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Monte Carlo simulations of a disordered, three-dimensional system of Josephson junctions
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Using a Monte Carlo technique we study properties of a disordered three-dimensional system of
Josephson junctions. %'e focus on the anisotropy of the critical magnetic field and on relaxation
processes in a zero-field-cooled sample.

Results of many measurements on samples of new
high-T, superconductors have been interpreted as a mani-
festation of a superconducting glassy state. ' The main
features were metastable magnetization in zero-field
cooled samples, existence of a "quasi"-de Almeida-
Thouless line separating reversible and irreversible trajec-
tories on a phase diagram, and a logarithmic time de-
cay of remanent magnetization. Bednorz, Takashige,
and Miiller' suggested that below T, superconducting
clusters coupled by Josephson junctions may be formed
inside a ceramic sample. Similar systems have been previ-
ously investigated as models of granular superconductivi-
ty, ' and the role of frustration and disorder has been
discussed.

More recent simulations' of two-dimensional, weakly
disordered arrays of Josephson junctions confirmed that
such a model may account for many experimental
results —in particular a quasi-de Almeida-Thouless line
has been reproduced. It was further argued that due to a
very short coherence length and many twinning bound-
aries, Josephson junctions may exist inside the physical
grains. ' ' Indications of the glassy behavior of single
crystals have indeed been found, ' ' although some re-
sults were interpreted within a standard theory of a fiux
creep in type-II superconductors. ' On the other hand,
evidence of Josephson junctions formed on the boundaries
of physical grains has also been reported. ' Although
Cu-0 planes play a crucial role for the high-T, supercon-
ductivity, this phenomenon is of three-dimensional charac-
ter. ' ' It was then suggested' ' that inside a physical
grain Josephson junctions form a system of weakly cou-
pled two-dimensional array. Within such a model ob-
served critical-current anisotropies were qualitatively ex-
plained.

In this paper we investigate properties of the three-
dimensional, disordered system of Josephson junctions.
Our system consists of evenly spaced arrays coupled by
"vertical" links. We mainly focus on metastable eff'ects
and on the anisotropy of magnetic properties. Since our
system reveals many features similar to type-II supercon-
ductors we investigate anisotropy of the critical Geld 0,&.

with

A;I =2trj+p„Adl, (2)

where p; is the phase of the order parameter in the ith
grain, No=he/2e is the magnetic fiux quantum, A is the
vector potential and the integral in (2) is taken along a
straight line. In principle A should include fields due to
the superconducting currents within the system. This
would lead to a complicated self-consistent problem. For
simplicity we take into account only external field H and
use a symmetric gauge

A(r) = —,
' Hxr. (3)

The sum in (I) runs over all linked pairs of grains. We
assumed all J;J to be equal and neglected its dependence
on temperature and magnetic field.

We investigated a three-dimensional generalization of a
system studied by Ebner and Stroud. ' Our system con-
sists of superconducting grains distributed randomly over
ten evenly spaced planes parallel to the xy plane with dis-
tance d between two adjacent planes. The cluster is gen-
erated as follows. We randomly choose coordinates (x,y)
of a grain and a plane number. This grain is added to the
system when its distance to all other grains on the same
plane is bigger than a„and is discarded otherwise. We as-
sume that tunneling junction exists between two grains in
the same plane if their distance is less than 2a, . Grains in
two adjacent planes are coupled if their projections on the
xy plane are not further apart than a~. All "loose ends, "
i.e., strings of coupled grains which do not form closed
loops are removed. '

Our aim is more to study general properties of a disor-
dered, three-dimensional system than to make detailed
comparisons with experimental data; therefore, values of
some parameters were chosen for numerical convenience.

We consider a system of % superconducting grains cou-
pled via a nonsuperconducting host. Such system is de-
scribed by the Hamiltonian
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The ratio a~/a, controls the number of links between
planes, while d/a„aA'ects geometrical anisotropy of the
system. In the following all lengths are in the units of a„.

In order to obtain thermodynamic properties of the sys-
tem we treat phases p; as classical variables within a
canonical ensemble and use standard Monte Carlo (MC)
algorithm to compute thermal averages. We are mainly
interested in magnetization which we define as an average
magnetic moment per grain, with magnetic moment p
given by
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where I; is a position of a grain i.
All presented results are for a system of 381 grains.

(Systems of similar size were discussed in Refs. 9, 10, and
13.) Since we deal with a relatively small, strongly disor-
dered system, results should be averaged over different
systems of the same size. Instead, we compared results for
two such systems to check that all features we are going to
discuss are in both cases equivalent.

To investigate properties of a field-cooled system we ap-
plied the following procedure. For a given H at tempera-
ture T =4 (in J/k units which are used throughout this
paper) random values of p; are chosen. At each T, the
system evolves for 20000 MC steps (in one MC step all p;
are changed one by one) before temperature is lowered.
Last, 15000 steps are used to compute thermal averages.
After subsequent coolings through T=2, 1, and 0.5 to
T =0.25 the whole system is reheated to T =4 and cooled
again. Figure 1 shows magnetization as a function of
temperature and magnetic field. Each point was obtained
as an average of three subsequent coolings. Components
parallel to the external field are shown for (a) H along the
z axis, i.e., perpendicular to the planes, and for (b) H
along the x axis for the system with a~ =0.3 and d =3.

In small magnetic fields and for T & 2 magnetization
decreases with increasing field unless a critical value
H H, ~ is reached when first Aux quantum penetrates
into the system. Values of H, i for H perpendicular (H, i )
and parallel (H, i ) to the planes are different with
H, ~ & H, ~. Three factors in our model may be responsi-
ble for this anisotropy: distribution of grains, number of
vertical links, and distance d between planes. To check
for the role of the latter we repeated calculations assum-
ing d=l. Results are shown in Fig. 1(c) for magnetic
field along the x axis (for H perpendicular to the planes
results are not changed with d since A is then orthogonal
to the z axis). Critical magnetic field increased, and for
d =1 H, ~ & K, ~ which agrees with scaling arguments ap-
plied to the Hamiltonian (1). It is also visible that at low
temperatures and in small fields magnetization is propor-
tional to the field. The point at which deviation from
linearity occurs depends on temperature. At T~ 2 mag-
netic field has no eff'ect on the magnetic moment which in-
dicates that transition temperature is between T =1 and
T =2, in agreement with Ref. 9.

To simulate properties of zero-field-cooled samples we
modified our procedure to imitate (in a very simplified
way) experimental conditions. We put T=O, and for
each value of magnetic field simulation starts with all p;
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FIG. l. Magnetization (per grain) parallel to the applied
field of a field-cooled system is shown for cases (a), (b), and (c)
corresponding to three sets of cluster parameters and field direc-
tions with respect to the cluster planes indicated in figure. Sym-
bols correspond to the temperature in units of J/ks. T=0.25,
full circles; T 0.5, full squares; T =1.0, full diamonds; T=2.0,
open squares; T 4.0, open circles. Lines are drawn only as a
guide to the eye.
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equal (system in its H =0 ground state). After 2500 (Fig.
2, filled symbols) and 19500 (Fig. 2, open symbols) MC
steps we take "snapshots" of our system and use next 500
MC steps to calculate averages. The whole procedure is
then repeated three times and two times for shorter and
longer MC runs, respectively. Parts (a) and (b) of this
figure correspond to the case d =3 and field parallel to the
z and x axis, respectively, while part (c) depicts d = I case
for H along the x axis. When we compare filled and open
symbols in Fig. 2 it is evident that after 3000 MC steps
the system has not yet reached its equilibrium state. Nev-
ertheless, independent "experiments" give practically
identical results for small magnetic fields. Only when H is
close to H, i results of independent runs start to diA'er.

This effect shows up in the results of shorter as well as
longer MC runs although 'magnetization values corre-
sponding to the reproducible parts of the plots are
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FIG. 2. Magnetization (per grain) parallel to the applied
field of a zero-field-cooled system calculated in five independent
MC runs for each of three cluster/field direction cases (a), (b),
and (c), defined as in Fig. I. Full (open) symbols are the results
of 3000 (20000) MC steps runs.

' .00 .01 .02 .03 .04 .05 .06

H (III ja )

FIG. 3. The same as in Fig. 2 calculated for the cluster with
the number of vertical links increased more than two times. Re-
sults of 3 (2) independent 3000 MC steps runs are shown for
field perpendicular (a) [parallel (b)] to the cluster planes.
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different. This means that for not too large magnetic
fields, relaxation of the system, though very slow, always

oes through nearly the same sequence of states. Withgoe
the field increasing above H, ~ the number of energetical y
equivalent equilibration paths drastically increases result-
ing in a nonreproducible relaxation. Within the accuracy
of our simulation, critical magnetic fields are the same for
field-cooled and zero-field-cooled samples.

To check for the dependence of magnetic anisotropy on
the "topology" of the system we repeated calcu1ations
analogous to those reported in Fig. 2 but with a~ =0.7
(d-1). The results for two field directions in Figs. 3(a)
and 3(b) should be compared with Figs. 2(a) and 2(c), re-
spectively (different d values in case a are irrelevant since
the field is perpendicular to the cluster planes). The
change in a more than doubled the number of verticalc ange in
links but has not affected critical field values (Fig. 3, . It
seems that the anisotropy of the critical field is not sensi-
tive to the number of links between planes unless they are
very scarce (a„=0) and the system becomes two dimen-
sional.

Results discussed so far indicate that the investigated
system is strongly frustrated with very slow relaxation. It

then interesting to see how such a relaxation process e-
~ ~ fvelops in time. We have performed the simulation o

260000 MC steps and calculated energy and magnetiza-
tion every 10000 steps (the last 500 steps of each subse-
quent 10000 MC steps were used in the summation pro-
cedure). We chose a~ =0.3, d=1, magnetic field along
the z axis with H =0.02, a value slightly lower than H, & in
this case. After 40000 MC steps energy was practically
at its final value [Fig. 4(a)l and in subsequent 220000
steps changed less than 2.5x10 %. Relaxation of mag-
ne izatization was considerably slower with the component p,

~ 0 F 0

parallel to the field changing at the same time by 2% [ ig.
4(b)]. Still slower was the equilibration of magnetization
components perpendicular to the field and, e.g. , p~
changed by more than 20% during the last 220000 steps
[Fig. 4(c)l. Although Monte Carlo evolution differs from
th true dynamics of a system we believe that main quali-e r

13tative features are in both cases similar.
In summary, results of our Monte Carlo simulations in-

dicate that critical magnetic field anisotropy of the three-
dimensional layered system of Josephson junctions e-
pends strongly on the distance between layers and is not
affected when the number of vertical links is changed un-
less it becomes very small. Relaxation of a zero-field-
cooled sample is fully reproducible if the field does not
exceed its critical value H, i. However, even for fields
lower than H, & we found the relaxation process to be very
slow with magnetization components perpendicular to the
external field evolving an order of magnitude slower than
the one parallel to the field.

No of MC steps

FIG. 4. Equilibration of (a) energy, (b) magnetization com-
ponent M, parallel to the field, and (c) magnetization com-
ponent M~ perpendicular to the field. The parameters are
H~ =0.02&90/aP, a~ =0.3, d =1, and T =0.
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