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Pauli limiting of the upper critical magnetic field
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We consider the effect of Pauli limiting on the upper critical magnetic field H, 2 of a strong-
coupling superconductor with arbitrary concentration of impurities. In the extreme Pauli limit,
H 2p is independent of the impurities but does not correspond to the highest attainable value for H, 2

except for the dirty BCS limit. In an appropriate approximation, our equations reduce correctly to
the well-known Werthamer-Helfand-Hohenberg equations with an important difference that the
band-splitting term is renormalized by a factor of (1+A, ) . This greatly reduces its effect. Strong-
coupling corrections that go beyond this renormalization are also considered.

I. INTRODUCTION

Following the work of Helfand and Werthamer, '

Werthamer-Helfand-Hohenberg (WHH) have given
equations for the second upper critical magnetic field H, 2

valid for a Bardeen-Cooper-Schrieffer (BCS) supercon-
ductor with Pauli paramagnetism included. These equa-
tions were generalized by Schossmann and Schachinger
to include strong-coupling effects. Their equations are
valid for an arbitrary impurity concentration while previ-
ous equations given by Rainer et at applied only in the
dirty limit. Generalizations of the work of Schossman
and Schachinger to account for spin Auctuations were
given by Schossmann and Carbotte and functional
derivatives with and without Pauli limiting studied by
Marsiglio et al. and Schossmann et al. , respectively.

In this work, we use the equations given by
Schossmann and Schachinger to prove that in the ex-
treme Pauli limiting case, H, 2& (Clogston limit) is in-
dependent of the impurities although it still depends on
the microscopic parameters describing the superconduct-
ing state namely the electron-phonon spectral density
a F(Q) and the Coulomb pseudopotential p*. In order
to correlate with the WHH equations, we reduce our
equations to a two-square well model for the electron-
phonon interaction. This produces the WHH equations
but with a very important (I+A, )

' renormalization of
the Pauli limiting term. Here A, is the electron-phonon
mass renormalization which can be quite large. This re-
normalization, which seems to have been recognized first
by Orlando and Beasley' without derivation, differs
significantly from the previous suggestion" of (1+A, )

which is based on an obvious generalization of the origi-
nal free-energy argument given by Clogston. While
free-energy arguments can give a correct order magni-
tude estimate for the Pauli limiting field H, 2&, they do
not give the correct numerical factors nor the correct
electron-phonon mass renormalization coming from the
normal-state channel in the Eliashberg equations.

The two-square well model is used to study the effect of
Pauli limiting as the slope of H, 2 at the critical tempera-
ture ( T, ) is varied. We show that a single universal curve
applies for the normalized value of H, 2(0)/T, (1+A.) at

zero temperature T =0, as a function of the normalized
slope

dH, 2( T)

dT z; (I+X)

II. EXTREME PAULI LIMITING

The strong-coupling equations for the upper critical
magnetic field H, z(T) on the imaginary frequency axis

This applies to a given normalized impurity content
t+/T, (1+1,) which r+ the impurity scattering matrix
which is related to the transport scattering time
through the equation t+= I/(2nr„). In the clean limit,
it is found that the extreme paramagnetic field which cor-
responds to the case when the orbital contribution is
negligible compared to band splitting, is not the highest
value of H, 2 that can be obtained. The maximum is
found instead to occur around H, z/T, (1+A,)=10 T/K
and is 1.5 T/K for H, 2(0)/T, (1+A, ) to be compared with
H, 2 J /T, (1+A, ) of 1.32 T/K.

The two-square well results are compared with results
of full strong-coupling calculations in two specific cases
chosen to illustrate the possible differences that can arise.
Using a 6-function model for the electron-phonon spec-
tral density a F(Q), we systematically examine the effect
on H, 2 of strong coupling corrections which go beyond
1+A, corrections. In particular, we study the variation of
the maximum value of H, 2 as a function of the position of
the Einstein frequency (co@ ) in the spectral density.

In Sec. II, we prove that the extreme Pauli limiting
field is independent of impurity concentration. Section
III considers the two-square well model and exhibits the
important renormalization of the Pauli contribution by a
factor of (1+X) ' which reduces its effect very
significantly. Dirty and clean limits are considered in
Sec. IV and universal curves established for H, z(0)/( I+
k) T, plotted against normalized initial slope
H, ~/T, (1+k). A comparison with full strong-coupling
results is given. Further strong coupling results for a 6™
function spectral density are found in Sec. V and con-
clusions given in Sec. VI.
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derived by Schossmann and Schachinger which apply
for any impurity concentration are given by

In the sum of Eq. (lb) most of the terms cancel and we
get

b, „=rrT g [A(n —m) —p" ]y(co )6 co„=co„+nTA(0)+27rT g A(m)+vrt+ sgnco„.
m =1

+ rrt y(co„)b,„, (10)

co„=co„+m T g A,(n —m )sgnco + mt +sgnco„, (lb)

with p* the Coulomb pseudopotential, co„=n.T(2n +1),
n =0,+1,+2, . . . , the Matsubara frequencies, 5„the
complex pairing function, 6„the renormalized Matsu-
bara frequencies for the normal state and t+ =1/(2~r„)
with r,„asthe transport relaxation time. If a F(Q)
denotes the electron-phonon spectral density we define

Aa (A)F(Q)
0 +(co„—co )

In the case of extreme Pauli limiting the orbital effects
become very small which can be simulated by setting
UF=0. In that case the function g(co„)can be approxi-
mated by

y(co„)= 1/(co„+ipiiH)

and the eigenvalue equation (9) becomes

b,„=vrT g [A(n —m)+A(n +m +1)—2@*]
m=0

2 OD 2 q&ay(co„)= — dq e ~ tan
I co„I

+ ip, H sgnco„

X Re
co +sp&H

where pz stands for Bohr's magneton and

a=eHvF/2

(3)

(4)

+ivrT g [A(n —m) A(n—+m +1)]
m=0

with H the magnetic field at temperature T, e the electron
charge, and vF the Fermi velocity.

The functions y(co„)have the symmetry with

X Im
+ip~H

(12)

g(co„)=g" (
—co„)

and a proper ansatz for b,
„

in (la) is
co„=co„+nTA, (0)+2rrT g A.(m) sgnco„.

m=1
(13)

Using the symmetries (5) and (6) formula (la) can be
rewritten

b,„=vrT g [A(n —m) +A(n +m+1) —2@*]
m=0

X Re[y(co )b, ]

+imT g [A(n —m) A(n +m—+1)]
m=0

X Im[y(co )b, ]+crt+y(co„)b,„.
The usual way to solve (7) is to define

b,„=6„[1 rrt +y( co)]—
which gives

Tg [A(n —m. )+A(n +m +1)—2@*]
m=0

As all impurity factors have dropped out of Eqs. (12) and
(13), we can conclude that the extreme Pauli limit field
H p p is independent of impurity concentration. Of
course, it still depends on the electron-phonon spectral
density a F(co) through the A, (l) factors in Eqs. (12) and
(13) and on the Coulomb pseudopotential p*. This is in
contrast to a BCS theory for which a single universal
value of H&2p applies.

III. THE TWO-SQUARE WELL MODEL

In this section, we wish to reduce our Eqs. (9) and (10)
in a BCS-like model so as to compare with the WHH
equation. ' This is accomplished by assuming that for
a11 important Matsubara frequencies co„and co, the
electron-phonon factor A, (n —m) can be taken to be con-
stant equal to its n =m value [A,(0)—:A, ]. We, therefore,
introduce, a two-square well model with cutoff at the De-
bye energy coD. This cutoff is necessary so as to get con-
vergence. We take

'(co ) —rrt + i((n —m) =A(0)e(coD —
I co„I )e(coD —Ico

I
) (14)

X Im
'(co ) rrt+—+i7rT g [A(n —m) A(n +m +1—)]

m =0

(9)

in Eqs. (9) and (10). The imaginary part of (9) vanishes
and h„becomes pure real.

Within the model (14) all Z„up to the cutoff N, are
constant so that the equations are reduced to
[2N, +1)n T =coD]
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N

1=2vrT g [A,(0)—p*]ReI[y '(ru ) ~—t+]
l.5

BCS
clean (t'=0.0mev)—

tu„=[1+X(0)cu„+~t+ . (15b)
l.O

I—

BCS
dirty(t'=50omev)

We now introduce the normalized quantities

H* =H/[(1+ A, ) T, ],
uF =u~/Q(1+A. )T, ,

(t+ )*= t+/[(1+ A, ) T, ],
and find the universal relation

(16a)

(16b)

(16c)

with

1+k =2rrt g ReIy (G ) vr(t+—)*] 'I
P m=o

(17a)

2
y(a )=, f dqe ~ tan

(ae )1/2

(
e )1/2

(2m +1)rrt +rr(t+ )*+ipsH*

(17b)

where o.*=eH'vF' /2, t = T/T, . To complete this set of
equations, we need to note that in this limit the critical
temperature T, is given by

1+k = ln( 1. 13coD /T, ) .
p

(18)

Equations (17) and (18) have the same structure as the
equations derived by Werthamer et al. (WHH theory) on
the basis of BCS theory. They deal, however, in the re-
normalized quantities a*uf*H*(t+ )* rather than with the
corresponding unrenormalized quantities without the
)+A. factors. We note, in particular, the factor ( I+A, }
in the band-splitting term ip&H in Eq. (17b). This is the
first rigorous derivation of such a factor, although we are
aware that it was anticipated without proof in the work
of Orlando and Beasley. ' Since, in many superconduc-
tors 1+1, can be of order 2 or more, the Pauli term has a
much smaller effect in our theory than it has in WHH.
Thus, the artificially large value of spin-orbit scattering
that is often postulated in order to reduce the effect of
Pauli limiting when fitting experiment is due in part to an
overestimate of band-splitting effects.

We note that, in contrast to our result, Orlando et aI."
conclude from free-energy arguments that the paramag-
netic field term ip&H in (17b) should be reduced instead
by a factor of &1+A,. This follows directly from a gen-
eralization of Clogston's original argument in which the
Pauli band-splitting energy is set equal to the zero-
temperature condensation energy of the supercondueting
state. We see for our more sophisticated approach that
this simple argument, while giving the correct order of
magnitude for 0,2 z, does not give the correct renormal-
ization law. We will return to this point more explicitly
in the next section.

0.5

K) clean
K) dirty (t 50.0rneV)

K) clean
K) dirty (t .IOO.OrneV)

0.0
0.0 ~ 5.0

H„z(i+x)T, (Tr K)

I

IO.O

FIG. 1. The normalized zero-temperature second upper criti-
cal field H, 2(0)/(1+ A, ) T, as a function of the normalized initial
slope at T, [dH, z(T}ldT]r l(1+A, )T, . The solid and dashed

C

curves were obtained using a renormalized BCS theory includ-
ing Pauli limiting and apply, respectively, to the clean and dirty
(1+=50.0 meV) limits. The straight lines result when Pauli
limiting is neglected. The upward and downward pointing open
(clean limit) and solid triangles (dirty limit) are results of full
strong-coupling calculations for V3Si with A.=1.0 and a ficti-
tious system with T, =35.0 K having the same shape u F(Q) as
that for V3Si but with k= 1.6.

In Fig. 1, we show such curves for the clean (solid curve)
and dirty (dashed curve) limit. If Pauli limiting is ig-
nored H, (20) /( I+A, )T, is simply proportional to the
slope [dH, 2(T)/dT]T /(1+it)T, . This corresponds to
the two straight lines, solid for the clean and dashed for
the dirty limit of Fig. 1 with slope of 0.73 and 0.69, re-
spectively. In the next section, we look at these two lim-
its in more detail.

IV. DIRTY AND CLEAN LIMITS
IN TWO-SQUARE WELL MODEL

Equations (17) and (18) can be reduced analytically in
the dirty and elean limits. We start with the dirty limit.
In this case, the argument of the inverse tangent is small
and we can write

'(tu )=[(2m +1)vrt +7r(t+) +ip&H*]

X [ I+a*/3rr f(t }*]I

and get

To end this section, we point out that Eqs. (17) and (18)
are universal for a11 superconductors provided the aster-
isked quantities are used. For a fix impurity concentra-
tion (t )*, H* is unique for a given value of uF*. It is, in
fact, more physical to consider the slope of H,*2 at T, in-
stead of vF itself. This slope is proportional to vF since
the universal parameter a' is related to II 2 by
a'=eH'vF* /2. Thus, when Pauli limiting is included
for a given (t+ )*, a universal curve results for
H, 2(0) /( 1+A, ) T, as a function of

(dH, ~(T)/dT)T /(I+A, )T, .
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1 1g c

=2~t g Re( I (2m +1)crt +i @AH*+a*/[3(t+)*~]I
')

P m=0
(20)

which gives

= Re
g —t2* T2n 2nt 6~2t (t + )*

ipBH
0.5+ +

6~2t (t+)*

1+k D~~ 2= Re dm
0 (

e )1/2

x dqe q tan
0

(
s )1/2

co+ lPBH

(29)

(21)

where 1t/(x) denotes the digamma function. By assuming
coD to be very large one can approximate the first digam-
ma function in (21) by ln(cuD /T). Furthermore, using the
T, equation (18) we find

l PBHc2
ln( l. 13 X 2rrt ) = —Re1tt 0.5+ +

6rr2t (t+ )*

(22)

e-~
ln( 1.1 3@,~ H,*2 ) = 1—

2
E(r )

—r J dq e ~ [ 1n(r+q) —in~a —
q ~],

(30)
where

r =ps H,*z /( 1z* )
'

This integral can be solved in the limit of very high De-
bye frequencies coD compared to (a*)'/ and pea* as is
shown in the Appendix, with the result:

In the limit when the reduced temperature is small (22)
has the solution

(2am )1/2/( +2)1/2 (31)

H* = [(eu* /[6~(t+)*] +p1
c2

1 13 F B (23)
It is again possible to express evF by the initial slope of
H,*2 which is determined by

and the initial slope is found by differentiating (22) with
respect to t:

H*=
c2

dH,*2

dt
=28. 15/eUF (32)

H*=
c2 dt

24(t+ )*
0jc 2
F

(24)
which gives

r =@~(H 2H 2
)'/ /V 14.075 . (33)

which can be inserted into (23) to give

a,*,= [(0.695H,*, )-'+(a* )-']
The extreme Pauli limit follows for infinite slop H, 2

—+ ~:
(25)

1
or 1.32 T/K

1. 13PB
(26)

Hc2 P 1.76 1

&I+XT, &2 ps
1.24

as given by Orlando et al. " and Without a 1+1, correc-
tion by Decroux et al. We see clearly that free-energy
arguments cannot be used to get the correct numerical
factor in such relationships or the right k renormaliza-
tion.

In the clean limit, the situation is more complicated.
By setting t+ =0 and approximating the sum by an in-
tegral (17a) and (17b) become for low temperatures:

which is slightly diferent from the Clogson value ob-
tained from free-energy considerations. ' In that ap-
proach, we set the band-splitting energy equal to the BCS
condensation energy

P21H, 2 PX(0)= —,'X(0)(1+A,)(1.76) T, ,

where X (0) is the single-spin electronic density of states
at the Fermi energy. This leads to

ln(1. 13pt1H 2 t*)=0 (34)

which corresponds exactly to Eq. (26) as expected from
Sec. II.

The clean limit curve (solid line) of Fig. 1 was in fact,
obtained from (30) rather than from (17) and (18). In
contrast to the dirty limit, H, 2 can now be significantly
greater than H, 2 p and the upper BCS limit for
H, 2/T, (1+A, ) turns out to be 1.57 T/K which is reached
for ,H2( /IA+, )-=10 T/K. Thus, H, 2t, is not the max-
imum value of the critical magnetic field that can be
reached except in the dirty limit. For very large slopes,
the solid and dashed curves in Fig. 1 must, of course,
meet.

V. STRONG-COUPLING CORRECTIONS
BEYOND 1+A,

While the factor (I+A, )
' greatly deemphasizes the

effect of Pauli limiting in Eqs. (17) and (18) and reduces
the need to introduce spin-orbit scattering, it is important
to study strong-coupling eA'ects beyond this factors. This
is the subject of this section.

In order to . estimate strong-coupling corrections

The extreme Pauli limiting case is obtained for very
large values of ~. It is shown in the Appendix that Eq.
(30) gives in this limit
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beyond the 1+A, rescaling that appears in the modified
BCS results, we calculated the reduced upper critical
magnetic field H,*z =H, z/[(1+A, )T, ] as a function of the
reduced initial slope H,*2 =H, 2/(1+A, ) for several cases.
As was shown in the previous section, there is only one
such curve in BCS given a fixed reduced impurity concen-
tration t+/[(1+A, )T, ]. This is no longer the case when
realistic values for a F(ro) are taken into account. In
Fig. 1, we show some of our results based on the full
strong-coupling equations (la) and (lb). In one calcula-
tion (triangular symbols pointing up), we have used the
electron-phonon spectral density a F(co) determined by
Kihlstrom' for V3Si from tunneling data. The value of k
is 1.0 and we chose p* to give a T, = 17.0 K for this value
of A, . This corresponds fairly closely to a sample studied
by Orlando et ah. "with a fairly low residual resistivity of
5.2 pQ cm at 20 K and an estimated mean free path of 95
A and an electromagnetic coherence length of 56 A. In
Fig. 1, two cases are considered. The first is the clean
limit results with t+ =0.0 meV open triangles which are
seen to fall above the BCS clean limit curve but not by
very much. In this case, strong-coupling corrections
beyond the very essential factor of 1+k are not very pro-
nounced. The same remarks apply to the solid triangles
describing the dirty limit. To get larger corrections, we
have arbitrarily increased the area under the spectral
density a F(ro) of V3Si by multiplication by a constant
amount to increase the corresponding A, from 1.0 to 1.6
and, at the same time, raise T, to 35 K which is not very
different from the critical temperature found recently in
La, ssSro i&CuO& (Ref. (13) a high T, oxide superconduc-
tor. The clean limit results are the open triangles point-
ing downward in Fig. 1. We see that, in this case, the de-
viations from BCS are much more significant than for
V3Si itself. This shows clearly that, in some cases at least,
it is necessary to perform a full strong-coupling calcula-
tion based on Eqs. (la) and (lb) in order to get an accu-
rate value for H, (z0) /[1 +A, ( 0)]T,. Additional results
for dirty samples (solid downward triangles) are also
given in Fig. 1 and compared to the BCS t+ =50.0 meV
curve. Again, significant corrections can arise and this
should be kept in mind in the analyses of data.

Finally, we return to the solid and dashed lines in Fig.
1, giving the slope of H, (20) [/+IX, ]T, as a function of
the initial slope at T„H,z(T, )/(1+A. ). These straight
lines apply, respectively, to the clean and dirty limits in
BCS when Pauli limiting (band splitting) is ignored. The
bending over of solid and dashed curves away from these
straight lines gives the effect of band splitting. In the
work of Orlando et al. ,

" they quote for H, z(T, ) in V3Si a
value of 2.0 T/K. If we divide by 1+A,, we get for the
horizontal variable a value H, 2(T, )/(1+A, ) =—1.0 T/K
which indicates that Pauli limiting is not a large effect in
V3Si. This conclusion was also reached by Schossmann
and Schachinger on the basis of detailed numerical con-
sideration. In our case, we need only realize that in this
region the solid and dashed curves do not differ very
much from the corresponding straight lines.

To investigate further the effect of phonon dynamics
on the normalized quantity H, 2(0)/(I+A, )T, as a func-
tion of normalized initial slope H, 2(T, )/( I+A, ), in Fig. 2

l.5

l.O

BCS

~g=&.OmeV(t = IOO.O meV)
AS (t -50.0 meV)

-3.0meV (t IOO.OmeV)

0
V +Z

0.5

-~z 2.0meV(t IOO.OmeV)

0.0
0.0 ~ 5.0

Hc~/(I+h)Tc (T/K)

I

l0.0

FICz. 2. The normalized zero-temperature second upper criti-
cal magnetic field H, 2(0)/(1+A, )T, as a function of the normal-
ized initial slope at T, [dH, 2(T)/dT]r /(1+A, )T, . These curves

were all calculated using the full strong-coupling equations (1a)
and (1b) and come in pairs. The solid applies to the clean limit,
the dashed to the dirty limit with impurity content as labeled.
The lower pair applies for an Einstein frequency co& =2.0 meV,
the next set for 3.0 meV and the fourth set for 5.0 meV. The
third set represents the BCS results and is included for compar-
ison.

we present further results obtained for a 6 function spec-
tral density of the form

a F(co)= A5(co —roz), (35)

l.5
——BCS

————-BCS

0.5-
Tc = I.O meV
p'= Ol

clean l imit
———dirty limit

{t'= lOO mev)

0.0
2.0 4.0

I

10.0

FIG. 3. The maximum value of the normalized second upper
critical magnetic field 0,2(0),„/(1+k)T, as a function of Ein-
stein frequency coE for the clean (solid line) and dirty (dashed
line) limits, respectively. By dirty we mean t+ = 100.0 meV.

where coE is some Einstein frequency which we will vary
and A is the area under the 6 function. In all calcula-
tions, we have taken p*=0. 1 and adjusted A to get a
T, =1.0 meV so that the only remaining parameter is the
choice of coE. Different coE's will give different curves.
For very large coE we expect to recover BCS. Both clean
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and dirty limits are considered as labeled in the figure.
Shown for comparison are BCS results. We first note
that for co+ =2.0 meV, the differences with BCS are strik-
ing and full strong-coupling calculations are definitely
necessary. For co@=3.0 and 5.0 meV, the differences are
reduced but are still quite significant. To characterize
these results with a single parameter, we have chosen to
consider the value of H, 2(0) /(1+ A, ) T, at maximum
which is 1.32 T/K in the dirty BCS limit and 1.57 T/K in
the corresponding clean limit. As can be seen in Fig. 3
where the maximum H, 2(0) is plotted against the Ein-
stein frequency co@ the maxima can be quite different for
6-function electron-phonon spectral densities. In particu-
lar, when co+ is small the maxima can be less in BCS
theory while at intermediate values of mE they can be
larger but it would appear not by very much.

VI. CONCLUSIONS

malized zero-temperature critical magnetic field H, (0)/
(I+A.)T, as a function of the normalized slope at T,
namely

dH, 2(T, )

dT /( I+A, )T,
T
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which we believe to be particularly useful in analyses of
experiments. On such a plot, a straight line would result
if Pauli limiting is ignored and it is, therefore, deviations
from this straight line that measure the effect of Pauli
limiting.

We have established that the extreme Pauli limiting
field is independent of impurity content but varies with
electron-phonon spectral density a F(Q) and Coulomb
pseudopotential p*. Using a two-square well model in
the full strong-coupling equations leads to the well-
known BCS equations of WHH with some very
significant renormalization by a factor of l +k, where k is
the electron-phonon mass renormalization. In particular,
the effect of Pauli limiting is greatly reduced by this re-
normalization. This means that it is not necessary to in-
troduce such large spin-orbit scattering corrections as has
been needed in the past in order to reduce Pauli limiting
effects. We have also given analytic results for the ex-
treme Pauli limiting field in dirty and clean limits. In ad-
dition, results are given of full strong-coupling calcula-
tions for V3Si, for a spectrum of the V3Si type but with a
T, =35.0 K and A, =1.6 and for a series of 5-function
spectra. In all cases, the results are presented for the nor-

APPENDIX

In Eq. (19) we have to deal with a function of the struc-
ture:

f(z)=Re f dx2 f dqe ~ tan
0 0 X +lV

(A 1)

with z =coD/[T, (a*)'~ ] and r=p&H" /(ca*)'~ . The
transformation x =x —i r can be used to rewrite Eq. (Al)

f (z)= Re2 f dx f dq e 'i tan '(q/x)
0 0

—Re f dx f dq e ~ ln[(x+q)/(x —q)] .
0 0

The first integral in (A2) can be performed by making the
transformation q/x —+q and carrying out the integration
over x:

2 f dx f dq e tan '(q/x)= lim f tan 'q —f —e '+" tan 'q
0 0 @~0 e q

= lim 1 —inc — e ~ ' '"' = I+y/2+/ ln(z +is) .
@~0 q

(A3)

In (A3) we assumed the z is large enough so that e 'i '+" is going towards zero very fast and, therefore, that
tan 'q -q. Furthermore, we used the approximate behavior of the integral (z~0)

dx
e = —y —lnz

z X

with y Euler's constant. In the second term of (A2) we can do the x integral to get

(A4)

f dx f dq e ~ [ln(x+q) —In~x —q~]=r f dq e ~ [ln(r+q) —ln~r —q~]
0 0 0

+ f"dq e 'q [»(r+q)+»lr —qll
0

—2f dqqe ~ lnq.
0
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The first integral in (A5) equals

e X

lnr+ f dx
2 —2 x

where we assumed (z +r )'~ —z.
For the extreme Pauli limiting case we have to investi-

gate (A7) in the limit r&)1. The logarithm of the in-
tegral in Eq. (A7) can be approximated by

and the last is minus Euler's constant. Thus we arrive at
the final form:

2
E(r )

»(r+q) inlr —ql -2q/r+0[(q/r)']
so that

lim f (z) = ln(z /r )
7-»1

(A8)

(A9)

—r f dq e ~ [1n(r+q) —ln~r —q~],
0

(A7) because z is still supposed to be very large compared to r.
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