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A theory is developed for the density profile of a weakly interacting Bose gas confined within an
arbitrary potential well at nonzero temperature. This problem is of interest in connection with
magnetically confined spin-aligned atomic hydrogen (H$). The approach taken is conceptually
simpler and of comparable accuracy as compared to previous approaches. It is based on the state-
ment of constancy of the chemical potential in equilibrium. This in turn involves the internal chem-
ical potential, a functional of the density, which we treat in a local-density approximation. For a
given temperature we develop a form for the local internal chemical potential for a wide range of
density using known low-density, intermediate-density (i.e., near the Bose-condensation density),
and high-density analytic forms, with appropriate smooth interpolants connecting these three
profiles are evaluated within the Bogoliubov approximation for the local internal chemical potential
for parameters appropriate to magnetically confined H$ for both symmetric linear and quadratic
one-dimensionally varying wells. Comparison is made to previous work. The nonanalytic region of
the density profile near the Bose-condensation density is analyzed. We also calculate density
profiles including the next-highest-order interaction correction (i.e., beyond Bogoliubov) in the
internal chemical potential. For conditions relevant to hypothetical H$ at moderate densities this
leads to a small but discernable eftect on the density profile.

I. INTRODUCTION

This paper presents a general theory of the low-
temperature density profile of a weakly nonideal Bose gas
trapped within an arbitrary potential well. Studies of this
problem at zero temperature have been reported ear-
lier. ' This subject is of interest in respect to low-
temperature atomic hydrogen gas stabilized in a strong
nonuniform magnetic field. Spin-aligned hydrogen
(H4), a Bose system, is believed to remain gaseous at low
to moderate densities down to temperature T =0.
Another possible application of this theory is to the exci-
tonic Bose gas in nonuniformly stressed semiconductor
crystals.

Studies of the confined, weakly interacting Bose gas at
finite temperature have been reported earlier. Both
Goldman, Silvera, and Legget (GSL) and Huse and Sig-
ga developed extensions of the Gross-Pitaevskii theory
of the weakly interacting inhomogeneous Bose gas to
finite temperatures. They utilized Hartree-Fock and Bo-
goliubov approximations and obtained density profiles of
magnetically confined H$. Condat and Guyer examined
this system via a Ginzburg-Landau approach and
achieved results rather comparable to those of GSL.

The present approach is based on thermodynamic, i.e.,
macroscopic considerations. It is conceptually simpler
and as accurate as compared to previous approaches. It
utilizes the principle that for a nonuniform system in
diffusive equilibrium the chemical potential is constant
throughout the system. In turn the chemical potential is
the sum of the internal chemical potential [a functional of
the density n (r)] and the external potential energy of one
particle. Here we evaluate the internal chemical poten-

tial within the local-density approximation (LDA). Thus
the internal chemical potential is taken as a local func-
tional of n (r) of the same form as for the chemical poten-
tial of a uniform system of density n. Such a functional is
developed here for the weakly nonideal Bose gas at finite
temperature.

This paper is organized as follows: Sec. II presents the
overall model and indicates the program for solving for
the LDA density profile. Section III is concerned with
the development of an appropriate local internal
chemical-potential functional which for a given nonzero
temperature is to be valid for the higher-density quantum
regime (usually near the well minimum), the much-
lower-density classical regime (usually away from the
well minimum), and the intermediate-density regime.
Account is taken of Bose condensation. The local inter-
nal chemical potential away from these limiting regimes
is obtained by means of appropriate interpolations be-
tween the known "high"-density and near-Bose-
condensation transition forms and between the latter and
the known "low"-density form. The density dependence
of the local internal chemical potential near the Bose-
condensation transition density is discussed. Section IV
presents results for the nonzero temperature-density
profiles for two symmetric power-law wells. We consider
both the leading-order (in interaction strength) Bogo-
liubov form for the local internal chemical potential and
the effect of including in the latter the next-highest-order
interaction correction. The higher-order interaction
effects have not been considered in previous studies. Nu-
merical results are given for conditions appropriate to
Hl. Comparison is made to previous work. Section V
contains a conclusion.

39 4197 1989 The American Physical Society



4198 J. OLIV-A 39

II. MODEL AND LDA FORMULATION

We consider a gas comprised of a large number N of
particles each of mass m. We assume that the particles
interact with an arbitrary purely repulsive short-range
potential energy U(r) (with r the interparticle distance),
such that U(r) ~0 monotonically, for r +—oo, while
U(r)~ ~, monotonically, as r —+0. (These requirements
could be relaxed to include interparticle potentials with
an attractive part provided the system remains gaseous
throughout under conditions of interest. )

We take the gas to be confined to the interior of an
effectively infinitely long cylinder of cross sectional area
2 and with arbitrary cross-sectional shape. The cross-
sectional area and shape are assumed to be such that the
density is independent of positional variations perpendic-
ular to the cylindrical axis.

The particles are taken to move in a potential energy
well V(z), with the z axis parallel to the cylindrical axis.
The form of V(z) is arbitrary except that we impose the
following three conditions: (i) V(0) =0, (ii) V(z} is even,
and (iii) V(z) monotonically increases without bound as

~

z
~

~ ~. Thus we expect that the gas will be confined
to the region of the minimum of V(z), i.e., the density
will fall off as

~

z
~

—+ ~. We note that the conditions on
V(z) just described effectively encompass those of the ex-
perimental arrangements used in the investigation of Hl.

The statement of constancy of the chemical potential
of a nonuniform system in diffuse equilibrium reads

P[n (z) j+ V(z)=p .

Here p is the chemical potential, n (z) is the density
profile, and p is the internal chemical potential, generally
a nonlocal functional of the density profile n (z). If the
density varies sufficiently slowly we may use the LDA,
i.e., we replace the nonlocal functional p[n (z)] by the
local-density form po(n (z) ), which is the chemical poten-
tial of a corresponding uniform system of density
n =n (z). We note that functionals Po(n) do exist in the
literature for the weakly interacting Bose gas for certain
T, n ranges.

chemical potential for a general Bose gas will diverge in
the zero-density, i.e., ideal limit. For the ideal case the
local internal chemical potential p0, is given by'

3/2
2+%

p0, =kTln n
mkT

(4)

where k is Boltzmann's constant; p0, clearly diverges as
the density tends to zero. The divergence of Po, (toward
—~ ) as n ~0 implies, via Eq. (2a), by the properties of
V(z), and by the thermodynamic inequality' "

P0
&0

a

III. FINITE- TEMPERATURE CHEMICAL
POTENTIAL OF THE UNIFORM WEAKLY

INTERACTING BOSE GAS

We develop in this section an approximate though rela-
tively accurate form for the finite-temperature local inter-
nal chemical potential function for the weakly interacting
Bose gas.

We first consider the behavior of po(n) at finite T in the
vicinity of the condensation density n, . ' The free energy
of the uniform weakly nonideal Bose gas near n, was ana-
lyzed by Huang, Yang, and Luttinger' (HYL). They
used a lowest-order (in the s-wave scattering length)
perturbation-theoretic approach to obtain the quasiparti-
cle energies and then evaluated the partition function.
They assumed the following conditions:

that n (z) will not have a sharp cutoff, but will monotoni-
cally decrease from a maximum value of n (0) toward
zero as z~+~. Thus the nonzero temperature LDA
density profile is qualitatively different from the zero-
temperature profile.

po(n (z))+ V(z) =p, (2a)

= n (z) =p o '(p —V(z) }, (2b)

N =22 J n (z)dz =23 J Po '(p —V(z)}dz . (3)
0 0

Once having determined p from Eq. (3) we substitute
back into Eq. (2b) to obtain n (z). This program for
determining n (z) has been carried out at zero tempera-
ture. ' It was found that the LDA density profile exhib-
its sharp cutoffs at +z0 with z0 finite. This is a conse-
quence of the vanishing of the local internal chemical po-
tential in the zero-density limit at zero temperature. At
nonzero temperature on the other hand the local internal

where p 0 is the inverse local internal chemical-potential
function. The value of p is determined from the normali-
zation of n (z):

an ' «1,
ka «1,
a/A, «1,
aA, n «1,

(6b)

(6c)

(6d)

The criteria Eqs. (6) are satisfied for the possible experi-
mental conditions of H $ discussed below.

HYL obtained for the free energy per unit volume F/V
(to first order in a /A, and a A, n ):

where a is the s-wave scattering length for the interparti-
cle potential, k is the mean relative wave number of any
pair of particles, and A, is the thermal de Broglie wave-
length, given by

1/2
2~Pi

mkT
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F—= —kTn
V

1 2g5/2(y) —lny —2aA, n, n & n,
A, n

2
1 1 g3/2(1)

g5/2(l ) 2—ann , 1 ——1—
kn nA,

n)n, .

(8a)

(8b)

Here n, is given by the ideal-gas result

' 3/2
mkT

3.31%
(9)

We further have the special values: g3/2(1)
=2 61» g3/2(1)=1. 342. » Eqs.- (8), y is determined as
the solution of

g3/2(y)=A, n .3

This result applies for n not too far from n, . Here the
functions gi(x) are defined via

xm
g, (x)=— g

m=1 ~

We note that g3/2(x) is monotonically increasing from
x =0 to x =1, and has infinite first derivative at x =1.
Also, x =1 corresponds to n =n, .

The chemical potential pp b, within the HYL approach,
i.e., near the Bose-condensation density is readily calcu-
lated from Eq. (8):

F
Po, b (")=

~Bn V

1 2

dn
g~/2(y)+lny +4ak n, n & n,

n dy
dn

=kT.
2a A, n +g3/2(1) —,n & n, ,

2 1

(12a)

(12b)

d 1

dx g5/2(X) g3/2(X)x (13)

where again y satisfies Eq. (11). In deriving Eq. (12) we
have made use of

form density profile (below).
We turn next to the form of the local internal chemical

potential pp& in the higher density quantum regime. For
the dilute case we have

po b, (n, ) =4. 17a
g2

Using Eq. (9) in Eqs. (12) we find for n =n, :
' 1/2

(kT) (14)

1/2 T
P oq bna(1+b, (na——)'/ ) ba'/—

n 1/2

with

(17a)

We find for the first derivative of pp Bc with respect to n,
just below and just above n, the following results:

4mb'

Pl
(17b)

dPo, b.(n)

dn

dpo, b (")
dn

n
=4ai, kT,

=2ak kT,
C

(15a)

(15b)

32

b= 3/qr mk2
g2

(17c)

(17d)

In deriving Eqs. (15) we have made use of the following:
Eq. (13), the result [which follows from Eq. (11)]:

d
d g3/2(y)
dy

(16)

and the divergence of d [g3/2(y)]/dy at y =1. Thus, the
first derivative of pp Bc with respect to n is discontinuous
at n, : the derivative drops by a factor of two as n in-
creases through n, . This nonanalyticity in the chemical
potential will translate to a nonanalyticity in the nonuni-

The first two terms on the right hand side of Eq. (17a)
comprise the zero temperature result out to order
na(na )'/, first evaluated by Lee and Yang' [the term
bna is the Bogoliubov' result]. The temperature depen-
dent term in Eq. (17a) is the approximate leading order
temperature dependent correction evaluated within a
mean field approach. '

The limiting low density form of the local internal
chemical potential Po, has been given in Eq. (4).

Finally we adopt the following form for the nonzero
temperature local internal chemical potential over the
relevant density range:
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3/2

po, (n)=kTln n
2~6
mkT n(n, , (18a)

poI(n ) =cl)+CIplnn +c(3n +CI4n, nl & n & n1/4 1/2

po(n) =
po„(n)=c„,+c„~n+c„3n +c„4n, n, &n &n„,

2

poq(n) =bna(1+b&(na )' ) ba'—~, , n„& n & n„'

(18b)

(18c)

(18d)

Here nI, nu, and n„' are appropriate cutoffs for the ap-
plicability of the classical and quantum forms for uo (see
below). The function pm(n) is an interpolant whose
coefticients cI, j =1, . . .4, are chosen to insure the fol-
lowing continuity conditions:

P ol(nl ) I 0 (nl ) (19a)

d- d-
d„Por —

d Poc
n n&

p ol(n ) po, b (n

(19b)

(19c)

d
„PoI

d-
Po, bc

n dn n
C C

(19d)

po. (n„)=po, (n„),

Similarly po„(n) is an interpolant whose coefficients c„,,
j =1, . . ~ 4, are chosen to insure the following continuity
conditions:

n, =0 01
mkT
2+6

3/2

(22)

1

1/2g1/2
m k

2/3

(23)

This estimate of nI should be reasonable for the case of
weak interactions present as well.

The criterion for n„ is such that for n =n„ the temper-
ature dependent term in Eq. (18d) is a small fraction (we
choose O. l) of the first zero temperature term. For densi-
ties appreciably lower than this nu, the temperature
dependent term, which is inversely proportional to n '

will become too large for approximation Eq. (17a) to be
valid. Furthermore, for this choice of nu the omitted
correction to the approximate po [Eqs. (17)] will be
roughly of order -0.01 of the retained form for n =n„~
We thus find from Eqs. (17):

d
d„Pou

d-
Poq

M

(20b)

p,o„(n, ) =po ~,(n, ), (20c)

dPou d
dn ~ dn ' + (20d)

We choose for nI the value for which the left hand side of
Eq. (21) equals 0.01:

Thus the two interpolants smoothly connect the immedi-
ate near Bose condensation density regime to, respective-
ly, the limiting classical and quantum regimes. Note
from Eqs. (19), (20), and (15) that the interpolants build in
the correct discontinuous density derivative of Po b, at
n =n, .

The cutoffs n&, n„, and n„' are chosen as follows: The
classical exPression Po, will be valid in the ideal limit

po /kT
when e " «1, i.e., when the single particle state oc-
cupations are small. This then gives the condition [using
Eq. (4)]

3/2
2+6

n
mKT

The choice of n„' is such that the interaction correction
involving b I in Eq. (17a) is of the order of -0. 1 times the
leading order T =0 term. We obtain from Eqs. (17):

n„' =0.01

2
1/2

4 132.76&103 ~

a a
(24)

For n greater than n„' we would have to include terms in

po& beyond those of Eq. (17a).
Figure 1 gives plots of po(n) for temperatures 30 and

100 mK. We choose, appropriate for Hg, the value
a =7.4X10 " m. The plots are over a large density
range which spans from the classical region, through the
cross over region (encompassing the Bose condensation
density regime), and into the quantum region. Values of
n&, n„and n„are indicated in the figure. The discon-
tinuity in the first density derivative at n, is barely in evi-
dence in the semilog plot. The main difference between
the two curves is in the low density region well below n, .
For densities rather greater than n„, the two curves be-
come very close indicating the decreasing importance of
the temperature in this relatively high density quantum
regime. Both curves are confined to n &n„'=6.8&10
m . We note that in the vicinity of n„po(n) exhibits a
marked Aattening.
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FIG. 1. Chemical potential of a uniform weakly interacting
Bose gas (Bogoliubov approximation) for temperatures 30 and
100 mK. Parameter values are appropriate to H~ (see text).
Values of nI, n„n„and n„are indicated for the two curves
[downward (upward) arrows for 30 mK (100 mK)]; n„' value is
same for both curves.

IV. LDA PROFILE OF THK CONFINED WEAKLY
INTERACTING BOSE GAS

AT NONZKRO TEMPERATURE

We implement the program of Sec. II using the inter-
nal chemical potential form of Sec. III. We consider
confining potential energies of the form

where 4nH is a zero field hyperfine splitting, g =5.58 is
the proton g factor, and p& is the nuclear Bohr magne-
ton; the magnetic field B is in Tesla. We analyze the sys-
tem on the assumption that the parameters are such that
only the lowest hyperfine level is appreciably occupied.
This may require the application of a large uniform field

8„ in addition to the nonuniform confining field.
Figure 2 shows density profiles for the above system for

the symmetric, "linear" potential well (v= 1) and for four
temperatures. The T =0 profile was analyzed earlier and
found to be linear for zo ~

~

z
~

~0. We then see the
e6'ect of increasing temperature is to deplete the region
near z =0, and to redistribute the particles out to larger
z; in fact, as noted above, the density is nonzero for all z.
This contrasts with the T =0 LDA profile which goes to
zero at a finite z =+zo.

The T =0 profile is largely associated with nearly com-
plete Bose condensation into the lowest single-particle
state within each thin (on the scale of zo ) slab normal to
the z axis; ' this is referred to as condensate broadening. '

As temperature increases a thermal depletion of the con-
densate occurs. The Bose condensation densities are indi-
cated in the three nonzero temperature curves. We note
that the profiles for 60 and 80 mK ("intermediate" tem-
peratures) exhibit a relatively steep portion for n & n, and
a Batter portion for n & n, . Moreover there is a discon-
tinuity in dn/dz at n, (see below). The condensate frac-
tion decreases to zero as n decreases to n, . For
sufficiently large T (e.g. , for T =100 mK in Fig. 2) the
condensate is absent and the profile tends to the thermal-

ly dominated classical form.
We nextturn to the case of the quadratic potential well

(v=2}. Figure 3 shows density profiles at four tempera-
tures. Again, at T =0 the profile is dominated by the
condensate. ' The eA'ect of going from the symmetric
linear to the quadratic well (keeping Vo and z, fixed) is to

5.0

V(z) = Vo
zs

(25)
4.0

(26b)

where Vo, z„and v are all positive constants. We initial-
ly consider the extreme dilute limit wherein we can ig-
nore the higher order interaction correction term involv-
ing b, in Eq. (17a), i.e., the Bogoliubov case.

We choose parameters which model typical arrange-
ments for magnetic confinement of HJ, . Thus, as with
GSL, we use m =1.67X10 kg, a =7.4&(10 " m,
3 = 10 m, N = 10' . Further we set Vo ——p& Bo, with
magnetic field parameter Bo= 10 T, with p~ the electron
Bohr magneton, and z, =5.1&10 m. We consider two
potential well forms: v=1, 2.

Now the H-atom 1s energy level will split in a magnet-
ic field into four hyperfine levels. For relevant large
fields the splitting of the lowest two hyperfine levels hE
1S2, I7

bE =2(aH+ —,'g~ p~B ), (26a)

=3.4 && 10'mK+ (2.0 m K /T )B,

E 3.0
O

2.0

I.O

0.5 1.0 I.5 20
z (10'm}

2.5 3.0

FIG. 2. Density profiles of a weakly interacting Bose gas (Bo-
gliubov approximation), confined to a symmetric linear poten-
tial energy well for several temperatures. GSL parameter values
(appropriate to magnetically confined H$). Horizontal dashed
lines are at density n, . Note: for T = 100 mK, n, & n (0).
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FIG. 3. Density profiles of a weakly interacting Bose gas (Bo-
gliubov approximation), confined to a quadratic potential ener-

gy well for several temperatures. GSL parameter values (ap-
propriate to magnetically confined H$). Solid lines are present
theory; dashed lines are GSL theory. Horizontal dashed lines
are at density n, . Note: right dashed line is for T =26 mK.

(dn/dz)
~
z,' =2,

(dn/dz)
~
z,+

(27)

where z, is the z value at which n =n, . Note the result
Eq. (27) is independent of both V(z) and T. Indeed the v
and T independence of this slope ratio is evident in Figs.

allow the gas to extend out to larger z. For T =26 mK
the condensate is significantly thermally depleted and the
lower density tail is large. For T =30 mK the curve evi-
dences a very weak residual condensate whereas for
T =60 mK there is no condensation. Comparison is
made in Fig. 3 to the CzSL calculation for the same pa-
rameters (at T =26, 30 mK). We see that the GSL
curves are a few percent lower than the present curves for
the higher n central region while lying just above the
present curves in the outer tail region of the profile.

We consider the legitmacy of the single hyperfine level
occupancy assumption for the above two cases. At zero
temperature it is appropriate to consider a "Bose temper-
ature" T~ which is the temperature corresponding to the

0
mean energy per particle at the density maximum; '
this reAects the interactions in the system and vanishes in
the T=0 ideal limit. For the above parameters for
v=1, 2 it is found that Ts ——12.1 (1.54) mK for v= 1

(2). ' From Eq. (2b) we find with an additional uniform
field B„=200T an additional splitting of DE =430 mK.
This is much greater than Tz for v=1,2 and in fact is

0

somewhat greater than kT for the temperatures con-
sidered. Thus single band occupation is efFectively realiz-
able.

We mention that the discontinuity in the derivative of
Po with respect to n [Eqs. (15)] implies the above noted
discontinuity in the density profile: We readily find from
Eq. (2a), with Eqs. (15), and using the continuity of V(z):

I2.0

I I.O—

9.0

7.0

E
0 6.0

5.0

4Q

3.0

2.0

I.O

0.5 I.O l.5 2.0
z (10 m)

25 30 35

FIG. 4. Density profiles of a weakly interacting Bose gas
confined to a quadratic potential energy we11 for several temper-
atures: e6'ect of higher order interactions. Dashed line is Bogo-
liubov result; solid line includes next interaction correction
beyond Bogoliubov term in internal chemical potential. GSL
parameter values except N =2)&10' (appropriate to magneti-
cally confined H$). Horizontal dashed lines are at density n,
Note: for T =1.30 K, n, ~ n (0).

2 and 3.
We next consider the e6'ect of including the next

higher-order term in the interaction strength in the local
internal chemical potential in the quantum regime [i.e.,
including the term involving bi, in Eq. (17a)]. We expect
that this correction will have the e6'ect of decreasing the
density in the higher density (z =0) region and (to con-
serve particles) increasing the density in the larger

~

z
~

region. For our model calculation we use the above GSL
parameters except that we use N =2 & 10' in order to in-
crease the importance of the correction. Density profiles
for the quadratic well for three temperatures are given in
Fig. 4. For each temperature we show the curves with
and without the higher order interaction correction. The
efFect of the additional interaction term is greatest for the
T =0 case; this follows since the T =0 curve has the larg-
est peak density. By the time the temperature has in-
creased to 1.3 K the e6'ect of the interaction correction
on the profile is negligible. Note that the T =1.05 K in-
teraction correction curve is just slightly above the Bogo-
liubov curve for z ~ 1 & 10 m.

We check the single band occupancy assumption for
the higher X considered here. We find for T =0,
Tz =244 mK; thus 8„=500 T=-DE=1000 mK will

give single band occupancy at T =0. For this B„,AE is
of the order of the largest kT considered. Our highest T
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results are thus compatible with single band occupation
for B„~2000T. Naturally at somewhat lower T a some-
what lower value of B„can be used.

Note that it would not be justified to use Eq. (17a) (in-
cluding the —b& term) for significantly higher X, i.e.,

higher peak profile density, since n„' —10 m . That is,
roughly beyond the density at the peak of the T =0
curve, the quantum expression Eq. (17a) for Po loses va-
lidity.

Finally we briefly comment on the applicability of the
LDA. Firstly, this issue has been considered in the same
detail for the case of T =0. Of particular concern for
the case of T =0 was the near surface region of the
profile. It was concluded that for relevant parameters of
interest the T =0 LDA profile was justified over all the
profile except a generally very small (macroscopically) re-
gion near the surface. For finite temperature the surface
does not exist and thus the special concerns at T =0 do
not enter. The peaked condensate part of the profile at
finite temperature should be fairly accurately given in
LDA since it is comparable to the T =0 profile (away
from the surface), which generally, again, is well given
within LDA. The nearby lower density thermal tail re-
gion with its relatively slow density variation should also
be handled accurately in LDA.

V. CONCI, USION

We have analyzed the nonzero temperature density
profile of a weakly interacting Bose gas confined within a

potential well. Our approach starts with the principle of
the constancy of the chemical potential in a nonuniform
system in equilibrium. In turn we make use of a local
density approximation in treating the internal chemical
potential. The latter is approximately evaluated using
known low density, intermediate, (i.e., near condensation)
density, and high density forms with appropriate interpo-
lants connecting these three forms. The approach taken
here differs from those of previous studies.

Density profiles n (z) were calculated in the Bogoliubov
approximation for the local internal chemical potential
for parameters appropriate to H $ for both symmetric
linear and quadratic well. We compared to GSL (who ex-
amined the quadratic case only) and found very close
agreement. A general conclusion was reached that
dn/dz was discontinuous at z =z, (i.e., where n =n, ),
with the magnitude of the left derivative there twice that
of the right derivative, independent of the potential or
temperature. We also investigated the effect of including
the next highest interaction term in the internal chemical
potential. For a higher density model of H$ we found
that this led to a noticeable drop in density near the well
minimum. An assessment of the LDA was also given.

A next natural step in this effort would be to incorpo-
rate higher-order interaction corrections in the internal
chemical potential (e.g. , in the higher-density quantum
region and near n, ). Density profiles with higher peak
densities could then be investigated.
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