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Resistivity measurements have been made in the a-b plane on a single-crystal sample of super-
conducting YBa2Cu307 —,. The resistivity versus temperature curve shows a highly linear region
between 150 and 240 K, with an upward deviation from linearity at 240 K. With decreasing tem-
perature below 150 K, the resistivity curve also deviates from linearity; this deviation has been an-
alyzed in terms of the Aslamazov-Larkin, Lawrence-ooniach, and Maki-Thompson paraconduc-
tivity theories. All three theories can be fit to the data, but the Lawrence-Doniach model gives
the best fit to the data, with physically reasonable parameters. We find that the Ginzburg-
Landau coherence length in the c direction, extrapolated to low temperature with the theoretical
temperature dependence, is approximately 0.44 A.

I. INTRODUCTION

We have made resistivity measurements in the a-b
plane on a single crystal of YBa2Cu307-„and have ana-
lyzed the data to determine how the conductivity is
afI'ected by fluctuations of small regions of the sample into
the superconducting state. The part of the conductivity
caused by these fluctuations is called the paraconductivity.
It is usually too small to measure in conventional super-
conductors, although it can be seen if the electron mean
free path and, hence, the coherence length is small
enough. Paraconductivity was first seen in amorphous
bismuth. '

The nature of the in-plane paraconductivity in
YBa2Cu307 „has been a matter of some debate. Initial
measurements on polycrystalline samples by severa1
groups were fit to the three-dimensional Aslamazov-
Larkin (3D AL) model. Their fits to the data indicated
general agreement with the model up to a reduced tem-
perature e = (T —T, )/T, =0.1 with an eff'ective
coherence length ranging between 13 and 22 A. (T, "is
the mean-field transition temperature. ) Above e=0.1 the
paraconductivity fell rapidly to zero in those studies.

Oh et a/. made measurements on highly c-axis-
oriented thin films which they analyzed in terms of the
Lawrence-Donaich (LD) model. Their analysis indicat-
ed a temperature dependence in qualitative agreement
with the LD theory over a range 0.005 & t &0.5. The
magnitude of the paraconductivity, however, was only
0.14 to 0.3 times that predicted by the LD theory, and the
mean-field transition temperature was 1-2 K above the
zero-resistance value T, .

Measurements by Hagen, Wang, and Ong on single-
crystal YBa2Cu307 —„samples were analyzed in terms of
the two-dimensional AL theory (2D AL). Their results
indicated a good fit to the data over a wide range,
0.06 & e & 1.9. The fits indicated a mean-Geld transition
temperature 3-5 K below T, . The thickness of the
model's 2D superconducting layer d ranged from 5.7 to 30
A and was uncorrelated with the transition width d, T, and
the room-temperature resistivity. Hagen et al. concluded

that their data did not fit the LD model.
In this paper we describe data obtained for a single-

crystal sample of YBa2Cu307, having an extremely
linear dependence on temperatures between 150 and 240
K. We compare our data with predictions of the
Aslamazov-Larkin, Maki-Thompson, ' and Lawrence-
Doniach theories.

II. EXPERIMENTAL METHOD

The crystal explored in this study was grown by a self-
Aux method employing an excess of copper oxide, as de-
scribed elsewhere. '' It was twinned, like almost all crys-
tals of YBa2Cu307-„. The dimensions of the sample
were 2.0X0.62X0.016 mm . (The c direction was the
shortest dimension. ) To provide electrical contact to the
sample, four strips of gold, 1 pm in thickness and 0.025
mm wide, were evaporated through a mask onto the sur-
face in a standard four-probe configuration, producing the
electrodes shown in Fig. 1. (The van der Pauw
configuration' was not used because the sample was very
thin and would have fractured in putting electrodes on its
corners. ) The gold strips were fixed to the sample by
heating it in fiowing 02 for 1 h at 600 C, oven cooling it
to 400 C, and finally quenching it to room temperature in

0.025 mm dia. gold wires

l6 mm

FIG. 1. Sample dimensions and contact geometry.
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air from 400'C. Ultrasonic bonding of gold wires, 0.025
mm in diameter, to the gold strips was followed by a heat
treatment performed in fiowing. 02 at 600'C for 1 h, an
oven cooling to 400 C, and a soak of 60 h at this tempera-
ture. The sample was then quench cooled in air. The re-
sulting contact resistances were less than 1 Q.

Using GE 7031 varnish, the sample was mounted on a
sapphire substrate which was varnished to a copper block.
The resistance was measured with an ac bridge' at a fre-
quency of 95 Hz. The sensitivity of the bridge was 10
A. The temperature, measured with a calibrated carbon
glass thermometer, was stabilized to within + 1 mK for
90 & T & 125 K and within ~ 10 mK for 125 & T & 300
K. The resistive transition was measured at two diA'erent

current densities, 7.5 A/cm and 0.75 A/cm, with the re-
sults having a negligible dependence on current density.
The data taken with the larger current density are report-
ed in this paper.

III. RESULTS

A. General features

Magnetization measurements (Fig. 2) were carried out
in a superconducting quantum interference-based magne-
tometer in a field H =14 Oe applied perpendicular to the
crystal's c axis. The transition had a width (10% to 90%
of the transition) of 3 K and a midpoint of 89 K. The
zero-field-cooled shielding fraction (uncorrected for
"demagnetization") was 82%, and the field-cooled Meiss-
ner fraction (also uncorrected) was 41% of the ideal value
I/4x. Flux pinning makes this a lower limit on the frac-

tion of the sample, which was superconducting.
The room-temperature resistivity was p(295) =222

+ 44 pAcm. The zero-resistance transition temperature
was T, 93.0 K. A plot of the derivative dp/dT vs T (Fig.
3) indicates a narrow transition (full width at half-
maximum 0.37 K) with some structure at the peak of
the curve, suggesting two closely spaced superconducting
transitions. (Note: Hagen et al. report narrow transitions
with no structure in the dp/dT curves, but their data were
not as closely spaced in temperature, so they would not
have seen the small structure reported here if it were
present in their samples. )

At higher temperatures, the dp/dT curve (Fig. 4) indi-
cates a region 90 K wide, from 150 to 240 K, which is very
nearly linear. A fit to the data over this region to
p =aT+b gives a slope a =0.724 pQ cm/K and an inter-
cept b =2.84 p 0 cm. The extreme linearity of p in this re-
gion, for which a theoretical reason has been suggested, '

provides us with a basis for carefully studying the non-
linear region below 150 K. The deviation of the curve
from linearity above 240 K may be associated with other
indications of anomalous behavior around 240 K. ' '

B. Fitting procedure

The data were fit to four theoretical models (2D AL,
3D AL, LD, and MT) by using a Levenberg-Mar-
quardt-based nonlinear least-squares fitting routine. '

The measured conductivity is taken to be

a =o„+o',
where o„represents the normal-state conductivity and rr'

the paraconductivity contribution. In al1 cases, we as-
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FIG. 2. Magnetic susceptibility (in Gaussian units) vs T
zero-field-cooled (ZFC) and field cooled (FC).

FIG. 3. p vs T and dp/dT vs T near the transition tempera-
ture.



4260 FRIEDMANN, RICE, GIAPINTZAKIS, AND GINSBERG 39

2.5

2.0

1.5

1.0

d
a

d

a
d

a
a

d
a

a
a

d
d

d
a

d
a

a
d

a
a

d
d

O4

0OO

ago

2.5

2.0

V1.5

1.0

0.5

cedure could end up in a minimum of g that was local but
not global. To ensure that the fitting routine had found
the lowest minima in g, a grid procedure was followed for
all of the fits reported below. This procedure starts the
Levenberg-Marquardt fitting routine at many initial
values for the parameters (including a and b) throughout
the range of physically reasonable values. In each case,
over one hundred initial parameter settings were attempt-
ed in order to approach the minimum in g from diff'erent
directions in the parameter space. In addition, the best
fits for each model were confirmed by using a simulated
annealing technique. ' This technique gave the same re-
sults as the Levenberg-Marquardt method with our grid
procedure. The g values reported below have all been
normalized to the g value for the fit labeled AL2a in
Table I.

C. Fit to the AL model

0.0
50 150

T(K)
250 350

0.0

The AL model takes into account the electric field's ac-
celeration of the short-lived superconducting pairs which
form above T, . The functional form of the paraconduc-
tivity depends on the dimensionality of the superconduc-
tivity

FIG. 4. p vs T and dp/dT vs T.

sumed the normal-state conductivity to be

~„=I/(aT+ b),
corresponding to a linear resistivity. The functional form
of o.' to which we have fit the data depends on the theoreti-
cal model used. The data were fit to temperature values
greater than 2T, . The reduced temperature e = (T
—T, ")/T, " is, for small e, the first term in the expan-
sion of ln(T/T, ").' Since this approximation is not val-
id at temperatures all the way up to 2T„we replaced e
with ei =In(T/T, ") in the equations usually used to fit
paraconductivity data.

The best fit to the data is defined to be the one which
minimizes

N
~'= g f~„(T.) —~(T.) j'/(~ ~), —

n=l

where N is the number of data points and P is the number
of fitting parameters. In the 2D AL and 3D AL models
P=4, and in the MT and LD models P=S. With so
many fitting parameters, it is possible that the fitting pro-

2o'= ej
' (2D),

16hd
(4)

2

32hg 0
(5)

The short coherence lengths and the anisotropic elec-
tronic properties of YBa2Cu307 — make it dificult to
determine whether Eq. (4) or Eq. (5) should be used to
describe cr'. The dimensionality of the Auctuations in
YBa2Cu307 — depends upon the magnitude of the c-
direction coherence length

(,(T) =&,(0)e

in relation to the relevant layer thickness d. At high
values of el, where g, (T) (d, the paraconductivity should
manifest a two-dimensional nature. At low values of ei,
near T, ", g, (T) is expected to be greater than d, and the
three-dimensional nature of the paraconductivity should
be apparent. We attempted to fit both equations to the
data.

1. Fit to the 2D AL model

The data were fit to the 2D AL form using a strategy
employed by Hagen etal. They pointed out that if the

TABLE I. Aslamazov-Larkin 2D fit parameters.

Fit

AL2a
AL2b
AL2c
AL2d
AL2e

Range (K)

96.0-200
94.0-200
93.7-200
96.0-200
96.0-200

a (pncm/K)

0.760
0.773
0.788
0.782
0.807

b (pncm)

11.1
4.93

—1.39
0.387

—6.93

2.82
4.93
6.64
5.85'

11 7'

TMF (K)

87.41
90.03
90.93
90.66
92.75

1.0
30.0
62.5
31.8

122.0

' Parameter was not varied in the fit.
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paraconductivity in YBa2Cu307, is two dimensional in
nature, and if it follows the AL theory, the temperature
dependence of both a, and cr' is the same (T '). Any at-
tempt to fit the high-temperature resistivity data by an ex-
trapolation method in the way it was done for polycrystal-
line samples will underestimate a' and cause it to fall
rapidly to zero at high el. To avoid this problem, Hagen
et al. used an equation similar to this (but did not replace
e by el) to fit the conductivity data over a range T, +1
& T & 260 K, and they treated a and b as adjustable pa-

rameters

1 e
cr =cr„+cr'= + eIaT+b 16 d

In Eq. (7), two additional adjustable parameters appear:
d is the thickness of the two-dimensional layer, and T, "
is the mean-field transition temperature. Following this
procedure we find the results shown in Table I. We ob-
tained the best fit for a temperature range 96 & T & 200
K; it is labeled AL2a in Fig. 5. (Note that T, "is one of
the adjustable parameters, and that it is involved in the
definition of t. ~ in Fig. 5 and some of the later figures, so
each fit produces a diA'erent set of data points. ) The value
d=2.8 A and T, "=87.4 K were extracted from this fit,
which extends over a range in eg of 0.09 to 0.8. Fixing
d=5.85 and 11.7 A (0.5 and 1.0 times the unit-cell size,
respectively) in fits AL2d and AL2e increased the value of
T, ", moving it closer to T„but resulted in much lower-
quality fits, with g increasing by a factor of 122. As the
fit range was chosen to be closer to T„ the value of T, "
increased, moving closer to T„ the value of d also in-
creased to d=6.6 A, and g increased by a factor of 62
from the fit AL2a, as shown for AL2b and AL2c in Table

I and Fig. 5. The value d=2.8 A found for the best fit
AL2a is about the same as the distance between copper
oxide planes, and is approximately one-quarter of the
unit-cell size of 11.7 A.

Hagen et al. found values of d ranging from 5.7 to 30 A,
with T, " ranging from 3 to 5 K below T, . The value of d
is not given by theory. Oh et al. used d =11.7 4; Hagen
et al. used 5.85 A.. Our results indicate a smaller value for
d, 2.8 A., which is still consistent with the crystal struc-
ture. The paraconductivity for the AL2a fit rises too rap-
idly for any reasonable power law below ei =0.09 and ap-
pears to show no evidence of three-dimensional fluctua-
tions (a slope of ——,

' ) near T, . Our value of T, "is 5.6 K
below T, . These results are similar to those of Hagen
eral. , who suggested that T, "is several degrees below T,
because the critical region may be entered before the
crossover to three-dimensional superconductivity occurs.

2. Fit to the 3D Al. model

An attempt was made to fit the data to the 3D AL form
using the method employed by us to fit paraconductivity
data for polycrystalline samples. In this method, the
linear portion of the high-temperature resistivity data was
fit to p =aT+b. This fit was extrapolated down to T, and
the paraconductivity near T, defined as a' =o„—I/
(aT+b). The resulting fit, shown in Fig. 6, was qualita-
tively similar to our previous ones. The fit extended over
the range 0.006 & eI &0.05, with the paraconductivity
rapidly falling to zero above ei =0.05. The three-
dimensional coherence length (averaged in some way over
crystal directions) obtained from this fit was g(0) =1.1 A,
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which is significantly smaller than the value 13-22 A
found for the polycrystalline samples, and is also nonphys-
ically small for a 3D model.

An attempt was made to fit the 3D AL model by a
better method. Equation (8) was employed, using the
same strategy as in the 2D AL case

1 + e 2

aT+b 326((0)
The resultant fit parameters are shown in Table II, and
three of the fits are plotted in Fig. 7. The best fit over an
extended temperature range AL3a occurred for
96.0& T &200 K as in the 2D AL case. The values
g(0) =0.46 A and T, "=91.0 K were extracted from this
fit. The values of T, " and g(0) increased as the fit range
was moved closer to T„with an increase in g to 22, as
seen in AL3b and AL3c. The a parameter, representing
the slope of the normal-state resistivity, is approximately
30% larger than the slope of the data, giving an excessive-
ly large Auctuation contribution to the total conductivity.
Attempts to fit the data over a limited temperature range
near T, (AL3e, AL3f, and AL3g) present the same prob-
lem. The small three-dimensional coherence length g(0)( 1.0 A is inconsistent with a three-dimensional picture,
and the poor quality of the fits indicate that the 3D AL
model does not account for the data.
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FIG. 7. a' vs t. ~ for three 3D AL fits listed in Table II.

D. Fit to the LD model

The Lawrence-Doniach expression for the paraconduc-
tivity is

2

[1+[2g, (0)/d]'~-'} -'"
166dt.')

(9)

This expression is derived for layered superconductors,
and may be applicable to YBa2Cu307 —,with its layered
atomic structure. Equation (9) reduces to the 2D AL re-
sult for large ei when g, (0) is less than the layer spacing
d. Near T„ for small values of el, g, (T) may be greater
than d; in this case, the LD expression reduces to the 3D
AL result.

The crossover from two- to three-dimensional Auctua-
tions occurs at a temperature To, defined by setting
g, (TO) equal to half the unit-cell size of 11.7 A (or half
the distance between Cu-0 planes), the former yielding

To=T, "=exp[[(,(0)/5. 85 A] j. (lo)

Our inability to find reasonable fit parameters for the 3D
AL model near T, indicates that it should be dificult to
find good fits to the LD model there, since the LD model
predicts a two- to three-dimensional crossover near T, .

Equation (11) was used with five adjustable parameters
to fit the data:

2

0=0„+0'= + [1+[2&,(0)/d]'ei ']
aT+b 16A del

The fit parameters are collected in Table III. The fits
differ in the temperature range over which the data were
fit and the variables which were held constant during the
fit. The best fits were found over a temperature range
96 & T & 200 K, and the quality of fit deteriorated as the
lower end of the fitting range was decreased toward T„as
in the AL fits. The fits LDa, LDb, and LDc are plotted in

TABLE II. Aslamazov-Larkin 3D fit parameters.

Fit

AL3a
AL3b
AL3c
AL3d
AL3e
AL3f
AL3g

Range (K)

96.0-200
94.0-200
93.7-200
96.0-200
93.5-98.5
93.5-98.5
93.7-98.5

a (pncm/K).
1.03
0.981
0.960
0.931
0.724'
1.15
1.68

b (pncm)
—3.38
—4.51
—6.13
—6.00

2.84'
—40. 1

—93.4

g(o) A

0.457
0.552
0.627
0.725
1.14
1.24
1.45

TM" (K)

91.02
91.85
92.22
93.00'
93 00'
93 00'
93.00'

1.40
10.7
22.0
27.8

116.0
93.9

2.54

' Parameter was not varied in the fit.
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TABLE III. Lawrence-Donaich fit parameters.

Range (K) a (p 0 cm/K) b (p 0 cm) d (A) g, (A) T, " (K) To (K)

LDa
LDb
LDc
LDd
LDe
LDf

96.0-200
94.0-200
93.7-200
96.0-200
96.0-200
96.0-200

0.790
0.823
0.813
0.782
0.804
0.819

13.9
7.98
4.70
0.383
3.18

—8.80

1.71
1.58
2. 13
5.85'
2.67

11 7'

0.435
0.553
0.645
0.075
0.749
1.5'

90.55
91.80
92.22
90.69
93.00'
94.56

91.05
92.62
93.34
90.70
94.53

100.8

0.500
13.1
25.8
32.6
32.7

175.0

'Parameter was not varied in the fit.

Fig. 8. These three fits diff'er in the temperature range
over which the data were fit. The quality of the fits was
better than the 2D AL fits over the corresponding temper-
ature ranges. This is not surprising, since the LD model
has five adjustable parameters, while the 2D AL model
has four. The value d=1.71 A obtained from the best fit
LDa is smaller than the value of d=2.82 A found above
in the 2D AL fits. The value of g, (0) from the best LD fit
is 0.44 A. This value seems surprisingly small. It is not
actually known, however, that g, approaches 0.44 A as T
becomes much less that T„since we do not know the tem-
perature dependence of g, with any certainty in the high-
temperature superconductors. The values of T,M" lie 1 to
3 K below T, . It is surprising to find T, "&T„although
this was also found by Hagen er al. Conclusions should
probably not be drawn from any of our data taken below
93.6 K, where the data fit none of the theories.

In the work of Oh et al. , T, "was determined by extra-
polating the linear region near T, of a plot of o.' vs T to
o' =0. They found values of Tc to be 1-2 K above

the zero-point resistance temperature T, . They intro-
duced an additional parameter C into Eq. (11), substitut-
ing Ce /16@de for e /16@de. They were forced to do this
because of their assumption that d =11.7 A, the unit-cell
size. The values of C they extracted from their fits ranged
from 3.3 to 7.4 A, and 1.5 A & (,(0) & 2.0 A. A fit with
C&1 and a given value of d is exactly the same as a fit
with C = I and a smaller value of d, with the same ratio of
(,(0) to d.

Figure 9 is a plot of cr' vs T, using the a and b pararn-
eters of fit LDa to define o'. An intercept of 91.7 K is
found by extrapolating the linear part of this plot near T,
(96 & T & 100 K) to a' =0 (the dotted line of Fig. 9).
The intercept of the curve is 1.1 K above the mean-field
transition temperature predicted from the nonlinear fit.
The curve obtained from the nonlinear fit to LDa is plot-
ted as the dashed line in Fig. 9 for comparison. The two
procedures give a diA'erent value for T, "because o' is
quadratic in T in the LD model, and the linear extrapola-
tion near T, is not good enough to accurately predict
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I I I ~ ~ I

0

1 0.00
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data near Tc
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FIG. 8. o' vs eI for three LD fits listed in Table III. FIG. 9. a' vs Tplotof the LDa fit listed in Table III.
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T, ". Similar plots were found for several of the other fits
listed in Table III.

Hagen et al. conclude that the LD equation does not fit
their data. In defining o' for the LD fits, they used o.„as
that found from their AL fits, and chose T, at the value
where I/cr' extrapolates to zero, rather than allowing it to
vary freely. We find that allowing a„and T, " to vary re-
sults in good fits to the data.

It appears possible to fit the data well with the LD mod-
el. The fit is good over a wider range in e~ values
(0.05 & et & 0.8) than the 2D AL fits and has a lower g
value than either the 2D AL or 3D AL fits. This seems
surprising at first, in light of our inability to get reason-
able fits to the 3D AL model. Further thought resolves
the paradox: The crossover temperature To from 3D to
2D behavior as given by Eq. (10), using the values of T, "
and g, (0) from the LDa fit, is Tn-91. 1 K which is 1.9 K
below T, . The slope of the LDa fit in Fig. 8 at high e~ is
close to —1, indicating 2D behavior, as it should. Near
eI =0.05, where the LDa fit diverges from the data, the
slope is —0.76, indicating the transition to 3D behavior
has begun, but the superconducting transition is reached
before it can be completed.

E. Fit to the MT model

AL+ ~MT ~

2 2

6~d 8Ad —8

(12)

(13)

Maki and Thompson reformulated the AL theory by
reconsidering the role of the decay of the superconducting
pairs into quasiparticles, and vice versa. In the presence
of weak pair-breaking eff'ects, newly formed quasiparticles
may continue in a state of nearly equal and opposite mo-
menta until they recombine to form fluctuation pairs. The
enhancement in the conductivity contributed by this pro-
cess is limited by strong inelastic scatterers and by the
presence of pair-breaking interactions, such as that con-
tributed by magnetic impurities. Maki and Thompson's
work added an additional term to the AL result. The re-
sulting theory should probably be called the Aslamazov-
Larkin-Maki-Thompson (ALMT) model, but we refer to
it as the Maki-Thompson (MT) model for brevity. The
two-dimensional MT result is as follows:

In this equation 6 represents the reduced temperature
shift 8=(T,n

—T, )/T, induced by pair-breaking interac-
tions.

We fit the data to the following five-parameter non-
linear equation:

2 2
1 + e i+ e 1

aT+b 16hd 8hd et —8

(14)

The parameters obtained from fits to the data are shown
in Table IV. The fits diff'er in the temperature range over
which the data were fit and the variables which were held
constant during the fit. As for the other three models, the
best fits to the data occurred for a temperature range
96 (T & 200 K, with the quality of the fit decreasing as
the lower end of the fitting region was lowered toward T, .
This can be seen in fits MTa, MTb, and MTc of Table IV,
which are plotted in Fig. 10. The quality of the fits is
similar to that of the 2D AL and LD models over the cor-
responding temperature ranges.

The fitting procedure fo'r the MT case was not able to
uniquely determine values for d and 8; Table IV contains
fits of near equal quality with values for d and 6 ranging
from 11.7 & d & 60 A and 4.39 x 10 & b & 8.01 x 10
(In clean aluminum films, '

by comparison, the parameter
8 is about 10 .) A broad minimum in g occurs for this
range of values. Our inability to uniquely determine a, b,
and T, "in the MT case is the cause of this problem. The
data can be fit with the MT model, but we cannot draw
any conclusions as to the validity of this model in describ-
ing the data, since the parameters are not well deter-
mined.

IV. SUMMARY AND CONCLUSIONS

Our analysis rests on the assumption that the normal-
state conductivity is a linear function of temperature.
This seems reasonable because of the extremely linear
temperature dependence of the sample's conductivity be-
tween 150 and 240 K.

Using the two-dimensional AL theory the best value of
d is 2.8 A. The best value of g(0) is 0.46 A for the three-
dimensional AL fits, which should be some average of g„
(b, and g„ this value of g(0) is, therefore, too small for a

TABLE IV. Maki-Thompson fit parameters.

Fit Range (K) a (p ri cm/K) b (p 0 cm) d (A) TMF (K) T,o (K)

MTQ 96.0-200
MTb 94.0-200
MTc 93.7-200
MTd 96.0-200
M Te 96.0-200
MTf 96.0-200
MTg 96.0-200
MTh 96.0-200
MTi 96.0-200
M Tj 96.0-200

0.815
0.833
0.832
0.837
0.807
0.792
0.784
0.780
0.777
0.772

10.7
3.98
0.567

10.2
10.8
10.9
1 1.0
10.5
10.4
10.2

16.9
13.5
17.6
11 7'
20.0'
30 0'
40.0'
50 0'
60 0'
70.0'

1.42 x
7.30x
5,86x
4.40 x
7.81 x
1.22 x
2.02 x
4.24 x
8.01 x
2. 18 x

10
10
10
10
10
10
1O 4

1O-'
1O-'
1O-'

89.50
91.15
91.72
89.67
89.33
88.81
88.44
88.37
88.2
88.40

94.32
99.79
98.45
97.09
93.73
93.11
93.02
93.00
93.00
93.00

0.638
17.6
36.2
0.597
0.652
0.733
0.789
0.873
0.919
1.40

'Parameter was not varied in the fit,
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FIG. 10. a.'vs el for three MT fits listed in Table IV.

three-dimensional theory. In the MT case, the fitting pro-
cedure does not give well-defined fitting parameters.

Although good fits to the data are obtained for all four
theories, the Lawrence-Doniach theory provides a better
fit (with one more adjustable parameter) over a wider
range in e~ than the Aslamazov-Larkin theory does in ei-
ther 2D or 3D. The best fit to the LD theory provides the
parameters d=1.71 A and g, (0) =0.44 A. A g, (0) as
small as that raises theoretical problems. The number of
Cooper pairs in a region of diameter g, b(0) and thickness
g, (0) would be less than unity. Near T„however, the
coherence length would be larger, and this problem would
be alleviated.

We find it surprising that the LD theory fits our data
for such a wide range of el values, up to a temperature of
2.2 times T, ". For all four theories, T, "is (surprising-
ly) less than the zero-resistance temperature T, by several
K, with the paraconductivity deviating from the theories
with decreasing T near T, +0.6 K. This rapid increase in
the paraconductivity near T, may point to some deficiency
in the theories in describing the data, but, as we have sug-
gested previously, it may simply show that the region be-
tween T, and T, +0.6 K is the critical region, where the
Auctuations in the number of superconducting electrons is
not smaller than its average value. Another possible ex-
planation is that below T, +0.6 K, inhomogeneities in the
sample have an observable effect. Most people who have
worked carefully with YBa2Cu307 —„have come to realize
that the samples are not perfectly homogeneous. The
structure near the peak of the dp/dT curve in Fig. 3 is an
indiction of such inhomogeneity. Perhaps there is a range
of transition temperatures in the sample, 6'T, . Figure 3
would indicate that BT, may be on the order of 0.2 K.

Then none of the theories can be expected to fit within
roughly bT, of the apparent T, . It should be noted that
when T lies in the range T, +0.2 K to T, +0.6 K,
g, (0) /[In(T/T, ")]'t is approximately 2.5 4, so inhomo-
geneities of all scales, down to atomic dimensions, would
be expected to inAuence the superconducting properties.
For temperatures far above T„ the effects of inhomo-
geneities could average out.

Our results agree well with those of Oh et al. In com-
paring their results with the theory of Lawrence and
Doniach, however, they assumed that d =11.7 4, the size
of the unit cell. This assumption forced them to introduce
an adjustable parameter C. There is no reason, however,
why d should not be approximately the spacing between
Cu-0 planes, as we have found. Oh etal. pointed out
that their experiment determined 2(, (0)/d more unambi-
guously than d, and their result 2(, (0)/d=0. 3 is smaller
than ours, 0.54. If the fit is done using e instead of eI, as
they did, we get d=2.47 A and (,(0) =0.43 A, so
2(, (0)/d =0.35 in agreement with the data of Oh et al.

The crossover to 3D fluctuations found by Oh et al. was
at a temperature To above T, with To/T, "=1.1. We get
a value of To below T„but slightly above T, ", with
To/T, "=1.01. With our value of To we still find the
slope tending toward ——,

' indicating 3D behavior before
the superconducting transition, in disagreement with
Hagen et aI. , so we can fit the data to the LD theory. Fit-
ting the data to the 2D AL theory in a similar manner as
Hagen et al. , we find that the transition to 3D behavior is
cutoff before completion by what we believe are critical
Auctuations near T, or the effects of sample inhomo-
geneities at a scale of a few A.

From our LD fits, we find the crossover temperature,
To =90.7 K to be less than T„but from the beginning of a
change in slope of the best fit (LDa) near T„behavior
tending toward 3D Auctuations is evident. Our value of
To is consistent with our inability to fit the 3D AL model
with reasonable fit parameters near T, . It is also con-
sistent with our reasonably good 2D AL fits near T, . The
value of g, (T) from the best LD fit is less than half the
unit-cell size near T„accounting for 2D behavior there.

Larger values of g, (0) than ours, obtained from resis-
tive measurements of H, 2(T), have recently been called
into question by the discovery of Aux-lattice melting.
The many resistance measurements of H, 2(T) indicate
the field at which the Aux lattice melts, rather than the
field at which the material is forced into the normal state.
It appears that a g, (0) result closer to ours would be indi-
cated by Lee, Klemm, and Johnston measurements of
fluctuation diamagnetism; they find g, (0) =1.4~ 0.2 A.
[It is not possible to estimate the coherence length from
measured values of H, ~(0), because published values
range from 1 to 5000 Oe.]
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