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A new Monte Carlo sampling technique is used to study the spin-% Heisenberg antiferromagnet

on square lattices of up to 256 spins. The energy, specific heat, uniform and staggered susceptibili-
ties, and correlation function are calculated. The correlation length as a function of temperature is
deduced from correlation functions and is shown to be consistent with a quantum-renormalized
classical approximation. Using the coupling constant provided by Raman scattering experiments,
good agreement is found between the calculated and experimental correlation lengths in La,CuQO,.

I. INTRODUCTION

Following the discovery of high-T, superconductors,’
great effort has been devoted to understanding their mag-
netic properties. This has been motivated by the possibil-
ity of an intimate connection between magnetic behavior
and the mechanism for the new superconductivity.?”*
Neutron scattering experiments’ ' on the prototype
compound La,CuO, have indeed revealed a rich magnet-
ic structure. In particular, over a substantial range of
temperatures, very strong antiferromagnet correlations in
the Cu-O planes have been observed with large correla-
tion lengths® but no long-range order. These features are
considered to be well modeled by a quantum spin-J
Heisenberg antiferromagnet on a planar square lattice.

Aside from its significance for high-7, superconduc-
tivity, the spin-1 Heisenberg antiferromagnet is an in-
teresting theoretical model in its own right. Quantum
fluctuations are believed to play an important role but it
is not clear how they might affect the behavior one would
naively expect from the classical version of the model.
Even the existence of long-range order in the ground
state, suggested by spin-wave treatments,® has been con-
troversial.” Ground-state properties have been investigat-
ed using a variety of methods, including variational’ ~!!
and Monte Carlo'>!? techniques, spin-wave analysis,'*
and finite-lattice calculations.!®> Finite-temperature prop-
erties, like the correlation length, have been addressed
with Monte Carlo simulations'® and renormalization-
group analysis.!”

In this paper, we study the Heisenberg antiferromagnet
at finite temperature using a modification of the
Handscomb Monte Carlo scheme previously considered
by Lee et al.'®* An important new development is the in-
troduction of a sampling procedure that more efficiently
explores the configuration space. Our results show dis-
tinct differences with the recent Monte Carlo simulation
of Manousakis and Salvador.!® In particular, our calcu-
lated correlation length is generally consistent with a
quantum-renormalized classical picture as advocated by
Chakravarty et al.!” and inconsistent with a topological-
defect-driven phase transition as suggested in Ref. 16.

The paper is organized as follows. In Sec. II
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Handscomb’s scheme is reviewed, the new sampling tech-
nique is explained, and calculations of some typical ob-
servables are presented. In Sec. III correlation functions
are calculated, correlation lengths deduced, and a finite-
size scaling analysis of the staggered susceptibility is per-
formed. Finally, in Sec. IV, the extrapolated correlation
length is compared with neutron scattering data, and in
Sec. V we summarize the results of the paper.

II. THEORETICAL METHOD

A. Monte Carlo technique

We begin by reviewing the application of Handscomb’s
scheme!® to the spin-1 Heisenberg antiferromagnet

H =J2 Si 'Sj > (1)
Cij)
where the sum is restricted to nearest-neighbor sites on a

square lattice. After a trivial shift in energy, the Hamil-
tonian can be written as follows:'?

BH'=B'3 (h;—h}), 2
(ij)
where B'=BJ/2, B '=T is the temperature

multiplied by Boltzmann’s constant, and the operator

h;=(S;"S; +S;S;") has the following action on the

nearest-neighbor bond (ij ):

te=141
=1l

hylt1=0 - (3)
11=0

After expansion of the exponential, the partition func-

tion Z' for H' can be written as'®

— 5 B) .
z’=73 py %Tr( Oom,

n=0

om,), 4)
where Om; stands for h;; or h ,3», and the summation runs
over all possible arrangements of the operators 4,; and h,%
with arbitrary length (n). In (4), the bipartite nature of
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the square lattice has been used to eliminate all minus
signs. Handscomb’s method considers the sum in (4) as
an average over the ensemble generated by all possible
strings S of both types of operators with a weight II(s)
given by

B re(s) . (5)

I(s)=
n!

Note that the weight of a string may vanish for one of
two reasons. First, because the A ;j operators interchange
spins, they must necessarily form a closed path to pro-
duce a nonvanishing trace. Second, even if a string
satisfies the previous geometrical constraint, its trace can
be zero due to the order of operators and the lack of com-
mutability of the xy and z parts of the Hamiltonian. For
example, Trhyh,hy3h, =0, whereas Trh,hy3h,shy,
=2. To obtain the trace of an allowed configuration, it is
convenient to introduce the notion of a cluster. A cluster
is defined as the set of all sites connected by operators of
the string, with the convention that each isolated site
with no operators is also a cluster. Once a single spin in a
cluster is specified to be up or down, the values of all oth-
er spins yielding a nonzero contribution to the trace are
uniquely determined, so the trace is given by 2", where
n. is the number of clusters.

With the notation that { ) denotes a statistical average
with the weight (5), the energy (E), specific heat (C), uni-
form susceptibility (), antiferromagnetic structure fac-
tor [S(k=(m,m))], and staggered susceptibility (y,) are
given by the following averages: '8!’

E=—-2+

C=(n?)—{n)*—<(n),
x=%< @25,?]2):]%(%(%)2), (6)
2
)

1

S(k=(7r,1r))571v—< [ze"“""zsf

Xs =BS(k=(m,m)) ,

where N is the number of sites, N, the number of bonds,
and m,(m_,) represents the ferro-(antiferro-)magnetic
moment of cluster a of the particular string under con-
sideration. These moments are defined as follows:

my= Y sgnli),

i€a e (7)
m,=Ye 'sgn(i), k=(m,m),

i€a

where the sums run over all sites of cluster a and sgn(i)
stands for the sign (+, —) of the spin at site i before it is
modified by the action of the string. Note that ), as
defined in (6) is not the cannonical staggered susceptabili-
ty but rather the form useful for finite-size scaling.
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B. Sampling scheme and simple test

Having specified ensemble and averages, the Monte
Carlo method produces a Markov chain whose limiting
distribution is given by (5). In previous applications,'® !
the modification of a string takes place without requiring
h;; operators to form closed paths. As a consequence the
number of forbidden configurations attempted in a typi-
cal run is close to 90%. It is clear that such a sampling
procedure spends a long time trying to search an area of
phase space with no physical content. In order to over-
come this problem, we have devised a sampling scheme
which preserves the geometrical constraint on type h;;
bonds. The basic steps of this new sampling technique
are summarized as follows.

Given a string of operators (S;), the Monte Carlo ran-
dom walk generates another string (S;) by means of four
distinct operations which we denote as permutation, ad-
dition, deletion, and deformation.

(A) Permutation. A new string is generated by apply-
ing a random permutation to the original S; with proba-
bility ,,.

(B) Addition. (i) An operator h,% is inserted on a ran-
dom bond (i,j) anywhere on the lattice, at a random posi-
tion in the string S; with probability (1—r,)(0.5+7,)/2.
(ii) An operator h;; is inserted twice on a random bond
(i,j) anywhere on the lattice, at two random positions in
the string S; with probability (1—r,)(0.5—r,)/2.

(C) Deletion. One begins by randomly choosing an
operator in the present string, with probability (1—r,)/2.
(i) If the selected operator is of type A 5-, it is removed. (ii)
If the selected operator is of type h;; and it appears more
than once in the string, the selected operator and another
operator randomly chosen among the repeated 4;;’s are
removed with probability 7,.

(D) Deformation. One begins by randomly choosing an
operator in the present string with probability (1—7,)/2.
If cases C(i) and C(ii) do not apply, a deformation is per-
formed, as described below. In order to understand de-
formation, it is instructive to view the selected operator
h;; as the part of a closed path which is to be modified by
rearrangements of operators in the vicinity of bond (i, j).
The selected operator occupies a physical bond in the lat-
tice that is shared by, at most, two plaquettes denoted R
and L in the example shown in Fig. 1. The first step is to
select between shared plaquettes with equal probability
(R in Fig. 1). The bonds in the plaquette are numbered 1
for the selected bond, 2 for the opposite bond, and 3, 4
for the lateral bonds. The following sequence of changes
is made.

(i) The selected operator is removed from the string.

(ii) If the number of A, operators corresponding to
bond number 3 is 0dd,?® one of them is randomly re-
moved. The same applies to h;; operators corresponding
to bond number 4.

(iii) If the number of h; operators corresponding to
bond number 3 is even,?® a new h;; operator for bond 3 is
randomly inserted. The same applies to h;; operators on
bond 4.

(iv) A type h;; operator corresponding to bond number
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FIG. 1. Illustration of the process of deformation of a closed
path (see Sec. II in text) of ;; operators. (a) The selected bond
(1), its two plaquettes (R and L), and the numbering of bonds in
the selected plaquette (R) are shown. (b) The final configuration
after “motion” of bond 1 to 2 and “creation” of bonds 3 and 4 is
displayed.

2 is inserted at a random position in the string.

An example of this deformation is shown in Fig. 1,
where a closed path is enlarged by moving the selected
operator from bond 1 to bond 2 and generating operators
at bonds 3 and 4.

For each step in the Monte Carlo process, each of
these changes is performed with the specified probabili-
ties, which were chosen to produce reasonable acceptance
rates. [Of course, for the trivial case of the vacuum (zero
length string) the probability of removing an operator is
strictly zero and for the case of a string of length <3 we
choose 7, =0.] Having defined a trial change in the string
S; to S, the new configuration is accepted or rejected de-
pending on the value of a test ratio defined to make the
Markov process microreversible.?! Expressions for test
ratios corresponding to every possible change are listed in
the Appendix.

The described random walk, as complicated as it
might appear, is among the simplest which preserves the
geometrical constraint on A;; bonds. The Markov chain
so generated is reversible and satisfies the detailed bal-
ance condition. To show that all configurations can be
connected by a finite number of transitions, it suffices to
prove that any string can be reached from the vacuum
and reduced to the vacuum. An arbitrary string can be
generated as follows.

(i) Generate all h ,»3- operators by addition.
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(ii) Group all repeated h;; operators into pairs and gen-
erate them by addition.

(iii) The remaining A;; operators should form simple,
nonoverlapping closed paths. These can be generated by
creating suitably placed pairs of h;; operators by addition
and then enlarging these seeds by deformation.

(iv) Apply the necessary permutations to bring the se-
quence to the desired final order. Collapse of an arbitrary
string to the vacuum is analogous.

The above-described scheme is able to generate all
strings compatible with open boundary conditions in the
square lattice. For periodic boundary conditions the
method fails to produce closed paths with all possible
winding numbers. Though this shortcoming is only a
surface effect, it affects both types of operators in a
different way, being an effective symmetry breaking term.
For this reason, we have chosen to keep open boundary
conditions so that the procedure remains exact.

Though the present sampling generates some
configurations with zero trace due to the order in the
string, its number is found to range from a few percent at
high temperatures to close to 50% in the worse case at
low temperatures. This should be compared with percen-
tages as high as 95% obtained with the old sampling. In
addition, because of the richer variety of moves, the new
method samples the full space of string configurations
more effectively and is less likely to become trapped in an
unrepresentative subspace.

In order to further test the method, we have applied it
to a very simple lattice for which we have exact results: a
3X2 square lattice with open boundary conditions. Be-
cause of the small size of the lattice, the comparison be-
tween the old and new schemes is not very dramatic, and
for sufficiently long runs, both methods give the exact re-
sults. To show that the new method indeed searches
phase space more efficiently than the old one we have
chosen low temperatures and very short runs (5X 10*
steps) for which the new method is well equilibrated
while the old method is not. The results are presented in
Table I. All runs began with the same initial
configuration (vacuum). Notice that the value of the
staggered susceptibility is erroneous with the old method
while consistent with the exact result for the new
method. Since there are roughly half as many strings
with zero trace in the new method, we have also

TABLE I. Comparison between old and new sampling schemes for a 3 X2 square lattice with open boundary conditions. Energy
(per site), staggered susceptibility (per site), and percentage of attempted forbidden configurations are shown for six different tempera-
tures and Monte Carlo runs of 5X 10* steps. Statistical errors, calculated in the standard way, are shown in parentheses.

T =0.04 T =0.05 T =0.075 T=0.1 T=0.15 T —0.25
E (old) —0.40 (0.03) —0.41 (0.03) —0.43 (0.03) —0.47 (0.03) —0.53 (0.02) —0.44 (0.01)
E (new) —0.50 (0.03) —0.49 (0.02) —0.52 (0.01) —0.51 (0.01) —0.55 (0.02) —0.51 (0.01)
E (exact) —0.52 —0.52 —0.52 —0.52 —0.52 —0.50
Xs (old) 106.0 (18.0) 13.8 (0.4) 36.1 (9.0) 25.2 (7.0) 16.0 (4.0) 13.14 (0.32)
Xs (new) 73.0 (18.0) 73.6 (8.0) 44.6 (7.0) 31.0 (3.5) 19.2 (1.5) 12.38 (0.25)
Xs (exact) 78.0 62.46 41.6 31.2 20.7 12.28
% Forbidden 88 89 88 87 88 86
conf. (old)
% Forbidden 46 46 44 42 41 40

conf. (new)
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effectively doubled our statistics. The reduction in the
number of forbidden strings is more dramatic for larger
lattices. Statistical errors (in parentheses), calculated in
the standard way, are not reliable because of the highly
correlated nature of these short runs.

C. Thermodynamic observables

We have performed calculations of energy, specific
heat, and susceptibilities on three different lattice sizes,
8X8, 12X 12, and 16X 16, with open boundary condi-
tions. We begin our discussion with some general con-
siderations. Lengths of typical runs vary from 2 million
steps for high temperatures to, at most, 16 million steps
for low temperatures. Error bars were obtained in the
standard way by dividing the entire run into bins ( ~ 10)
and measuring the statistical dispersion of bin averages.

In the Handscomb method, the length of the string
grows linearly with inverse temperature at slow tempera-
tures, irrespective of lattice size. This behavior poses a
major problem in reaching low temperatures. This is
especially true for the staggered susceptibility which ex-
hibits wild fluctuations and slow dynamics at low temper-
atures. For this reason, results for the susceptibilities are
restricted to temperatures above 0.375, 0.375, and 0.40
for lattice sizes 8 X8, 12X 12, and 16 X 16, respectively.

A very important aspect of the Heisenberg Hamiltoni-
an is its rotational invariance, which should be preserved
by the Monte Carlo simulation. The limiting distribution
of the described Markov chain should indeed be isotro-
pic. However, since the Handscomb scheme inherently
treats the xy and z components of the Hamiltonian in a
different fashion, it is important to have a measure of this
isotropy. The abstract nature of the phase space in
Handscomb’s method makes it impractical to perform a
rigorous check of the isotropy of the simulation. Howev-
er, one reasonable criterion is to require that the nearest-
neighbor zz correlation {(S?S jz) agree with the value ob-
tained from the energy (6) assuming perfect isotropy.
This isotropy criterion is satisfied, within error bars, for
all data shown in this paper and has guided us in deciding
the lowest acceptable temperature for every lattice size.

In Figs. 2—-4 we show the results of our calculation for
the energy, specific heat, and susceptibilities. Error bars
are displayed for the largest lattice size shown. Note that
the energy and specific heat are normalized to the num-
ber of bonds, which corrects a large part of the finite-size
effects intrinsic to open boundary conditions. The
specific heat has been calculated from the energy data for
the 12X 12 lattice. Use of expression (6) gives equivalent
results but with poorer statistical quality. No significant
lattice size dependence can be observed in the specific
heat.

The uniform susceptibility shows smooth behavior
with a shallow maximum, as expected, while the antifer-
romagnetic structure factor displays significant growth
with decreasing temperature and noticeable lattice size
dependence. Results of available?? " 2* high-temperature
series expansions (HTSE), plotted as continuous lines in
Figs. 2—-4, show good agreement with our data in the ap-
propriate temperature regime.
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FIG. 2. (a) Energy per bond vs temperature in units of J with
results of high-temperature series expansion (HTSE). (b)
Specific heat per bond (in units of kz) obtained from numerical
differentiation of energy data for the 12X 12 lattice and high-
temperature series expansion (HTSE).
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FIG. 3. Uniform susceptibility vs temperature (in units of J)
with results of high-temperature series expansion (HTSE).
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FIG. 4. Antiferromagnetic structure factor vs temperature
(in units of J) with results of high-temperature series expansion
(HTSE).

III. CORRELATION LENGTH AND FINITE-SIZE
SCALING

A. Correlation length

In order to get information about the correlation
length we have calculated the zz pair correlation function

C(i,j)=4(s/s}) . ®)

The value of C(i,j) for a given string of operators in our
statistical ensemble is given by

sgn(i)sgn(j), if i,j € same cluster

Cclj)= 0, otherwise ©)
with sgn(i) defined as in Sec. IT A.

Because of the lack of translational invariance imposed
by our boundary conditions, we have calculated correla-
tion functions for equivalent pairs along the two central
columns and rows of our lattices. For a given separation,
we have selected all the equivalent pairs of points whose
midpoint lies closest to the lattice center.

Typical results are shown in Fig. 5 for the 16X 16 lat-
tice. Correlation lengths & have been obtained by fitting
selected data with Ce ~"/%. The nearest-neighbor correla-
tion has been removed in all cases and fits have been re-
stricted to distances less than half the lattice size, to
reduce surface effects. These fits are found to be very sa-
tisfactory with quality never worse than that shown in
Fig. 5.

The correlation length as a function of temperature,
for different sizes, is plotted in Fig. 6. Manousakis and
Salvador!® have recently performed similar calculations
for the correlation length. The result of their fit to a
Kosterlitz-Thouless?® form for the correlation length,
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FIG. 5. Absolute value of the zz pair correlation function for
four representative temperatures of the 16 X 16 lattice. Continu-
ous lines are fits to pure exponentials [ o« exp(—r/€)].

C exp(D /N T— T.), is shown as a dashed line in Fig. 6.
While general agreement between both calculations is
found at high temperature, our correlation length in-
creases slower with decreasing temperature than that of
Ref. 16. Although error bars are large at low tempera-
tures, we believe that the difference between both calcula-
tions is systematic and cannot be attributed to statistical

08 x 8
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A 16x16
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o
T
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FIG. 6. Correlation length in units of lattice constant vs tem-
perature in units of J. Error bars are only shown for the largest
size. The solid line is the best fit of the data to
A exp(27Js?B /T) with 4 =0.32 and B =0.635. The dashed
line represents the results of Ref. 14, which used a fit to
Cexp(D/V/'T—T,) with C=0.178, D =1.338, and T,=0.3.
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dispersion. The most probable origin of the discrepancy
is the fact that the new sampling method described in this
work searches phase space more efficiently than the
method of Ref. 16.

The classical analog of the Heisenberg antiferromagnet
is believed to have a correlation length which diverges ex-
ponentially at zero temperature?6—%

E~ exp(2mJs?/T) . (10)

A recent renormalization-group study of an extended
nonlinear o model!’ indicates that the classical picture
remains valid in the quantum antiferromagnetic case with
parameters renormalized by quantum fluétuations. To
two-loop order, the following form for the correlation
length is suggested:

E= A exp(2mJs*B/T) . (11)

We have fitted this expression to our data for § and ob-
tain a good fit with 4 =0.32 and B =0.635, as illustrated
by the solid line in Fig. 6. We note that B can be con-
sidered as the quantum renormalization of the coupling
constant, and its value is consistent with results of the
renormalization-group study, which yield*® B ~0.6-0.7.
Thus, in contrast to the work of Manousakis and Salva-
dor,'® we do not need to invoke the presence of a
Kosterlitz-Thouless phase transition to explain the be-
havior of the correlation length. To investigate this point
further, we perform a finite-size scaling analysis in the
next subsection. ‘

B. Finite-size scaling

In what follows, we analyze finite-size effects in the
staggered susceptibility (Fig. 4) using the information ob-
tained for the correlation length. A renormalization-
group study of the nonlinear o model gives the following
scaling form for the Fourier transform of the pair corre-
lation function:*!

Gp, I=[E&T)lo(D’F(p&) , (12)

where p is the reciprocal space vector, F is an arbitrary
function, and [o(T)]* < T? at low temperatures. This ex-
pression suggests a finite-size scaling for the staggered
susceptibility of the form

Xs

LT
where L is the lattice size and f(£/L) an unknown func-
tion.

It is important to keep in mind that finite-size scaling
assumes that we are close to the critical region (£>>a),
so it is essential that the scaling collapses all the data
onto a single curve at the largest correlation lengths. In
Fig. 7(a) we show X, /T versus £ given by expression (11)
with our values of 4 and B for the three lattice sizes.
The effects of finite-size scaling are illustrated in Fig. 7(b).
The data clearly tend to collapse nicely along a single
curve especially at large correlation lengths.

In an attempt to test if a Kosterlitz-Thouless expres-
sion could be consistent with our results, we have fitted

=f(&/L), (13)
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FIG. 7. Finite-size scaling analysis of the staggered suscepti-
bility according to expression (13) in the text, using the best fit
of £to A exp(2mJs*B /T). (a) Unscaled data. (b) Scaled data.

our calculated correlation length on a (16X 16) lattice to
a Kosterlitz-Thouless form &=Cexp[D /(T —T,)'?].
The best fit to our data is obtained with C =0.11,
D =2.14, and T,~0. The corresponding finite-size scal-
ing dictated by a Kosterlitz-Thouless transition with ex-
ponent = 1 is given by

T
=f(&/L) . (14)

In Figs. 8(a) and 8(b) we show the unscaled and scaled
curves corresponding to this expression. Unlike the situ-
ation displayed in Figs. 7(a) and 7(b), the scaled curves of
Fig. 8(b) run parallel to each other with no clear tendency
toward merging for large & (compare, for instance, the be-
havior of the 8 X8 and 12X 12 lattices in both cases).

In summary, we believe that our data for the correla-
tion length at 7°>0.375 are consistent with a quantum-
renormalized classical picture!” and no indication of
topological-defect phase transition is found.

IV. EXPERIMENTAL IMPLICATIONS

As mentioned in the Introduction, magnetic properties
of La,CuO, have been studied by means of neutron
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bility according to expression (14) in the text, with & given by
the best fit of our data to Cexp(D/V/'T —T,.). (a) Unscaled
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scattering.’ 7 In particular, the correlation length has
been obtained as a function of temperature,6 and in this
section we analyze these data in the context of our Monte
Carlo results.

A direct comparison between experiment and our
Monte Carlo data is not possible because the measured
correlation length is much longer than that accessible
from the Monte Carlo calculation. However, having
determined the parameters of the quantum corrected
renormalization-group correlation length to be

£=0.32a, exp(27Js20.635/T) , (15)

and having verified that this functional form has a scaling
behavior that appears to be correct, it is instructive to
compare this expression with the experimental data. Us-
ing the lattice parameter a;=3.78 A corresponding to
La,CuO, only the coupling constant J is needed in (15) to
obtain §. This coupling constant has been obtained from
spin-pair Raman scattering®? and the value reported is
J ~1600 K (1100 cm™1).

In Fig. 9 we show the experimental inverse correlation
length versus temperature and compare it with the
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FIG. 9. Inverse correlation length vs temperature. Open
squares are results of neutron scattering experiments on
La,CuO,. The continuous line represents our theoretical result
Eq. (15) using the experimental values a,=3.78 A and
J =1600K.

Monte Carlo fit given by (15) with the experimental
values of a, and J: The agreement is quite satisfactory,
and we conclude that our extrapolated correlation length
is perfectly consistent with neutron scattering results us-
ing the experimental value of J from Raman scattering.

We close this section by noting the significance of the
large energy scale of J in connection with the absence of
Curie behavior of the measured uniform susceptibility in
La,CuO,. This susceptibility shows a mild increase at
high temperature instead of the usual 7! Curie law.*
The observed increase is consistent with our calculated
susceptibility considering the fact that, for the experi-
mental value of J, the maximum temperature of the ex-
periment (800 K) corresponds to T =0.5 in Fig. 3. Physi-
cally, the large value of J makes the system strongly
correlated even at the highest measured temperatures as
opposed to the mere collection of almost independent
spins required for the Curie law to apply. Although the
previous statement is certainly true for a spin-1 Heisen-
berg antiferromagnet with large J, it should be kept in
mind that, in the real material, other effects not modeled
by our Hamiltonian might come into play.

V. SUMMARY

We have investigated finite-temperature properties of
the spin-1 Heisenberg antiferromagnetic model in the
square lattice, considered relevant for the magnetic prop-
erties of La,CuQ, superconductors. The model has been
studied with a Monte Carlo technique based on
Handscomb’s scheme.

The sampling of the Handscomb method has been gen-
eralized to produce a much more thorough search of
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phase space. Typical observables like the energy, specific
heat, and susceptibilities have been calculated showing
good statistical quality and agreement with series expan-
sions in the appropriate limit.

Correlation functions have been calculated and from
them, the correlation length has been obtained as a func-
tion of temperature. The results are consistent with a
quantum renormalized classical picture, as suggested by a
recent renormalization-group treatment of an extended
nonlinear model.!” Contrary to the suggestion of a simi-
lar calculation,'® no need for a topological-defect-driven
phase transition is required to explain our data.

Extrapolation of our fitted form for the correlation
length to the experimental regime shows excellent agree-
ment with neutron scattering data® when the experimen-
tal (Raman) value for the coupling constant3? is used. Al-
though we have thus demonstrated that the quantum
renormalized-correlation function is consistent with both
experiments at low T and Monte Carlo results at higher
T, the present Monte Carlo scheme is not able to address
directly the low-temperature regime corresponding to
truly critical behavior.
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APPENDIX

In Sec. II we described all possible changes of a string
of operators (S;) in the Monte Carlo process. A modified
configuration (S;) is accepted with probability one if the
test ratio (R,) is greater than one and with probability R,
if R, is less than one. In this Appendix we write the ex-
pressions of R, for every elemental step of Sec. II. In
what follows, symbols retain the meaning given previous-
ly unless otherwise stated.

A. Permutation

R — Tr(S;)
TS
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B. Addition
B'N,Tr(S;)
(i) R,= b- o ,
(n +1)(0.5+r,)Tr(S;)
(B')*N,r.Tr(S;)
(i) R,= L

(n +2)0.5—r, Nn,—1)Tr(S;) ’

where n is the length of S; and n, is the number of type-
h;; operators equal to the added ones in the final string
e
C. Deletion
n(0.5+r,)Tr(S;)
B'N,Tr(S;) ’
n(0.5—r,)n,+1)Tr(S;)
(B')*N,r,Tt(S;)

(i) R,=

(i) R,=

’

where n is the length of S; and n, is the number of type-
h;; operators equal to the removed ones in the final string

e

D. Deformation

_ npln(B’)"'*"Tr(Sj)A(n3,n4)B(n],nz)
! n,,n'Tr(S;) ’

where n(n') is the length of S;(S;), n,,(n,,) is the num-
ber of plaquettes sharing the bond number 1(2), and
ny, ny, ny, ny are the number of type h;; operators corre-
sponding to bond 1, 2, 3, 4, respectively, in the final
string S;. A(nj3,n,) and B(n,n,) are defined as

Alng,ng)=(ny+0) " ng+ay)
with
) if operator is removed in bond i
%™ 10 if operator is added in bond i
and

1—r, if n,=0and n,>1
B(ny,n,)=1{1—r)" " ifn;>1and n,=1

1 otherwise .

In special cases,the following trivial changes are need-
ed. (1) If after a deletion the final string is the vacuum,
the test ratio should be multiplied by 2. (ii) If the original
string is the vacuum, only additions are possible and the
corresponding test ratios should be divided by 2. (iii)
Test ratios for modifications that change S; from n <2
(no permutations) to n>2 should be multiplied by
(1—r,). Test ratios should be divided by (1—7,) for the
opposite case.
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