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Dodecagonal order in a two-dimensional Lennard-Jones system
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We investigate a two-dimensional Lennard-Jones mixture with the interaction parameters chosen
so as to favor configurations where the large atoms form squares and equilateral triangles. Many
such configurations are possible which by our choice of interactions are nearly degenerate in energy.
It is hypothesized that a thermal equilibrium state with 12-fold orientational order exists. Several
Monte Carlo simulations were performed to cool the system to a temperature approaching zero.
The ordering process was studied by following the evolution of the configurations with temperature.
The onset of ordering seemed to be very diffuse in space rather than nucleated at a point. The re-
sulting configurations consist of squares and triangles, except for a few dislocations, and thus have
perfect orientational order. We also characterized the deviation from ideal quasiperiodicity in
terms of the "phason strain"; this was analyzed both by fitting a linear relation between the physical
space coordinates of the atoms and the corresponding "perpendicular space" coordinates, and also
by calculating the diffraction peaks. The latter are shifted and broadened, relative to an ideal 12-
fold diffraction pattern, as in real quasicrystals.

I. INTRODUCTION

Though traditional solid-state physics and crystallogra-
phy are founded on the assumption that the ground state
of a set of atoms is periodic, demonstrating this is a very
deep, nontrivial problem. This problem has become
sharper with the discovery of various metallic alloys that
form nonperiodic structure evidencing fairly sharp
diffraction patterns with noncrystallographic sym-
metries —octagonal, ' decagonal, - dodecagonal, ' or
icosahedral. '

The sharpness of their diffraction patterns suggests
that long-range translational order exists in these materi-
als. Early efforts have been focused on how to describe
this long-range order in a nonperiodic structure. The
deterministic Penrose tiling which has perfect long-
range translational and orientational order turns out to
be a natural candidate. But this ideal structure has
matching rules that are hard to enforce by local packing
of atoms. This leads to the hypothesis that quasicrystal
formation is due to entropy effects: either a difference in
thermodynamic (static) entropy, in the case of an equilib-
rium quasicrystal such as Al-Cu-Li (Refs. 6 and 10) or ki-
netic entropy, in the sense that there are more paths in
configuration spacing leading to a metastable quasicrystal
state such as Al-Mn (Refs. 11—13) thus favoring its for-
mation in rapid quenching. The entropic hypothesis im-
plies that the quasicrystal state is intrinsically disordered,
in agreement with experiment. '

Our present work was motivated by this hypothesis.
We sought a model physical system which would have a

quasicrystal phase in thermodynamic equilibrium, stabi-
lized by its higher entropy. Since simulations are faster
and easier to visualize in two dimensions, for the present
we consider two-dimensional models only.

Stephens and Goldman' have proposed the
"icosahedral glass" model which in two dimensions is a
packing of rigid pentagons with neighboring pentagons
sharing a common edge. Elser" has studied the packing
of two-dimensional decagons subjected to some special
packing rules. In both of these models, the basic units of
the packings (pentagons and decagons, respectively)
represent rigid clusters of tightly bound atoms, which
then connect together in a discrete, angular dependent
way. Decagonal ordering is enforced in these systems by
their packing rules.

These clusters are two-dimensional analogs of icosa-
hedral clusters used in models of the quasicrystal atomic
structure. ' ' However, there is, so far, no evidence
that the atoms are more tightly bound within these clus-
ters than between them. Thus, the basic assumption of
the cluster packing models is very artificial. A model
based on atoms is more desirable because it requires nei-
ther the rigid clusters nor the artifical packing rules to
enforce the ordering. Furthermore, to study nucleation
and growth of quasicrystals will require modeling the or-
dering process on an atomic scale. Hence, it is important
to develop the techniques for attaining equilibrium in
such systems, even though we are studying toy models
without any detailed correspondence to the realistic
structures.

Since a one-component system of atoms orders into a
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simple lattice, ' we are led to study two-dimensional
two-component systems which have many nearly degen-
erate ground states, in each of which an orientational or-
der is preserved. Landon et al. and Widom et al. '

have studied such a two-component mixture which shows
tenfold symmetry. Although they used slightly different
forms of interaction potentials, their ground-state struc-
tures are essentially identical. In this paper, we adopt
another such model which develops 12 fold -symmetry.

This paper is organized as follows. In Sec. II A, we dis-
cuss the square and triangle tiling and its relation to
dodecagonal quasicrystals. In Sec. IIB we describe our
atomic model which we used to simulate the square and
triangle tiling, and Sec. II C explains our choices for
boundary conditions, Monte Carlo dynamics, and in-
teraction strengths. The remainder of the paper analyses
the results: Section III A discusses the freezing mecha-
nism that we observed, and in Sec. III B we define and
discuss the possible topological defects that can develop
in our model. Section III C and Sec. III D characterize
the deviation of the final configuration from quasiperiodi-
city in terms of the "phason strain" and the diffraction
pattern.

II. MODEL

A. Square and triangle tiling

Frank and Kasper have proposed hypothetical struc-
tures in which some layers of atoms form a packing of
squares and triangles in a periodic way. These Frank-
Kasper phases were later found in some Ni-based com-
pounds. Two dimensional 12-fold quasicrystals have
been observed in Ni-Cr films which coexist with these
Frank-Kasper phases. It was suggested ' that their
structures consist of a packing of squares, triangles,
rhombi, and hexagons. Recently, a new-type of two-
dimensional quasicrystals was found in V-Ni alloys
whose high-resolution electron-microscopy (HREM) im-

age shows a packing consisting almost entirely of squares
and triangles. Hence, square and triangle tiling is closely
related to dodecagonal quasicrystals.

A two-dimensional 12-fold quasiperiodic lattice can be
constructed by the projection method. ' In this case,
the higher dimensional structure is a direct product of
two triangular lattices in two dimensions. This four-
dimensional periodic lattice is projected onto a two-
dimensional plane which is incommensurate. The result-
ing quasilattice consists of squares, triangles, and 30
rhombi. To get a quasiperiodic lattice without the rhom-
bi, one can use the method of inAation. By using a ra-
tional approximant' to &3, we have constructed a
periodic lattice of squares and triangles as shown in Fig.
1(a).

The s:atistical mechanics of square and triangle tilings
was studied by Kawamura in the context of amorphous
systems. Since the bonds in such a lattice are of equal
length and in discrete directions, orientational order is
enforced. The properties of a square and triangle tiling
depends on the number ratio of squares to triangles
N, /N, „. It can be shown that for a random tiling,
N,q/N„=(&3/4) (see Appendix A). In this paper, we

aim to simulate a random square and triangle tiling. It is
interesting to note that Kawamura found the maximum
entropy at T=O for N,„/N„ to be approximately 0.45,
which is closed to &3/4.

B. Atoms and interactions

Our two-dimensional system consists of two kinds of
atoms —large (L) and small (S), interacting through a
truncated Lennard-Jones potential

V;, (r)= . 4e

' 1/2 6

if r ~3o-,

0, otherwise,

&ss —1 .

The purpose of this repulsive force is to prevent more
than one small atom from occupying a given interstitial
space between large atoms. Equations (1), (2), and (3)
define the model except for the numerical values of FAIL,

eLs, and ass. These are chosen so as to make the system
mimic a random tiling of squares and triangles, as we are
going to discuss in the next section. Figure 1(b) shows
the decoration of the square and triangle tiling in Fig.
1(a). It consists of 209 large particles and 97 small parti-
cles.

In the same way we used the squares and triangles,
Landon et al. and Widom et al. ' used a decoration of
the Penrose tiling to fix their interaction parameters of
their system. Our model atoms have somewhat more
realistic interaction parameters than compared with
those of this tenfold symmetric model. Our ratio
o Ls/o II = I/&2 is closer to unity (as with real atoms)

where ij =LL or LS. The length scales are chosen in
such a way that they encourage a square and triangle til-
ing

~LL

1
oLs

2

Clearly, the ground state of a system containing only L
atoms is a triangular lattice. If we ignore the tail effect of
the interactions, the ground state of an equal mixture of
L and S atoms is a square lattice of L's with S atoms at
the centers, which means both the LL and LS nearest
neighbors can simultaneously be at the minimum of their
respective interactions. For intermediate concentrations
of S atoms, any packing of space by squares and equila-
teral triangles of equal edges with L atoms on the vertices
and S atoms in the squares has practically the same ener-

gy as the ground state. The role of the small atoms is to
stabilize the squares only. They are ignored in later
analysis. We assign a short-range repulsive force between
them

1/2
ass

&ss

V r =
0, otherwise,
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than the ratio o.zz/o. IL -1.9 in their model, and so our
large particles have coordination numbers 6 to 8, as com-
pared to 5 to 10 in the other model. It is interesting to
note that our repulsive interaction that forbids SS neigh-
bors is actually reminiscent of the interactions between
Mn atoms in Al systems, where the Mn-Mn neighbors are
strongly disfavored in the known atomic structures. Fi-
nally, we remark that Widom et al. independently sug-
gested a similar model.

C. Monte Carlo details

We put 280 large atoms and 120 small atoms into a box
with rigid walls: any attempted move of a particle across

~~jar )Cr Q~~/)('
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the boundary of the box was rejected. The area of the
box is 800o.&L. In the frozen phase, the solid occupied
less than 40% of the total area. Thus, the solid, when
formed, was subjected to free boundary conditions. This
kind of boundary condition has the advantage that it is
easier for defects to anneal out during the freezing pro-
cess, ' although the result is more strongly affected by the
finite-size effects.

In an infinite square and triangle tiling with 12-fold
orientational symmetry, it can be shown that the number
ratio of squares to triangles is precisely (&3/4) (see Ref.
9 and Appendix A). Provided that all the squares are oc-
cupied by S atoms, it follows that the ideal bulk ratio of
large to small atoms NL IN+, is 1+(2/&3) =2.155. The
use of free boundary condition introduces some compli-
cations. If el~/elL is too small, the system tends to
freeze to a three phase coexistent state consisting of a
pure triangular lattice of large atoms, a solid phase of
squares and triangles, and a fluid phase of small atoms
around the solid. If eL&/eLI is too large, all small atoms
are surrounded by large atoms, leaving no small atoms at
the boundary after they cohere to form a solid. For inter-
mediate values, eL&/eLL controls the amount of small
atoms in the surface layer. Therefore, the bulk relative
concentration differs from the total relative concentration
NL/Nz by a correction proportional to the surface to
bulk ratio. This is a kind of finite-size effect introduced
by the free boundary condition, and is fairly large in our
small system. We choose eL~/eLL such that the system
freezes to a state of squares and triangles with their num-
ber ratio close to the ideal value of &3/4. It is also found
that large uzi can favor dodecagons of six squares and
twelve triangles, but at the price of disfavoring neighbor-
ing squares, since the S atoms in neighboring squares are
separated by o.LL only. But for the sake of randomness,
we try not to discourage adjacent squares. ' The interac-
tion parameters we have chosen are

~LL 1

eL~ =0.75,

&ss —1 .

We start from an equilibrium configuration at

T*=km T/HALI =0.5

(4)

FIG. l. (a) A periodic square and triangle tiling constructed
by the method of inflation. It is a square cell of sides (2+&3) o.

where cr is the sides of the squares and triangles. (b) A unit cell
of the tiling decorated by large and small particles. Large parti-
cles (large black circles) are placed at the vertices and small par-
ticles (small black circles) are placed at the center of the
squares. It has 209 large particles and 97 small particles. Note
that periodic boundary condition of the cell is taken into ac-
count.

which is in the fluid phase, and reduce the temperature
by a factor of 0.95 every 10000 passes until it reaches a
temperature of 0.338. The temperature is then reduced
by a factor of 0.95 every 20000 passes. At each tempera-
ture, the maximum trial displacements of each particle
are adjusted to give an average acceptance rate of about
0.5. The maximum trial displacements range from about
0.3o.LL for the small particles and about 0.2o.LI for the
large particles at T*=0.338 to about 0.09o.lL for the
small particles and about 0.08o.L~ for the large particles
at T*=0.105. In order to sample a larger phase space,
each particle is given an attempted long jurnp, i.e., a
move to any point inside the box with equal probability,
every ten conventional Monte Carlo moves. When no
rearrangement of the atoms is observed, the system is
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quenched to a temperature approaching absolute zero.
This last step is to minimize the distortion of the squares
and triangles due to thermal motions. During the pro-
cess, the states of the system are characterized by calcu-
lating the internal energy Ep t and the 12-fold orienta-
tional order parameter $,2 defined as

by moving one vertex at a time in the interior of a rhom-
bic dodecahedron. ' However, the tiling of "canonical
cells, which have edges along three-fold and two-fold
symmetry directions as inspired by the real structure, ap-
pears to suffer the same sort of difficulty as the square
and triangle tiling.

III. RESULTS

where gNN means sum over the nearest neighbors, n; is
the number of nearest neighbors of particle i, and 0, - is
the angle between the position vectors of particles i and j.
The structure factor,

2

S(q)= g e

is also calculated to help monitoring the development of
ordering.

There is a major diff'erence between the behavior of our
system and that of Widom et al. ' We presume that the
important rearrangements are those which lead from one
square and triangle tiling to another one; the same thing
would be true with a different tiling for their model. But
in their case, there exist tilings which differ by very local
rearrangements (exchange of one of their large for two of
their small atoms). It is believed that all the tilinglike
configurations can be generated by a sequence of these
moves which they have encouraged by an appropriate
special Monte Carlo rule that exchange two neighboring
small atoms with one large atom. On the other hand, the
smallest subset of a square and triangle tiling which can
be rearranged, leaving the rest fixed, is a chain of width
two cells (see Fig. 2). The activation energy is finite but
large —closed chains exist, but the smallest of these is a
dodecagon of 12 triangles and 6 squares requiring the
rearrangement of 6 L and 6 S atoms. Hence, we must an-
ticipate much glassier behavior.

It is interesting to note that a similar difficulty exists in
some three-dimensional icosahedral structures. Arbi-
trary tilings of Ammann rhombohedra can be reshuNed

A. Freezing process

As the temperature is lowered, the atoms began to ag-
gregate. At the same time, internal rearrangement can
occur in those places where the local network of the large
atoms is neither square nor triangle. This is made possi-
ble by the use of the free boundary condition which
reduces the relaxation time and the use of the nonlocal
long jumps which causes a relatively large change in the
local environment. The melting curves are plotted in Fig.
3. A rather continuous transition is observed. Figure
4(a) shows a snapshot of the system at T*=0.24, where
ordering is starting to appear. Eventually, the atoms ap-
proach their optimal separations. Figure 4(b) shows the
final configuration at a temperature approaching absolute
zero.

Here we should remark on the ordering mechanism
that we have observed. The system develops local order
in bond lengths at relatively high temperatures where the
square and triangle structure is not stable. If it is rapidly
quenched, locally the atoms will tend to collapse into
squares and triangles but with an extremely high density
of defects. These tend to be topological defects of the
network, rather than vacancies or interstitials which are
quickly healed by the long-range jumps. As noted earlier,
the defects are very slow to anneal out in this model.
Therefore, it is an interesting question how the system
can find a state as well ordered as Fig. 4(b). In particular,
why do not differently oriented domains form, and bond
together, freezing in lines of defects? There are two con-
ceivable explanations.

(I) If nucleation is infrequent and growth is rapid, then
the quasicrystal phase would start from one seed and
quickly grow, consuming all the disordered phase: the
resulting structure has a good order because it all grows
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FIG. 2. The smallest closed chain that can be rearranged in a
square and triangle tiling. It involves the rearrangement of six
large particles and six small particles. (From Ref. 33).

FIG. 3. (a) Internal energy E~„t and (b) orientational order
parameter $, 2 at different temperatures during the freezing pro-
cess. ~ represents the freezing process and c) represents the
melting process.
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FIG. 4. Configurations at (a) T =0.24 when ordering is

starting to appear, and (b) T* approaching zero. Neighboring
large particles are joined by straight lines.

from a single point.
(2) On the other hand, the order may develop in a

diffuse, nonlocalized way so that distant parts of the sam-
ple develop correlations when the network is still fluid
enough to anneal out defects.

Our observations of "snapshots" of the configurations
at the temperatures where order has its onset suggest the
second, nonlocalized mechanism for the localization.
This is a different kind of freezing mechanism from the
one observed in a two-dimensional one-component
Lennard- Jones system. In such a system, different re-
gions develop local order with different orientations,
which eventually align and merge together. But due to
the finite-size effects in our small system, we cannot say
what will happen in larger systems.

8. Topological defects

Various kinds of defects can appear in such a system.
Vacancies and inter stitials are common in a rapidly
quenched system, but they are not important in our

analysis, since in our case they can be eliminated through
the slow cooling rate and the nonlocal long-range jumps.
Phason strains are defects in the sense that they charac-
terize departure from an ideal tiling; they will be dis-
cussed in the next section. Here we concentrate on topo-
logical defects. As in ordinary crystals, there are two
kinds of topological defects in quasicrystals, disclinations,
and dislocations.

A disclination is defined quantitatively in the following
way.

(1) Join all the neighboring large particles. Here neigh-
bors are defined by a cutoff radius of about 1.3o.LI . This
will define a network of polygons. Some are triangles,
some are quadrilaterals, and are designated "squares";
some will be pentagons or more exotic shapes and these
shapes are subdivided, somewhat arbitrarily, into "trian-
gles" and "squares. " Thus, we define a network where
each polygon is topologically a triangle or square; if it is
possible to replace all of them by equilateral triangles and
regular squares, we say there are no topological defects.

(2) For each lattice point, count the number of squares

n, q
and triangles n„which share it as a common vertex.

In the ideal case the nominal angles around it should add
up to 2~. If not, it is said to be a disclination of strength
n where

(2')(n/12)=(2')(n, „I4+n,„.
l6 —1) . (7)

Because the basis vectors are incommensurate due to the
noncrystallographic symmetry, it is common to have a
nonzero Burgers vector shorter than a near-neighbor dis-
tance. Figure 5(c) shows the lattice circuit and Burgers
vector for the dislocation in Fig. 5(a).

The dislocation is a topological defect and this justifies
the arbitrariness in grouping disclinations into pairs.
Note also that the disclination does not depend on using
an ideal tiling as a reference structure, but it is well

Figure 5(a) shows a pair of disclinations of equal and
opposite strength. Note that this definition of disclina-
tion does not require the squares and triangles to be per-
fect, since thermal motion will always distort the angles.
It is clear that these are topological defects exactly like
disclinations in ordinary two-dimensional crystals; the
angle in (7) is the change in orientation when we take a
dodecagonal frame along a closed loop of bonds by paral-
lel transport, and so it is independent of which loop we
take. The topological nature of the disclination also
justifies the arbitrary procedure for defining it: if we
made another choice the disclinations would be in slight-
ly different places but the total disclination number
within a loop would be the same. [See Figs. 5(a) and
5(b)].

A dislocation is defined as a neighboring pair of dis-
clinations with equal and opposite strengths. We can also
construct the Burgers vector for a dislocation (or group
of dislocations) in a way analogous to the usual lattice cir-
cuit ~ We take the sum of the ideal vectors correspond-
ing to the bond vectors around the loop enclosing the
dislocations, and this gives the familiar Burgers vector

B= gb, e; .
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defined even in a random tiling structure. If a structure
is free of dislocations, this does not imply that it is an
ideal quasiperiodic tiling; it only means that we can re-
place all of the topological triangles and squares in the
bond network, which were distorted by thermal vibra-
tions, by rigid equilateral triangles and squares without
any conflict.

Figure 6 shows the network of Fig. 4(b) with the dis-
clinations marked. There are three groups of dislocations
labeled 3, B, and C.

C. Phason strain analysis

A tiling free of disclinations and dislocations may still
have random or systematic deviations from the ideal
orientational symmetry. An elegant way to represent
such fluctuations is to lift up the rigid structure into a
higher-dimensional space in which it becomes a section of
a periodic structure. In particular, a square and trian-
gle tiling can be lifted into a four-dimensional hyperlat-
tice which is a product of two triangular lattices, each be-
ing two dimensional, as mentioned in Sec. II A. To study
the degree of order of a tiling, it is useful to resolve it
another way into two mutually orthogonal subspaces:
the "physical space" and "perpendicular space" whose
vectors are denoted by x~l and x, respectively. In the
case of a square and triangle packing, the possible dis-
placements of an atom to its nearest neighbors are the
twelve unit vectors e' at angles (2vr/12) (m —1). Four
of these vectors are independent over integers as shown
in Fig. 7(a). To every coordinate of a vertex x~~ in the
physical space

we can construct the corresponding vector x in the per-
pendicular space as

4x'= g n, e;,
i =1

where e; are defined in Fig. 7(b). In a perfect 12-fold
quasiperiodic tiling produced by the cut-and-project
method, x is virtually constant over the entire tiling, i.e.,
the hyperspace is flat in four dimensions. Since we are
concerned with tilings which in some sense approximate
the quasiperiodic tiling, we can write" as an approxima-
tion,

x = Axll+cons

(c)
FIG. 5. (a) A neighboring pair of disclinations of strength

+1( ) and —1(B), respectively. The kite-shaped quadrilateral
in the middle is taken to be a square. (b) The same quadrilateral
is taken to be two triangles divided by the dotted line. We have
the same pair of disclinations, but at different positions. (c)
Such a pair of disclinations forms a dislocation. As in ordinary
two dimensional crystals, we can draw a Burgers circuit sur-
rounding the dislocation (dashed lines). The sum of the lattice
vectors along the circuit is the Burgers vector.

FIG. 6. A lattice network with disclinations marked. EB and
B represent a disclination of strength + 1 and —1, respectively.
The three groups of dislocations are labeled as 2, B, and C.
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dislocations. Each B is an integer combination of e~I and
has a corresponding perpendicular space component B
defined by e,"~e, in (8). To take into account the dislo-

cations, the perpendicular space vector of each lattice
point is corrected by

w 1I=e, w J.
e, =

x ~x 0(x' —g' )

2' (15)

ep

(b)

FIG. 7. (a) Basis vectors in physical space. (b) Basis vectors
in perpendicular space.

A is called the phason strain,

A= Vi~x (12)

If A is zero, the diffraction peaks coincide with that of a
quasiperiodic tiling. Nonzero phason strain causes the
diffraction peaks to shift. The sharpness and intensity
of the diffraction maxima depend further on the fluctua-
tion of x, defined as

5x"=& ~x' —Ax' —const~') . (13)

6x —1. 101o.lL,
0.017 0.000
0.000 —0.003

(14)

Bragg peaks exist if 6x is finite as the volume goes to
infinity. The effect of the fluctuations in x is exactly
analogous to that of atomic displacements u(x") (pho-
nons): (1) If 5x is infinite, then given the correlation
function

& /x'(x ~) —x'(0) f'&,

one can find the shape of diffraction peaks; (2) if 6x is
finite, then Bragg peaks exist, although with an intensity
reduction analogous to the Debye-Wailer factor.

For a rigid network of squares and triangles, we can
represent the physical space vectors easily according to
(9) by choosing an arbitrary point as the origin, and then
(10) gives the perpendicular space vectors x, for each
(large) atom. The phason strain A can then be found by
linear least-square fitting to (11). Applying such a pro-
cedure to the configuration in Fig. 1(b), we get

where 9(x"—g) is the angle subtended by x" about the
center of a dislocation at g. This procedure removes the
dislocation poles from the hypersurface given by x (x"),
leaving only the phason fluctuations. For example, for
the configuration shown in Fig. 6, the sum in (15) has
three terms from the dislocation groups at positions la-
beled 2, B, and C.

Using a linear least-squares fit, we find

6x =2.21o

—0.21 —0.04
0.03 —0. 12

The errors in the matrix elements are estimated to be
about 0.01. However, this is only the phason strain for
one particular cooling process. To get a general idea of
the magnitude and fluctuation of the phason strain for
this kind of process, we have performed two more similar
but independent runs. In order to present our results in a
way independent of the particular coordinate system we
chose, we decompose A in different representations of
the rotation group, finding one two-dimensional represen-
tation and two copies of a one-dimensional representa-
tion. Thus we write A in the form

1 0 0 —1 y pA=a 0 1
+P

1 0 +
v

Then, ~a~, ~p~, and (y +p )' are invariant under a rota-
tion of (2'/12)n Table. I shows these values for the
three different runs. It appears that lal and (y +p )'
are of the order of 0. 1 while

~ p~ is close to zero.

D. Analysis of dift'raction pattern

In real quasicrystals, diffraction peaks are observed to
be distorted and shifted. ' ' This has been interpreted as
an effect of superimposing diffraction from regions with
different phason strains. For a uniform (sometimes called
"linear" ) phason strain field, that is one of form (11), the
shift is given by

Aq=A q (18)

The errors in the matrix elements are estimated to be
about 0.001.

However, this computation is complicated by the pres-
ence of frozen in defects when we apply it to the network
in Fig. 6. We group neighboring disclinations into pairs,
thereby defining dislocations (this is done by hand and
there is some arbitrariness when there are four or more
disclinations together). Let 8, be the Burgers vector of
the jth dislocation group, and define its position g as theJ
center of mass of the disclinations which constitute the

TABLE I ~ Invariant representation of phason strain matrices
from three different cooling processes.

0.165
0.089
0.043

0.035
0.024
0.005

( y2+ 2
)

I /2

0.045
0.099
0.095

where A denotes the transpose of A. By measuring the
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peak shifts, we can find the phason strain matrix A by a
linear least square fitting. Alternately, we can measure
the position of a ring of 12 peaks qj„k =1,2, . . . , 12 in
the diffraction pattern. The phason strain matrix A is
given by (see Appendix B)

1
12

g
p X 'qk'qk (19)

1/6rmI„—2 (20)

Since this lattice can be lifted up to four dimensions,
each lattice point can be described in terms of four basis
vectors as in (9). In reciprocal space, there are similarly
four basis vectors q~~ resulting from the product of the re-
ciprocal lattices of two triangular lattices, whose magni-
tudes are

Before we look at the diffraction pattern of the
configuration in Fig. 4(b), we shall first analyze the per-
fect tiling of squares and triangles in Fig. 1(b). The
lengths are scaled to the minimum of the Lennard-Jones
potential (1) which is

0.017 0.000
0.000 —0.003 (24)

This is only a weak phason strain. The peaks are shifted
slightly but are not distorted. Note that this agrees with
(14).

tice with basis vectors (2~/a, q )x and (2m. /a, )y, where

a,q
——(2+ 3) r

is the lattice constant of the square lattice. The phason
strain corresponding to this can be found according to
(19). Table II shows the indices, positions and the per-
pendicular space vector of the six peaks of the third visi-
ble ring in Fig. 9. The result is

(21)

They are shown in Fig. 8(a). Hence, each peak can be la-
beled by four integer indices (h, h 2h 3h4 ),

4

@II&&san

i

—yhq (22)

In analogy to the real space, there is a corresponding
Qts s & s z i

in perpendicular space given by
I 2 3 3 4

4

~(h h h h )
(23)

4334

3144 1143

1331

where q; are shown in Fig. 8(b). Figure 9 shows the
diffraction pattern of Fig. 1(b). It is very similar to the
diffraction pattern of the dodecagonal phase of V-Ni-Si .

Now, a square approximant structure as we use in Fig.
1(a) is just the dodecagonal structure with a particular,
rational phason strain. Therefore, the same formula (18)
is valid for the peak shifts, which produce a diffraction
pattern where all peaks belong to a square reciprocal lat-

3411

2818

2801

1210

21880
1088

0121

ioii
iiii ~

iioi

ii00

Oiio
~ 0011

0011
~ oiio

iioo

iioi

iiii
ioii ~

1210

28010
2818

3411

4413

0181
1088

2188

1331

1143

(b)

FIG. 8. Relation between q; and q';. Note that this conven-
tion is consistent with Fig. 7.

FICx. 9. (a) Dift'raction pattern of the configuration in Fig.
1(b). The sides of the box are of length 50/o. «. It is plotted by
putting a grid in the box and marking a dot at those grid points
with S(Q) above some threshold value. In this way the struc-
tures of the peaks are visible. (b) Indices of the three rings as
marked in (a).
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TABLE II. Indices, position vectors Q, perpendicular space vectors Q and the peak height S(Q) for
the peaks in Fig. 9(a).

Index

2201
1210
0121
1022
2 122
2212

~LL

(12.076,0.000)
(10.433,6.032)
(6.038, 10.443)
(0.000, 12.065)
(
—6.038,10.443)

(
—10.433,6.031)

Q ~LL

(0.866,0.000)
(
—0.750, —0.433)

(0.433,0.750)
(0.000, —0.866)
(
—0.433,0.750)

(0.750, —0.433)

&(Q)

0.749
0.747
0.744
0.743
0.744
0.747

Due to the nature of formation, one would expect that
the phason strain field associated with the configuration
in Fig. 4(b) to be much larger. Figure 10 shows its
diffraction pattern. Table III shows the positions of the
highest points of the peaks in the three rings marked in

Fig. 10. By a linear least-square fitting to (18), the
phason strain matrix is found to be

—0.23 0.07
0.04 —0. 12 (25)

The errors in the matrix elements are estimated to be
about 0.05. By comparing this with Sec. III D, we see
that (25) and (16) are not quite the same, although not
widely different either. Accurate determination of the
positions of the peaks are undoubtedly affected by the
peak structures. Isolated dislocations can distort the
peaks whereas misoriented subgrains created by lines of
dislocations can split the peaks. So the matrix A deter-
mined from the diffraction pattern must be less reliable in
the presence of topological defects. A typical peak struc-
ture is shown in Fig. 11.

models based on rigid structures and the interaction po-
tentials are more natural. We characterized the deviation
of this tiling from perfect dodecagonal order by the
phason strain matrix, which can be found by using either
the real space or reciprocal space coordinates. Three in-
dependent freezing processes have been performed in or-
der to get a general idea of the magnitude and fluctua-
tions for the phason strain. We also monitored the sys-
tem as it froze to observe the development of ordering.
Although this atomic model has simple interaction po-
tentials that are suitable for Monte Carlo simulations, as
mentioned in Sec. II C the resulting equilibrium
configurations are di%cult to sample due to the high-
energy barriers between different tilings. Hence, very
long runs are necessary and this program is very demand-
ing in computing resources. Furthermore, the use of free
boundary conditions introduces surface effects (Sec. II C)
which can be minimized only by using a larger system.
Finite-size effect is also reAected in the fact that in Table
I, the numbers are not strikingly similar in different runs.
This is because to find a good value for A, we need a

IV. CONCLUSION

Using a simple, angular independent potential and
standard Monte Carlo techniques, we can obtain a square
and triangle tiling, although with frozen in defects which
are unavoidable. Our model is more realistic than those

FICx. 10. Diffraction pattern of the configuration in Fig. 4(b).

FIG. 11. Contour map of peak (4413) in Fig. 10. The sides
of the square box are 1.5/a. LL. The main peak is split in two.
The height of the peaks are 0.41 and 0.28.
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TABLE III. Positions of the peaks in Fig. 10.

Index

1100
0110
0011
1011
1 111
1 101
2201
1210
0121
1022
2 122
2 212
3411
1331
1143
3 144
4 334
4413

QaiL

(6.010,1.753)
(4.816,4.206)
(1.258,6.175)
( —1.300,6.001)
( —4.729,4.353)
( —6.112,1.824)
(12.033,0.008)
(10.727,5.932)
(6.072, 10.498)
( —0.004, 12.265)
( —5.982, 10.498)
( —10.789,6.271)
(22.796,6.267)
(16.791,16.445)
(6.021,22.823)
(
—5.991,22.772)

( —16.774, 16.524)
( —22.814,5.977)

large system to average out the fluctuations in the per-
pendicular space. We will need to simulate a larger sys-
tern before we can draw any definite conclusions.

It is interesting to compare our present model with the
melting transition in ordinary two-dimensional crystals.
In the latter case it is suspected, although without con-
clusive evidence, that it is a succession of two continuous
phase transitions mediated by the unbinding of disloca-
tions and disclinations, respectively. The intermedi-
ate phase between these two transitions is called the hex-
atic phase which possesses quasi long-range orientational
order, but only short-range translational order. It has
been speculated, in the context of Landau theories, that
there might be such an orientationally ordered phase in
quasicrystal phase diagrams. In our model, dislocations
can have Burgers vectors smaller than an interatomic
space, allowing reduced strain energy. This may make
the unbinding of dislocation pairs easier and hence favor
the Kosterlitz-Thouless type of melting transition. On
the other hand, in our model the bond orientation is ro-
tated only by 30 around a single disclination, instead of
60 as in ordinary two-dimensional crystals. This makes
the dissociation of dislocations into free disclinations
easier, thus favoring the first-order melting transition.
We are not sure which of these competing efT'ects dom-
inates. So far, the most that can be said is that there is no
particular evidence for a strong first-order transition. In
any case, though, finite-size eft'ects are likely to blur the
distinction between first order and continuous transitions
in a system of 400 particles such as ours, and so our re-
sults on the order of transition are necessarily incon-
clusive.
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APPENDIX A: FREQUENCY OF SQUARES
AND TRIANGLES

1

sq

n, „=2/&3 .
(A2)

(Thus, it is amusing to note, squares and triangles each
occupy exactly —,

' of the total area. ) The purpose of this
appendix is to verify (Al) and (A2) in several ways.

1. Ideal tiling made by inflation

A tiling of squares and triangles can be produced by
various modifications of the method of inflation. We
start with a square-triangle tiling, and decorate it by
squares and triangles which are smaller by a factor
(2+&3) to make a new tiling of the smaller squares and
triangles; we then rescale these to the original size, and
continue the process iteratively. Figure 1(a) is made by
two iterations of this process where the starting
configuration was one square per cell with the vertices at
the corners. More specifically, each vertex is replaced by
a dodecagon consisting of 6 squares and 12 triangles, as
in Fig. 2, in such a way that the dodecagons from neigh-
boring vertices of the original lattice just touch along one
edge. For each dodecagon, we may choose between two
possible orientations. We can choose them deterministi-
cally according to the orientation of the nearest-neighbor
shell of the starting tiling, generating a quasiperiodic
structure. Alternatively, we can choose them at random,
producing a restricted ensemble of random tilings with an
entropy per vertex of

ln2/(6+4&3) =0.0536 .

Consider a square-triangle tiling with dodecagonal
symmetry. (The edge length will be taken to be unity
here. ) We claim (see Sec. II A) that the number of
squares N, and the number of triangles X„

N, /Nt, =v3/4. (Al)

Defining n, and n„as the number densities, per unit
area, of squares and triangles, we see that (Al) implies
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The leftover space is filled by one small triangle in the
triangle, and by one small square plus four small triangles
in the square. Thus, (square) ~ 7(square)+16(triangle)
and (triangle) ~ 7(triangle) +3(square), i.e.,
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N,'

Nt

7 3 Nsq

16 7 N„

2. From rhombic tiling with dodecagonal symmetry

A more general approach is to consider the tiling as
the projection of a faceted two-dimensional surface made
up of faces of a regular lattice in a D-dimensional hyper-
space. The formulas derived in Ref. 9, however, apply
only to tilings of rhombi, projected from hypercubic lat-
tices. For dodecagonal symmetry, such a lattice has been
described with D =6.

The hyperlattice is constructed as follows: we let

The dominant eigenvector is (&3,4) with eigenvalue
(2+&3) . Clearly, (Al) holds in the limit of many itera-
tions.

Now we know the density of the corresponding tiles in
the tiling: putting together the above results, we get

n q=~m Xmp~/(~e Xeq~s*p), (A8)

where the denominator is 9 for any a&P for our 6D hy-
percubic lattice of lattice constant &3. (A8) is the same
as Eq. (2.6) of Ref. 9.

It can be shown (see Ref. 9, and also part 3 of this ap-
pendix) that nonzero phason strain implies that a given
type of rhombus appears more often in some orientations
than in others. Therefore, our assumption of 12-fold
symmetry implies A=O; then (A8) states that the fre-
quency of a rhombus type is just proportional to the area
of one of the rhombi of that type.

The 12-fold symmetric rhombus tiling has three types
of rhombus:

(i) 30' rhombi, e.g. ,

e.—:e~~+e'. (A3)

be the basis vectors in the hyperspace. The normaliza-
tion here is There are six possible orientations, so the total frequency

1s

~e ~

=(D/d)'

where d=2 is the ordinary spatial dimension.
Given a phason strain matrix A, we define vectors

(A4)

(A5)

n q6
=6( —,', ) = —,

'

(ii) 60' rhombi, e.g. ,

n &3
= lm~ Xm31/9=1/(6&3) .

(This differs from Ref. 9, Eq. (2.5), only because our nor-
malization of Ie I differs). We can think of (A5) as a pa-
rametrization of the 2-plane embedded in hyperspace. It
then follows from x = Ax and x=x +x that

There are again six possible orientations, so the total fre-
quency is

n„q3=6/(6&3)=1/&3 .

e .x=m -x~~ .a a (A6)
(iii) 90' rhombi, i.e. , squares, e.g. ,

S*&/S"= ~m Xm&~/~e Xe&~ . (A7)

(By ~e Xe&~, we mean more precisely [~e ~ ~e&~

( )2]1/2 )

Then each face oriented parallel to the chosen coordi-
nate 2-plane must reproject to a face of that 2-plane.
Also, the coordinate planes are mutually orthogonal, so
all other kinds of face reproject to nothing. The number
of faces of the chosen orientation in the patch is the same
as the number of 2-cells in the reprojected patch, hence
equal to its area S*& divided by the area S,* =3 of one
square cell ~

Let us choose a particular type and orientation of tile:
all such tiles are projected from 2-faces of the same orien-
tation in the hyperspace lattice; counting the chosen tiles
is the same as counting the chosen 2-faces in the faceted
surface.

We want to count the chosen tiles in a domain in phys-
ical space of area S . This domain projects up to a patch
of the faceted hypersurface which (if phason strain is well
defined) is, on average, planar. Let us reproject this
patch onto one of the coordinate 2-planes of the hyper-
space lattice, which is a regular lattice of 2-cells; let S*&
be the area of the reprojected patch on the (a,p) coordi-
nate plane. It can be shown from (A6) that the ratio of
reprojected area S*& on the (a,p) coordinate plane, to
area S I in physical space, is

n, ~
=

~ m, X m4 ~
/9 =

—,
' .

and

n„=2n„~3 =2/&3

—l 1n =—n /6+n

in agreement with (A2).

There are three possible orientations, so the total fre-
quency is

n „~,= 3 ( —,
'

) = —,
' .

To make this rhombus tiling into a tiling of squares
and triangles, (i) we divide each 60' rhombus into two tri-
angles (ii) where one vertex is shared by the obtuse
corners of two 30 rhombi and the acute angle of a 60'
rhombus so as to form a flattened hexagon, we can com-
bine and redivide the rhombi to make a square with trian-
gles on two opposite faces. Since a 60 rhombus is
equivalent to two triangles, we can regard the second
process as grouping a pair of 30' rhombi to make a
square. (However, in the directly projected tiling, not all
30 rhombi are in pairs; it is necessary to move them
through the tiling, by reshuffling groups such as the irreg-
ular hexagon around a vertex shared by the obtuse
corners of a 30' rhombus, a 60 rhombus and a square. )

This gives
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n' = 2 )3/( 3 3,*, )=—' lm) xm3l, (A9)

3. General argument

The above are special cases. Here, we derive the gen-
eral formula for the density of each orientation of square
and triangle, valid for arbitrary values of the phason
strain, and with no constraint on how the tiling was con-
structed. This result for squares and triangles is analo-
gous to (A8) for rhombi, and its derivation is based on the
same idea as that of (A8) in Ref. 9. There is a minor
technical complication which necessitates redoing the
derivation in Ref. 9: a general square-triangle tiling re-
quires a noncube hyperlattice.

The tiling is now described as a projection from a four
dimensional hyperlattice (see Sec. II A and Refs. 26 and
27). Hyperspace basis vectors are again defined by (A3),
but now e belongs to a two-dimensional space. If e are
normalized to be unit vectors, then (A4) again holds so
Ie I

=&2 for this lattice.
It is important to note that the basis vectors in hyper-

space are not orthogonal: in fact, eLand e3 make a tri-
angular lattice (of lattice constant &2); similarly, e2 and

e4 form a triangular lattice, orthogonal to the first one.
The four-dimensional lattice is the product of these two
triangular lattices, in the same way as the stacked tri-
angular lattice in three dimensions is the product of a tri-
angular lattice and a one-dimensional lattice. The trian-
gles in real space are projected from triangular faces in
one of these triangular planes, while the squares in real
space are projected from square faces in a plane spanned
by one basis vector from each of the triangular lattices.

For triangles, the arguments in part 2 carries through.
Only one kind of triangle projects onto a triangular coor-
dinate plane, so the number of faces is determined by di-
viding out the area of triangle 5,*, =&3/2 on the coordi-
nate plane.

Let n,'„be the density of (1,3) triangles (those spanned
by vectors eI and e/). There are two such orientations,
related by an inversion [similarly there are two kinds of
(2,4) triangles]. The total number in our patch is
NtI- = c4 13 /3 t*t- therefore,

Together with the corresponding linear equations from
the two other kinds of square coordinate planes, of
course, we can eliminate to finally get

n, 4= —,'„Im, xm4I —
—,', Imoxm, l

—
—,', Im2xm5I . (A10)

For the case of 12-fold symmetry, A=O as noted
above so that (A9) gives n „=n I„=I /+3, and (A10)
gives

14 25 n 03 l

sq n sq sq 6

making total densities in agreement with (A2).

APPENDIX B: PHASON STRAIN MATRIX
FROM POSITIONS OF DIFFRACTION PEAKS

Consider a ring of twelve peaks in the diA'raction pat-
tern

qk =qI,. + A q& k = 1,2, . . . , 12, (Bl)

where q~I, are the unshifted position of the peaks, q„are
their measured positions. We can form the dyad

12 12 12

'qkqk g qI,-qk + A' g qk'q/t
k=1 k=1 k =1

One can show that

(B2)

g qI, q'„=0.
k=1

(B3)

Let
12

S' = g q„q'„.
k =1

(B4)

Since S cannot be associated with any particular direc-
tion in the perpendicular space

S =II, (B5)

(1,4) plane to squares of side I/2e& and I/2ez, with area
I /4A,*. Consequently, all we can derive is

n14+ (n03+n25)=lmixm4l/4

and similarly for the two other kinds of triangles.
The frequency of the squares is a more complicated

case. Each (1,4) square projects to a square of area
A,* =2 in the (1,4) plane. However, the two other square
faces have nonzero projections onto this plane, since

cos013 cos024 =
2

where 0 & is the angle between the basis vectors e and
e&. Thus, the (2,5) and (0,3) squares also project on the

where I is the identity matrix, and

L =
—,'Tr(S )

=6lq, l

Hence, it follows that

A= 2S
1

6I

qual'

(B6)

(B7)
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