.5) belongs to the B region in Fig. 3. But
is would be better to make it assign to the D region from
the experimental fact (2). In practice, the photoinduced
structure change would be difficult when the function
u (n, ) is of the form like Fig. 6, region B, because the "re-
storing force" against the optical pumping is much
stronger in Fig. 6, region 8 than in Fig. 6, region D.
These considerations are consistent with the fact that the
photoinduced structure change is observed only from the
A to 8 form not form 8 to A. At room temperature
( T=300 K), the reduced temperature T is 0.065, and a is
about 1400. Therefore we can apply the consideration in
Sec. IV to the photoinduced dynamics of PDA's, but the
detailed discussion including the comparison with experi-
ments is left for future publications. The exchange J and
the field h defined in this section are obtained as follows:

J=3.8 eV, (4.6a)

h= —0.2 eV. (4.6b)

The value of h is doubtful. Experimentally, the A form
has lower energy. We consider that this discrepancy is
perhaps due to the contributions of the side groups to the
free energy which are not taken into account in our mod-
el, and h should be interpreted as a ternperature-
dependent quantity which changes sign at the A -8 tran-
sition temperature. The relative role of the thermal and
photoinduced nucleation processes depend on the tem-
perature through both the activation factor and h.
Therefore systematic studies of the temperature depen-
dence of the photoinduced dynamics are strongly desired,
and these problems are left for future investigations.

In conclusion we have proposed a simple model to dis-
cuss the photoinduced structure changes from a unified
point of view. We have classified photoinduced dynamics
in the K-S plane, and discussed the threshold behavior,
relaxation time, and the spontaneous emission stressing
their temperature dependence in the mean-field approxi-
rnation. The respective roles of thermal and optical tran-
sitions are discussed. These considerations are applied to
the A-8 transition of polydiacetylenes and their collec-
tive nature has been pointed out. We hope that our mod-
el can be one of the guiding models in searching for and
designing the new materials in terms of the information
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storage. Our model can be extended to the glassy sys-
tems, which have many metastable states, and the rela-
tionship to the spin-glass model ' and neutral network
model will be discussed elsewhere. f+(k~ T/J) & —,

' ——&f (k~ T/J),h
(A8)

Consequently, the condition for the existence of three
solutions is
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which is rewritten as

8 (I(.")&S &8+(K), (A9)

Si(K)= —+ f+1 K
(A10)

for 4T/(1+4T) &I(. & 1 with T:k&T—/S Th. e functions
8+(K) and 0 (K) are given by

APPENDIX A: THE BOUNDARY BETWEEN
SWITCHING AND NONSWITCHING REGIONS

The mean-field equation is

(M ) =
—,'tanh (h+ J(M ) )

2k~ T

where J, h, and (M ) are given in the text.
Equation (A 1) is rewritten as follows:

1x =G(x) = exp (b —x—) + 1
a

(A 1)

(A2)

with

x =(M)+-,', (A3a)

(A3b)

h
g —1

2 j (A3c)

(A4)

The boundaries which separate the one- and three-
solution regions are obtained by the condition that the
tangents of y =G(x) with the slope 1 coincide with y =x.
The derivative of G(x) with respect to x is

—2
dG(x) 1 1=—exp (b —x ) exp— (b —x) + 1—1

dX Q Q a

with the functions f+(x) and f (x) being given in Eq.
(A7). Hereafter, we call Eq. (A9) the switching condition
and the region which satisfies it the switching region.
Outside the switching region, we have only one solution.
The two functions S+(K) and 8 (I(. ) meet at

(K, ,S, )= 4T 2

1+4T 1+4T (A 1 1)

Pg b(g)= [1+%~(E,(g) —Eb(g))]F(g),1

7

PP, ( Q) = &g (E,( Q) —Eb ( Q) )F(Q),
1

+r

(B1a)

(Blb)

which is the so-called critical point. As the temperature
T goes to zero, 8+(I(.) approaches 2, and 0 (E) ap-
proaches 2( 1 I( ) /( 1+I(: ).—These are the zero-
temperature boundaries. The line where the absolute sta-
bility and metastability are exchanged is S=2(1—K) for
all temperatures because of the symmetry between g and
e states on that line and the critical point (Al 1) lies on it.

APPENDIX B:
OPTICAL TRANSITION PROBABILITIES

We treat the displacement Q as the classical coordi-
nate, and the optical transition is vertical with respect to
Q (Franck-Condon principle). ' Therefore the transition
probabilities between the upper level Q and the lower lev-
el b for each Q are given as follows:

Equating dG(x 0 ) /dx with unity, we obtain

1 —2a+&1 —4a
xo =b —a ln

2Q
(A5) (B2)

where ~„ is the lifetime for the spontaneous emission for
Q=0, and N~(x) is the Bose distribution function which
represents the thermal occupation of the photon:

—I

X (x)= exp —1
k, T

xo =G(x() ) . (A6)

for a & —,'. Equation (A2) has only one solution for a )—,'.
Putting xo in Eq. (A5) into Eq. (A2), we obtain the two
boundaries within which (A2) has three solutions:

The function F(g) is given by

E,(g) —Eb(g)F(g)=
&FC

b =f+(a)—= +a ln
2a

1+ 1 —4a
1 —2a+&1 —4a

2Q

Equation (A6) is solved for b as follows:

(A7)

(~.(r, g ) Iraq, (r, g) )
X (~.(r, g =0) iri~b(r, g =0) )

(B3)

where %,(r, Q) [Vb(r, g)] is the electronic wave function
of the upper level a (lower level b) for the displacement Q.
Note that F(Q =0) is unity because
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E, (Q =0)—Eb(Q =0)=E,(Q =0)—Eg(Q =0)=EFC,

(B4)

for Q =0 in Fig. 1. The form of the function F ( Q ) de-
pends upon the Q dependence of the matrix element of
the transition dipole moment, but it should cancel out the
divergence of the Bose factor at E, (Q)=Eb(Q). Strictly
speaking, the o6'-diagonal element between a and b states
mixes the two branches near the crossing point. But we
avoid this complexity by simply assuming F(Q) vanishes
at the crossing point because the thermal transitions
dominate in this region as is discussed in the text.

Applying the above argument to the energy diagram in
Fig. 1, the indices a and b correspond to e state (g state)
and g state (e state), respectively, for Q (E„c/'tr S
(Q & E„c/VS ). The energy difference for each Q is
given by

E, (Q) —Eb(Q) =E,(Q) —Eg(Q)

=EFc—&SQ for Q (E„cl&S
(B5a)

E,(Q) —Eb(Q) =Eg(Q) —E,(Q)

=&SQ EFc—for Q &E„c/&S
(BSb)

At has been discussed in Sec. II, we assume that the
thermal equilibrium within the parabola is attained at
once and the distribution of Q is given in Eqs. (2.3). Thus
we obtain the expression of the optical transition proba-
bilities as Eqs. (2.19).
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