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Evidence for a phase transition in the zero-temperature anisotropic
two-dimensional Heisenberg antiferromagnet
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We describe a Monte Carlo study of the ground state of of the two-dimensional anisotropic
Heisenberg antiferromagnet. Values of the energy per spin and the rms z-staggered magnetization
are determined for a range of transverse couplings. At zero temperature the isotropic point g =1
apparently separates two phases having nonzero and zero z-staggered magnetization for g ( 1 and

g ) 1, respectively. This may imply that the isotropic Heisenberg antiferromagnet is unsuitable as a
model of the precursor insulators of the high-temperature superconductors. We also compare our
results with previous conjectures regarding the ground state of the anisotropic system.

I. INTRODUCTION

Perhaps the most interesting development in high-
temperature superconductivity since its discovery' is the
observation of antiferromagnetic spin alignment in the
copper-oxygen planes. This has stimulated intense in-
terest in the spin ordering of the two-dimensional Hub-
bard and Heisenberg models, as these are believed to de-
scribe the superconductors in certain limits. The un-
doped precursor insulators such as La2Cu04 have one un-

paired valence electron per CuQ2 site (a "half-filled
band") but these materials are not metallic because the
large on-site Coulomb repulsion U elevates the unfilled
levels to relatively high energies. Such a system is known
as a Mott-Hubbard insulator; a model system of this type
is described by the Heisenberg Hamiltonian

H = g S' S~ .
(i,j)

This Hamiltonian may be derived from the half-filled
Hubbard model in the limit of large on-site Coulomb
repulsion, which is believed to be appropriate for the
high-temperature superconductors.

Recent results suggest that (1) is gapless ' (which has
been conjectured on theoretical grounds by analogy with
one-dimensional systems"' and has a ground-state ener-

gy per spin on an L XL square lattice of Eo/L = —0.67
(Refs. 7—20) in the bulk limit. Most studies have also
found evidence for long-range antiferromagnetic spin or-
der in the ground state, as has been observed in the pre-
cursor insulators, although one (Ref. 18) suggests that
there might be no such order (see Table I). A determina-
tion of this long-range spin order is of particular interest
because of suggestions that it can quantitatively explain
the Cu + moment suppression observed in the insula-
tors. ' The Merrnin-Wagner theorem ' however makes
this problematical.

The actual value of the staggered magnetization for the
Heisenberg Hamiltonian (1) ground state is not well es-
tablished, due to the difficulty of extrapolating to infinite

lattices from systems of moderate size or to zero tempera-
ture from finite-T results. In an attempt to clarify the
properties of the ground state of the isotropic Heisenberg
Hamiltonian (1), in particular the staggered magnetiza-
tion, we have carried out rneasurernents on the anisotrop-
ic system defined by

H = g S,'S~+g(S'SJ+Ss'Sy~) .
(i,j)

(2)

We define the antiferrornagnetic alignment through an
rms z ground-state staggered magnetization

N, —:((QoIN, I go& )'", (3)

where the z component of the staggered magnetization
operator is

N, =— g( —1)' '2S,' .
L

(4)

II. METHOD

We employed a Hamiltonian Monte Carlo algorithm
which was previously applied to the isotropic system,
and in the present work certain improvements were in-
corporated which decreased the statistical errors. We
studied the system with g values from 0.4 to 1.4 on square
lattices of side L=4, 6, and 8, and a few additional mea-
surements were carried out with L=10 and 12. The Eu-
clidean time step size h, was usually taken to be 0.2/L,
with occasional tests at 0.1/L . The guidance matrix r„.
was of the form (2.48) of Ref. 30 with r =g/2 and
c=0.27, except at g=0.4 where a perturbative form de-

With this normalization allowed values are between
N, =1 for a Neel state and N, =O for a state with no
long-range z spin antialignment. This N, at isotropy (as-
suming an isotropic ground state as well) takes values
which are 2/&3 larger than the conventional definition of
the staggered magnetization used for example by Reger
and Young. ' A summary of N, estimates on an infinite
square lattice with our normalization is given in Table I.
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TABLE I. Summary of N, estimates on an infinite square lat-
tice.

N,

0.49
0.464
0.441
0.429
0.418
0.396
0.361
0.350
0.35
0.34
0.33
0.29
0.283
0.21
0.0

Method

finite-lattice
variational

perturbative
Monte Carlo, fiit 1

perturbative
var. and finite-lattice

perturbative
spin-wave

Monte Carlo
Monte Carlo
Monte Carlo
finite-lattice
variational

finite-lattice
Monte Carlo, fit 2

Reference

22
23.
24
18
25
15
13
26
14
19
20

9
27
28
18

Typically the Neel initial state gave smaller errors for
g & 1 and the triplet dimer gave smaller errors for g) 1.

rived from the O(g ) expansion of go and Eq. (2.36) of
Ref. 30 was used. We measured the energy and the stag-
gered magnetization [using the Feynman-Hellmann
theorem through Eq. (2.58) of Ref. 30] with ~2=r, +1.0
for a range of ~& values between 0.8 and 4.4 to confirm
that the results had converged to within our statistical er-
rors. The number of configurations generated varied
with the coupling constant; for 0.8 &g (1.0 it was 2' for
L=4 and 6 and 2' for L=8. For g=1.05 and 1.1 we re-
duced the L = 8 runs to 2' configurations. Other g
values had smaller associated statistical errors, so we usu-

ally employed only 2' configurations. The exceptions
were g and L=0.8 and 8(2' ), 1.2, and 6(2' ), and 1.0 and
12(2' ) with the corresponding number of configurations
in parentheses. We also tested the effect of starting the
walks from two different initial configurations, a Neel
state and a "triplet dimer" state, which have N, =1 and

N, =0, respectively. The triplet dimer state is defined by

int( n„ /2 ) + n

S,(n)=

Since the simulations using different initial states con-
verged to a limiting value of N, from different extremes it
was possible to check convergence in Euclidean time by
inspection.

Most of the numerical work was done on the Caltech
"hypercube, " a concurrent computation computer whose
use was pioneered by the Caltech Concurrent Computa-
tion Program (CCCP) group. This machine was built by
NCUBE and consists of 512 separate processors or
"nodes" which are capable of executing code indepen-
dently or communicating if necessary. Applications of
the hypercube to various scientific and engineering prob-
lems have been reviewed by the CCCP group. ' A single
node operates at about —,

' the speed of a microVAX and is

capable of running programs of sizes up to 256 Kbytes.
On concurrent computation machines one often must
compromise between partitioning a program into small
and large components; small components maximize con-
current execution on individual nodes whereas large ones
reduce the amount of internode communication required.
In this regard the Monte Carlo algorithm employed here
was particularly well suited to the hypercube architec-
ture. The algorithm is CPU intensive but has very mod-
est memory requirements and was therefore easily accom-
modated on a single node. It was thus possible to gen-
erate configurations on a single node without requiring
internode communication during execution. The hyper-
cube operating system transfers information to and from
the individual nodes, so that no special programming
knowledge was required beyond that needed to collect in-
formation from all nodes at the end. Typical execution
times to generate 2' configurations with ~&=4.4 on 256
nodes were 14 minutes on L=6 and 32 minutes on L =8.

III. RESULTS

Our results for Eo/L and N, are shown in Tables II
and III and in Figs. 1 and 2, respectively. In our discus-
sion of these results it will be useful to distinguish a
weak-coupling region 0 g & 0.8, a transition region
0.8(g (1.0 and a strong-coupling region g) 1.0. The
energies are quoted to three places and have estimated er-
rors of +0.0005 for L=4 and 6 and +0.001 for L=8, 12,
and ~. The staggered magnetization measurements have
rather uncertain systematic errors, especially in the tran-

TABLE II. Ground-state energy per spin on the L XL lattice.

L=4 12

0.40
0.60
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.20
1.40

—0.528
—0.562
—0.618
—0.637
—0.657
—0.678
—0.702
—0.726
—0.750
—0.801
—0.906

—0.609
—0.623
—0.640
—0.658
—0.679
—0.702
—0.726
—0.778
—0.882

—0.608
—0.622
—0.637
—0.656
—0.673
—0.698
—0.721
—0.773
—0.877

—0.670

—0.607
—0.620
—0.634
—0.653
—0.669
—0.694
—0.717
—0.769
—0.873
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TABLE III. The rms z-staggered magnetization N, on the
L XL lattice.

1.0 I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

0.40
0.60
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.20
1.40

0.96
0.91
0.79
0.74
0.69
0.66
0.61
0.57
0.55
0.50
0.45

0.83
0.77
0.71
0.63
0.52
0.44
0.39
0.34
0.29

0.82
0.80
0.72
0.64
0.39
0.33
0.30
0.24
0.21
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—,'g + „'»g +O(g ), (6)
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FIG. 1. Energy per spin vs transverse coupling.

sition region. This region is especially problematic be-
cause the statistical errors are typically larger here, and
convergence to a large ~& limit is not always monotonic.
We estimate the total error in N, to be about +0.005,
+0.02, and +0.03 for L, =4, 6, and 8, respectively, al-
though this error may be somewhat larger in the transi-
tion region.

First we consider the energy per spin. The infinite lat-
tice estimate is obtained from an extrapolation of the
4X4 and 8X 8 data assuming an asymptotic approach of
the form ep+c/L . While this apparently works very
well for g ~ 1, convergence is actually faster for g & 1, and
hence our estimated infinite-lattice energies for g & 1 may
be systematically too negative by =0.001—0.002.

In the weak coupling and transition regions the
infinite-lattice energy per spin closely follows the O(g )

perturbative result

0
0

FIG. 2.
coupling.
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The rms z-staggered magnetization vs transverse

which is also shown in Fig. 1. At the isotropic point g= 1

our estimate of the energy per spin is

e (1.0)= —0.669+0.001 . (7)

N, (g)=1——,'g +O(g ) (8)

and with the recent proof that such order exists at least
for g &0.52. In the transition region 0.8 g ~1.0 a

This is somewhat less negative than our previous estimate
of —0.672+0.001; the improved result (7) followed from
the use of the "triplet dimer" initial configuration and
from the smaller weight factor variance which resulted
from discarding the transition weight, as described in
Ref. 30. The I.=6 and 1.=8 isotropic energies were both
found to be about 0.002 higher than previously estimated
in Ref. 7; these and an L=12 rneasurernent were corn-
bined to give (7). The g= 1 energies for L=4, 8, and 12
and the infinite-lattice estimate are all equal to recent
variational results to within one of our standard devia-
tions. An independent high-statistics measurement on
the 1.=16 lattice using 384 K random walks at ~& =5.0
gave ep(1) = —0.668 with an error of perhaps 0.002, con-
sistent with (7).

In the strong-coupling limit gazoo the Heisenberg
ep(g) should approach g times the XY-model ground-
state energy per spin. In practice we find that ep(g) is ap-
proximately linear in g for g & 1, with a slope of
dep/dg = —0.48 near the isotropic point (at g=1.05),
which has increased to dep/dg = —0.52 at g=1.3 The
measured slope appears consistent with an approach to
the XY result of —0.55 (Refs. 19 and 36) as g goes to
infinity.

The staggered magnetization N, (g) for L=4, 6, and 8
is shown in Fig. 2 and Table III. In the weak-coupling
region the larger finite-lattice results are consistent both
with the 0 (g ) perturbation series
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rapid decrease of N, (g) is evident, which becomes more
pronounced as L increases. Our strong-coupling
staggered-magnetization measurements (g & 1) are con-
sistent with an approach to N, (g)=0 as c/L, with a
slightly delayed onset (L & 6) for the smallest value of g
studied above isotropy, g = 1.05. Marcu and
Schmatzer ' similarly found N, =O far in the XF re-
gion.

The g= 1 measurements were found to have especially
large statistical errors and slow convergence in Euclidean
time. The L=4 value for N, is consistent with the Lanc-
zos result of 0.6072 (Refs. 8 and 10) and L=6 is con-
sistent with other Monte Carlo results which use the
Suzuki- Trotter formula. ' ' The L= 8 measurement
however appears anomalously low, with 0.49 a more typi-
cal value for Suzuki-Trotter simulations. This discrepan-
cy may be a statistical Auctuation, but it appears more
likely to be a systematic error, and it is obviously impor-
tant to reconcile these results. A significant bias in our
random walk algorithm could have arisen from too few
configurations or insuScient Euclidean time evolution,
which will be investigated. The Suzuki-Trotter method
may have an important systematic error due to a delayed
approach to asymptotic values as a function of the step
number I; this can lead to overestimates of the staggered
magnetization. We have not attempted to extrapo-
late to a unique infinite-lattice value for N, at g=1 be-
cause of these uncertainties and because our g&l mea-
surements suggest that N, may actually be undefined at
isotropy. We shall review the evidence for this in the
next section.

IV. DISCUSSION

pic point. Although this behavior has received little sup-
port in the literature, for completeness we include it as a
possibility which is not inconsistent with our Monte Car-
lo data.

The type-2 [Fig. 3(b)] transition, which has a unique,
finite value for N, at isotropy, is the behavior conjectured
by Tang and Hirsch. They speculate that the ground-

$.0

(b)
$.0

From these results it appears probable that g=1 is a
critical point that separates two phases having finite
(g(1) and zero (g& 1) long range N, order. The possibil-
ity of various types of singular behavior in this system at
T=O has been the subject of recent speculation. Huse
suggests that the total staggered magnetization should
approach a finite g = 1 limit from g & 1 as
co+c, (1—g )'~, ' and that the rms transverse com-
ponents are zero in the bulk limit for all g & 1. ' AfBeck
expects a transition from the Neel phase to a strong cou-
pling phase at some finite value of the transverse coupling
g." Tang and Hirsch conjectured a discontinuous
jump from a finite expectation value of N, at g = 1 to zero
for g & 1 (and perhaps to ( JO A

N
~ go ) =0 as well) based on

their study of the distribution of staggered magnetization
for 18- and 26-spin systems with g =

—,', , 1, and —", . Final-
ly, I.iang, Doucot and Anderson' speculated that the
isotropic model might be close to criticality because their
RVB variational calculations found nearly equal expected
energies for N, -ordered and -disordered trial states.

The nature of the suggested transition is not unambigu-
ously determined with present statistics; three possibili-
ties consistent with our data are shown schematically in
Fig. 3. The curves are shown with finite slope as g~1
only for ease of visualization, as we have no reason to ex-
clude an infinite slope.

A type 1 [Fig. 3(a)] transition is a monotonic, continu-
ous decrease of the long-range order to zero at the isotro-

0
0 1.0

(c)
f.o

FIG. 3. Possible forms of the rms z-staggered magnetization.
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state expectation value of N -might also discontinuous1y
go to zero in the XFphase. A measurement of the trans-
verse staggered magnetization near g= 1 would be a use-
ful test of this second conjecture.

A closely related transition (type 3 [Fig. 3(c)]) which is
instead characterized by an undefined N, at isotropy
might arise in the following manner. Assuming that the
isotropic model is gapless, the ground-state is degenerate
and the corresponding staggered magnetization could de-

pend on the particular linear combination of ground
states chosen. This type of transition appears to us the
most plausible explanation of our Monte-Carlo results.

An important feature of type-3 behavior is that it im-

plies that an attempt to extract a unique value for N, at
isotropy on an infinite lattice is ill motivated.
Specification of a unique ground state would require an
additional constraint, provided for example by boundary
conditions or an infinitesimal external field. Finite-
lattice and Monte-Carlo studies implicitly introduce such
a constraint, namely that the infinite-lattice ground state
is isotropic. Our limiting value for N, as g~1 of =0.5

(Fig. 2) can be compared with their isotropic results
(Table I) after it is divided by V3. Type-3 behavior
would also explain the findings of Liang, Doucot, and
Anderson, as it implies that eo is independent of N, at
isotropy within the ensemble of degenerate ground states.
We emphasize that a jump in N, need not imply that the
total staggered magnetization is undefined; there could be
a constraint on the degenerate states such that N has a2

well-defined expectation value at g= l. A compensating
jump in the transverse staggered magnetization would be
required, and the transition thus might be second order
despite a discontinuous change in the orientation of the
rms N.

The order of a zero-temperature phase transition is
defined in terms of singular behavior of the ground-state
energy per spin eo(g) or its derivatives at the critical cou-
pling. To show the behavior of eo(g) near isotropy we

display the inferred slope Aeo/Ag on an infinite lattice in

Fig. 4. A first-order phase transition corresponds to a
jurnp in Fig. 4, a second-order transition to a discontinu-
ous slope in the figure, and so forth. Perturbative weak-
coupling [deo/dg of Eq. (6)] and XF strong-coupling lim-
its are shown as continuous curves, and a theoretical
g= 1 slope of 2eo(l)/3= —0.446 which follows from an
assumed isotropic ground state is also indicated. Al-
though rapid variation of deo/dg is evident near g=1,
the nature of the transition is not clear in this data.

Of course our measurements do not eliminate the pos-
sibility of a rapidly varying but nonsingular N, (g), and a
more accurate determination of properties of the system
near isotropy would be of great interest. Future studies
might attempt to resolve the order of the suggested phase
transition through more accurate measurements of eo(g)
on large lattices. A study of the finite-size dependence of
the staggered susceptibility might also be of interest in
this regard. A determination of the g dependence of the
transverse staggered magnetization would be especially
useful in distinguishing between the various transitions
which have been suggested. Finally, measurements of the
spin-spin correlation function near isotropy would be use-
ful because the singularities of nearest-neighbor (i,j)
correlations are simply related to those of eo(g) through
the identities

and

(10)

These could provide an independent check of singular be-
havior extracted from eo(g). The large distance correla-
tion is also of interest in that it is related to the z-
staggered magnetization through

N,'= ((—1) 'C, ( ) )„,
where C, (n) is defined by

—0.1

I I
)

I 1 I I
[

I I I I

C, (n) —= (goI2S, (m)2S, (m+n)Igo) . (12)

—0.3

—0.4

'q
& —0.5

—0.7—

—0.8 '—

—0.9—

L T ~

~ J
I

Assuming that the isotropic Heisenberg antiferromag-
net is indeed a boundary between phases having di6'erent
long-range spin alignment, it is probably unsuitable as a
model of magnetism in the precursor insulators. The
physics of the isotropic model and its response to various
perturbations is presumably strongly dependent on the
existence of these two adjacent phases, and this feature is
not shared with the precursor insulators. As the long-
range spin order observed in the insulators is dominantly
planar, a more realistic mode1 should incorporate this an-
isotropy. The isotropic Hubbard model is similarly un-
realistic in not providing a preferred spin orientation, and
it may be advisable to incorporate anisotropic spin in-
teractions in that model as well.

0 ~ a a & ) & s

0 0.2 0.4 0.6 0.8 1.0 1.8 1.4
~ a s s I

16 18 80
Transverse coupling g

FICx. 4. Slope of the energy per spin versus transverse cou-
pling.
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