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Low-temperature properties of an almost-localized Fermi liquid
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We calculate the low-temperature corrections to the properties of an almost-localized Fermi
liquid in the normal phase caused by the temperature-dependent renormalization of the quasiparti-
cle bandwidth. Our approach provides a natural extension to finite temperatures of the theory of
correlated electron systems devised by Brinkman and Rice. Applications to (V I Ti )~03, heavy
fermions, and liquid He are briefly discussed. The importance of intersite correlations is stressed
and discussed in physical terms.

I. INTRODUCTION

It has been pointed out by Anderson and Brinkman, '
and elaborated in detail by Vollhardt, that liquid He in
the normal phase may be regarded as a system of in-
teracting fermions close to localization (solidificatio). In
particular, an analogy has been drawn' between He
behavior and the properties of narrow-band electrons
close to the metal-insulator (Mott-Hubbard) transition.
The analogy has been pursued formally along the lines
proposed by Gutzwiller and developed by Brinkman and
Rice. Treatments of both He (Refs. 1 —3) and of corre-
lated electron systems (Refs. 4 and 5) have been limited to
the temperature T =0. The extension to T & 0 has been
developed for He by Seiler et al. , and for correlated
electrons by Sp&ek et al. ' However, both groups use a
phenomenological expression for the entropy in order to
interpolate between the low- and high-temperature limits
for He and correlated electrons, respectively. The entro-
py expression rejects a restriction on the number of ac-
cessible configurations representing excited states for in-
teracting fermions and leads to localized-moment behav-
ior at ambient temperature.

In this paper we limit ourselves to the low-temperature
regime and calculate directly the first nontrivial correc-
tions for T )0 to the theoretical results at T =0 of Brink-
man and Rice, Anderson and Brinkman, ' and
Vollhardt. We show that although a treatment in the
full temperature range is still lacking, a Fermi-liquid type
of analysis at low temperature is feasible. In this way, we
avoid the arbitrariness of previous phenomenological ap-
proaches, though the validity of the present results is
limited to the low-temperature regime ' specified
herein. As in ordinary Fermi-liquid theory, we assume
that near the Fermi energy the electron distribution is
adequately described by the Fermi-Dirac function. "'

We use the approach developed recently' for the
description of discontinuous metal-insulator transitions

II. I.OW-TEMPERATURE EXPANSION: U & U,

A. Basic assumptions

To set up the basic thermodynamic expressions, we
slightly generalize the procedure of Ref. 10. We write the
energy of a set of quasiparticles as

~pg~ =E ~~nk (2.1)

where E is the total energy of the system of correlated
electrons '' with distribution n&, c.k is the k-dependent
bare particle band energy, @(g) is the band-narrowing
factor which depends on the average double occupancy
q = ( n; tn; t ) of sites, assumed independent of site index i,
n; is the number operator for occupancy of site i, o is
the spin variable which can assume values +1(1) or—1( 1); the remaining symbols have their conventional

at T)0 in systems of correlated electrons in a half-filled
narrow band. The approach is based on a reformulation
of the Gutzwiller method ' agd rehes on a self-consistent
calculation of the band narrowing factor for correlated
electrons. Here we analyze explicitly the properties of
the metallic phase near (but below) the delocalized-
localized carrier transition. Thus, this paper is a con-
tinuation of our studies ' of itinerant electron systems
close to Mott localization within an orbitally nondegen-
erate narrow-band model. Additionally, we encounter
also an almost-localized liquid above the transition (i.e.,
for U & U, ) but only when the band is less than or more
than half-filled. The case n =1 and U & U, will be dealt
with in Sec. II, while the case n (1 and U)& U, will be
discussed in Sec. III. The results are applied to
(V, Ti )&03, liquid He, and to heavy-fermion systems.
We discuss also the importance of intersite exchange in-
teraction in achieving agreement between theory and ex-
periment.
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significance. For such a collection of quasiparticles the
free energy per site is specified by

—=Ac+ Ug+ T +F 'Vo
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k~T+ g [fk lnfi, +(1 fk—)ln(1 fk—)], (2.2)X

where X is the total number of sites, fk =f(Ek ) =ni,
is the Fermi-Dirac distribution function, " U is the mag-
nitude of the intra-atomic Coulomb interaction energy,
and the remaining symbols retain their conventional
significance. The band narrowing factor is specified by
the relation

takes the place of Eq. (2.4). In the preceding, the Som-
merfeld free-electron contribution to the heat capacity
(per site) is given by yo=(2' ks/3)p, where p is the den-
sity of states (DOS) per site per spin of noninteracting
particles, taken at the Fermi energy rF. The magnetic
susceptibility of the gas at temperature T* is given by

(2.6a)

N =@(r),m ) = [ 1 2r]+ [—( 1 —2r) )
—m ] '4q
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with g the Lande factor, pz the Bohr magneton,

where m =—(n;& n;~—) is the average magnetic polariza-
tion per site. In the limit m —+0 we obtain

(2.6b)

@=8r)(1—2') 1+m 1— 1

4(1 —2i) )
(2.3b) p'=(dp/dE)~, , p"=(d p/dE )~,

Fo(T*,H*)
+Up,

N
(2.4)

In the preceding the quantities N and g correspond to the
symbols q and d used in Refs. 4—6.

The free energy depends on the particle configuration
through g. By a slight generalization of the arguments
presented in Ref. 10 (see Appendix C), Eq. (2.2) may be
rewritten in the form

The expansion (2.5) along with the conditions for a
minimum, namely BF/Brl=O, and 8 F/Br) )0, consti-
tute the formal structure of our approach. Strictly speak-
ing, Eq. (2.5) represents a free-energy functional. It is
transformed into the Helmholtz free energy after substi-
tution of the value r) =i)(T) obtained from the minimiza-
tion procedure. The physical meaning of that procedure,
as a way of optimizing the balance between the band and
the Coulomb parts of the total energy, has been discussed
in Refs. 8—10.

Fo(T*,H*) being the free energy of the electron gas at
the effective temperature T*—= T/@ and in the effective
field H*—=H/4. A mutual balance between the band
(@F0(0) and local-interaction ( Ug )0) parts is obtained
by imposing the equilibrium condition BF/By=0. Sub-
stitution of i)=a(T) obtained from this constraint into
(2.2) or (2.4) transforms the free-energy functional into a
true free energy. It is this additional minimization pro-
cedure by which the almost-localized systems are charac-
terized and which leads to a restriction on the motion of
individual electrons due to their strong Coulomb interac-
tions. Because of the presence of the term Urt in Eq. (2.2)
or (2.4), the properties of the interacting systems cannot
be specified by a simple rescaling of the free-electron gas
properties.

Equation (2.4) does not represent the correlated system
at arbitrary temperature, since a discontinuous metal-
insulator transition at elevated temperature takes
place. ' ' " However, as T~0, i.e. , for ks T ((4&~F~,

where c is the average bare band energy per site, one can
introduce the Sommerfeld expansion to order T; a brief
description is furnished in Appendices A —C. From the
resultant expression one may readily derive the energy E
and entropy S of the quasiparticles, and hence, the
Helmholtz free energy F. The resulting expression

B. Specific heat: H =0

g=r)(T): rlo aT bT"—. — —

Introducing (2.7) into (2.3b) we find that

@=4&0—8aIT 8(bI+2a )T—

(2.7)

(2.8)

In the preceding expressions the coe%cients are given by

2n Ip
3 U' +2 (2.9a)

and

6 5 p

(2.9b)

with

No=(1 I ), I:—U/U„and —U, =—8~7~ . (2.9c)

Consider first the m =0 (i.e., H =0) case. On applying
the constraint BF/Bil=O to Eq. (2.5) we obtain after
lengthy algebraic manipulations (outlined in Appendix B)
the first nontrivial corrections to g in the form
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As T~0 the preceding results reduce to those obtained
previously. ' Substituting (2.7) and (2.8) into (2.5) we ob-
tain

F QQT 1 QQT—=(1 I)—s— I
2(1 —I') 4 isis,'

(p') 7
36 p 5

(k~ T)

(p 3
(2.10)

The results (2.7) and (2.8) mean that at T & 0 the band be-
gins to narrow with increasing T, i.e., precursor localiza-
tion sects occur prior to the actual transition with C&=0.
This effect has been obtained before within the phenome-
nological approach and shows up as an increase of
effective mass m */m&, where m& is the effective mass for
an electron in a band of width W. According to Eq. (2.8)
the enhancement up to T is given by

2~'I' (k~ »'p
m */m„= —= 1+ . (2.11)

~s i(1 —I')'
The preceding temperature renormalization of the
effective mass disappears if we neglect second- and
higher-order effects in U. Note that the enhancement of
the effective mass is very large for I~1, i.e., close to the
metal-insulator transition at T =0. Also, the tempera-
ture dependence of m*/m& due to particle interaction
corresponds to a positive T contribution to the specific
heat; the latter is determined by double differentiation of
Fwith respect to T and has the form

7 DT 3$0T ~4 kg T 7 (p')2
C, = + „I+ p40

i
8~(y40 3 (p03 5 p

(2.12)

where the second positive term appears only when parti-
cle interactions are present (I &0); the last is the usual
higher-order band term for a gas of noninteracting fer-
mions at temperature T*. For @0« 1 (i.e., for
U —+ U, —0), the term due to the interaction may become

and

g=g(T, m)=go —aT —am bm T— (2.13)

4—:4(T, m)

=40—8I(aT +am +b m T ) 32aam T—, (2.14)

with

I 1 4(1 I) 1+—I /2a—=
piE~ I(1+I) (1+I) (2.15)

The quantity b does not enter the expression for either F
or g because the contributions of various b-dependent
terms precisely cancel each other (cf. the discussion in
Appendix D). Substituting (2.13) and (2.14) into (2.5) and
differentiating twice with respect to the magnetic field we
find up to terms of order T

dominant, particularly for the systems with a rather
featureless density of states near the Fermi energy. Obvi-
ously, higher-order terms (not included) will be of oppo-
site sign; thus, the entropy saturates as T increases.

The low-temperature expansion is restricted to the re-
gime k~T && @s+Uqo~; i.e., the total energy, (1—I) E
per particle at T=O, must be substantially larger than
k~ T. Near the localization threshold ( U = U, ) ~E~

= U, /8-thus, the temperature regime for which the ex-
pansion holds is k~ T && —,'(1 I)U—, . For example, if
U, =4 eV and I=0.99, then the condition T «10 K
must be satisfied. Therefore, the Fermi-liquid properties
specific to the almost-localized systems are in evidence
only at low temperatures.

C. Magnetic susceptibility

The temperature renormalization of N occurs also in
the expression for magnetic susceptibility y as demon-
strated explicitly in Appendix C. Namely, after minimiz-
ing the full functional (2.5) with respect to g and taking
the limit of small m we obtain the following expression
up to order T:

—,'(gp~ )'p
1+I /2
(1+I) 1 —d mk T 1+I /2

(1+I)
(2.16)

where
2

d —= — —32 —4 4a —I—p" I p Ip 1

p p U+o No (1+I)

p 2I (1—I)(1+I/2)+'e. 1+I
A particular case of interest arises when U —+U„ for

which we find

xo(0) ~'k,'T'p
x=

2(1 —I)(1—3p U, /8) 2U, (1—I)(1—3p U, /8)
1 —d

(2.18)

where yo(0) is the susceptibility for noninteracting elec-
trons at T=0, and

2
U,

12p(1 I)—3 1
1 ——pU,

(1 I)—
(2.19)

In the present model the susceptibility varies with tem-
perature as T, and either increases or decreases, depend-
ing on whether d is positive or negative. g diverges at
T=0 either when (i) @0=1—(U/U, ) vanishes, i.e.,
when U = U„or when (ii)
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pU(1+I/2)/(1+I) =1, 1+1/2
(1+I)

—=SNO ', (2.20)

and approaches the value

S= [2( 1 —I)( 1 —3p U/8 ) ] (2.21)

as U~ U, . We see that both the localization factor No ',
as well as the renormalized Stoner factor

—11+1/2
(1+I)

(2.22)

contribute to the enhancement of magnetic properties.
Hence, the value of S will be particularly large for those
systems which are almost magnetic as mell as almost lo-
calized. In this sense our approach generalizes the
paramagnon theory.

In general, from the critical condition S= ~ one can
relate the value U=Uz at the Stoner threshold to the
va1ue U = U, at the localization threshold. Namely,

1/2
—1 . (2.23)

4 pU,
pU,

For pU, )&1 we obtain the Stoner criterion U+=1/p.
For Us & U, the magnetic transition precedes the transi-
tion to the localized phase.

+ 2

pU,

III. DISCUSSIQN QF RKSUI.TS

The principal physical quantities can be represented
using the idea of scaling as exemplified by Eq. (2.4). The
results are summarized in Table I in implicit form: the

i.e., when the renormalized Stoner criterion is met. In
case (i) the Mott transition to the localized-moment phase
takes place ''; in case (ii) the system undergoes a magnet-
ic phase transition. It should be emphasized that the
divergence of y establishes that a true phase transition
has taken place in either case.

Inspection of Eq. (2.18) shows that if the DOS at ez is
large, then transition (ii) precedes (i), whereas if the DOS
is small, as when there is a dip in p at cF, the reverse
holds. Furthermore, the localization of electrons is
reAected in a change of character of y from Pauli to Cu-
rie behavior'; the latter is characterized by a divergent
susceptibility in the limit T=O. Also, near the transition
all terms appearing in the various thermodynamic quanti-
ties are renormalized by the factor @0"-( 1 I)—
where n & 1. The temperature-dependent part diverges as
U~U„demonstrating the inapplicability of the low T
expansion for U ~ U, . This reAects again the fact that,
for U ~ U„ the metallic state is unstable with respect to
formation of a state with localized magnetic moments.

The expressions (2.16) and (2.18) may be compared
with the results of the paramagnon approach, ' which
specifies the renormalization both of yo(0) and of the
term —T in g in terms of the Stoner factor
S=(1—Up) '. The result (2.16) differs from that de-
rived by Heal-Monod' in two respects. First, the
coe%cient d is more complicated since it contains terms
which explicitly depend on U. Second, our effective
enhancement factor S is equal to

TABLE I. Scaling properties of principal physical quantities of an almost Fermi liquid. The quanti-
ties T =T/N, H =H/N, and those with subscript zero represent noninteracting particles. Note that
the band narrowing factor N depends on temperature via q =g( T) and m =m ( T).

Property
Formula for
the property

Relation to
electron gas
properties

Linear specific

heat
C, =yT

Magnetization in
1ow field

1+I/2
1 pU

Fermi temperature TF=TF e
0

Quasiparticle
density of states

p(E) =—g 5(E Eg)—1

N

Free energy

functional
F„(T,H) =E —TS F„(T,H) =NFp(T, H*)+ Ug

Wilson ratio
Ro

1+ I/2
(1+I)
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quantity 4 depends still on temperature via the depen-
dence rj=rl(T), which is established from the minimiza-
tion of the free-energy functional F=F[T;g( T) ] with
respect to g.

One may apply this type of theory both to metallic ma-
terials close to (but below) the metal-insulator (Mott)
transition, ' ' and to heavy-fermion systems. In the
former case U & U, (considered explicitly above), whereas
in the latter case we encounter the situation of strongly
correlated electrons, U)& U„with q=0. If a stable me-
tallic state is to exist for U&) U, one requires a band
filling n&1; otherwise one is limited to the Mott insulat-
ing state. Thus, two canonical classes of almost-localized
metallic systems are found: those for which U~ U, —0,
and those where U &) U, and n ~1.

Those two types of systems exhibit different properties:
for systems where U~ U, —0 the renormalized band en-

ergy (CIE) is comparable to the correlation energy ( Ug),
as discussed in detail in Refs. 9 and 10. Two physically
distinct temperature regimes may be recognized: (a)
k~ T && ~4e+ Ui) ~; this is the Fermi-liquid limit discussed
earlier; and (b) k~ T & Uri-@~a ~, i.e., the correlated met-
al regime. On the other hand, if U»U, (i.e., U»W)
and n&1 three distinct regimes exist: (a) ksT&&C~e~,
the Fermi-liquid limit;" (b) U»k~T @~a~, i.e., the
limit of a metal with localized moments; (c) k~ T U, i.e.,
the normal metal. The last regime (c) is usually not phys-
ically accessible for electrons in solids. SpaJek and
Wojcik" and Rice et al. ' proposed different approaches,
both suitable for U)) U„which properly describe the
transition from the Fermi-liquid to the localized-moment
regime.

One additional difference should be noted: for U ~ U,
the Hubbard subbands overlap slightly whereas for
U &) U, they are separated energetically. Hence, the ki-
netic exchange mechanism between strongly correlated
itinerant electrons' should be included before any realis-
tic attempt is made to interpret magnetic and other ther-
modynamic data for heavy fermions, as discussed below.
In the remaining part of this section we compare the re-
sults for C, (T) and y(T) of Secs. IIB and IIC, respec-
tively, first with those encountered in (V, „Ti„)203close
to the onset of metal-insulator transition, ' ' and then
with the properties of liquid He at low temperatures
T ~0. 1 K. We also briefly relate our results to those ob-
tained by Beal-Monod' within spin-fluctuation theory.

A. Case A: The (V~ Ti )20, system

It is well established' ' that addition of Tiz03 to V2O3
[i.e., in the system (V, Ti„)203 for x 0.05] suppresses
the metal-insulator transition. The same happens for
V2O3 at pressures in excess of 25.6 kb or for V&03 con-
taining excess oxygen. Figure 1 shows the striking
change in magnetic susceptibility and in specific heat of
(V, „Ti, )203 at x =0.05, which is well reproduced by
the present theory for y and g. Namely, for x =0.05,
C/T versus T is linear over a wider range than for the
remaining compositions, either on the metallic or on the

insulating sides of the transition. This effect must be due
to the large T term for x=0.051 [cf. Eq. (2.12)]. The
presence of a large term -PT cannot be ascribed to
phonons since then the results for x =0.049 and
x =0.051 should not differ appreciably. Likewise, the
temperature dependence of susceptibility changes qualita-
tively when the metal-insulator transition disappears
close to x-0.05. The fact that for x &0.05 y(T) de-
creases with T may mean that the density of states at E~
has a steep dip, as one expects for a system close to the
Mott transition. More detailed data of g(T) in the low T-
regime are needed before a more quantitative analysis is
attempted, which also would require inclusion of disorder
introduced by substituting V + cations for Ti + ions.
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FIG. 1. The temperature dependences of the specific heat (in
C/T vs T coordinates) and of the static magnetic susceptibility
for the system (V, Ti„)203. Note the pronounced dependence
C /T —T for x =0.051, and the qualitative change of
y(T)-yo(1 —dT ) for this concentration. These properties are
characteristic of metallic systems close to the concentration x
below which a discontinuous metal insulator transition sets in.
The data are taken from Refs. 13 and 16.
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The abrupt change in character of the temperature
dependence of g is in accordance with the previous con-
clusion ' that the electron interaction is a primary fac-
tor in driving the discontinuous insulator-to-metal transi-
tion.

B. Case 8: Liquid He

5.0

2.8

CC

2.4

V= 56.82

I I

O.OO5 O.OI

(K }

O.OI5

FIG. 2. Plot of C, /RT vs T' for liquid 'He in the normal
phase. The data are taken from Ref. 18 (only representative
points for T ~ 0. 1 K for two volumes specified are drawn). Note
that the term PT' is of opposite sign compared to that for
(V& „Ti„)203extracted from Fig. 1. This may be regarded as
evidence for the presence of a large T'ln(T/O) term which
dominates the positive PT' term.

We now demonstrate that the application of the
present theory to He is not as straightforward as for case
A. Figure 2 shows plots of C„/T versus T, based on the
data by Greywall, ' for two different molar volumes V.
The predicted linear dependence is observed only for
T 8 0. 1 K; similarly, g( T) varies as T only in this
range. ' If we write C, (T)=yT+PT and y(T)
=y(0)(1—dT ), then a fit to the He data requires that
P (0 and d )0. Note that here P is opposite in sign com-
pared to the case of (V, ,Ti, )&03 (cf. Fig. 1). According
to Eqs. (2.12) and (2.18) this can only occur if (p') is
sufficiently large to overcome the correlation-induced
type of terms, and/or p" /p, both of which yield the op-
posite type inequalities. To meet such requirements the
density of states must change drastically at the Fermi lev-
el c, =EF. Such a situation might arise for a DOS which
has a deep dip at c,F, just short of the case where a Mott-
Hubbard gap opens up.

However, an alternative interpretation was advanced
by Greywall by writing

C, =yT+PT +5T lnT(T/6),

a fit of the He data was achieved over a much wider T
range. Similarly, Miyadai et al. interpreted their heat-
capacity measurements on NiS2 Se in terms of such a
model. This raises the question whether the spin-
Auctuation theory' is more appropriate for these systems
or whether the present theory can be expanded to include
such an extra term. The latter option may be achieved by
inclusion of nonlocal spin Auctuations which will lead to
an exchange of paramagnons between almost-localized
fermions, as in spin-fluctuation theory. '

We gain insight on this problem by starting again with
Eq. (2.1) for the energy of quasiparticles. The Hamil-
tonian for the correlated set is given by

Ho=/ (e Ek gJuiiH—)nk + U,
ko-

=QEk nz +Urn;&n;&, (3.1)

where the intra-atomic interaction was included in the
last term. The renormalized quasiparticle energy Ek of
the form (2', .1) contains only single-site correlation effects,
as has been demonstrated in Ref. 7. The first correction
to the preceding is provided by an extension of the in-
teractions to nearest neighbors (ij ), through the
terms

H'=
—,'g'[J, S; S +(E, —

—,'J, )n;nj], (3.2)
(ij &

where n; =g~
~
n; The . preceding forms the direct

space analog of the interaction between quasiparticles in-

volving the Pauli spin matrices within the Landau
heory

A very interesting case arises when Uii ()0) in Eq.
(2.5) is comparable to, though less than, 4~E~. Then the
long-range order or collective excitations are determined
by the much smaller intersite interactions. Note that by
writing 8 =Ho+H', i.e., by summing (3.1) and (3.2) and
treating A'' to the same degree of approximation as in
spin-fiuctuation theory (cf. Ref. 17 and references
therein), we first attend to the low-energy spin or density
fluctuations or to the molecular fields associated with in-
tersite interactions for a frozen configuration of double
occupancies (i.e., for a fixed i)). ' The quantity (re is
subsequently optimized by minimization of (H) with
respect to g to yield (S;.S ) and (n, n) in an explicit.
form. This process ultimately provides expressions simi-
lar to those based on spin fluctuation theory, ' but the
procedure is sufBciently involved to require a separate
analysis which is beyond the scope of the present paper.

The quantities K," and J," contain intersite contribu-
tions of higher order in W/U that are neglected in the
standard approach. "' ' For example, for U/8')& 1

(U)) U, ) one finds '

J,&=2t,'J /( U —&-;, ),
if the direct-exchange contribution to J," is neglected.
This expression fails for U (U„but for a small degree of
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overlap of the Hubbard subbands one may estimate the
kinetic-exchange integral J; by replacing U by

U,s=U+W /z U,
where z is the number of nearest neighbors. In other
words, the parameter U is renormalized by taking ac-
count of virtual hopping processes between the Hubbard
subbands. In such a situation,

J, =2t, l(U,"s—K, ),
which is a first-order estimate of J;. associated with mul-
tiple virtual hopping processes between the neighboring
sites. ' This expression properly reduces to the limiting
cases for the Hubbard model (i.e., for K;.=0). Namely,
J,. —+2t, /U for U~~ and J; ~U/z for U —+0; the
latter case reduces correctly to the Hartree-Fock expres-
sion for the spin-dependent part of the total energy.

C. Case C: EÃectof exchange interactions on the properties
of au almost-localized liquid ( U » U, )

Finally, for comparison we consider the importance of
exchange interactions in systems with strongly correlated
electrons, i.e., those in the complementary limit U)) U, .
Since for n = 1 one has a Mott insulator we restrict our-
selves to the case n ( 1 ( n ) 1 may be handled by the hole
formalism). The system is metallic, with g=0 and a band
narrowing factor ' @—:@ =(1—n)/(1 n) —and
n —= (n; )=n/2 for the case K=O. This band narrow-
ing may be rewritten in the form

=(1 n)(1 n—)/—(1 n)(1—n), —

or equivalently, as

where yo(0) is the susceptibility of noninteracting parti-
cles in zero field at T=0.

In the absence of a magnetic field the linear specific-
heat coefficient is given by y=yo/No, where yo is the
Sommerfeld coefticient. The dimensionless Wilson ratio
is defined by

y(0)/yo(0) yo(0)r= =R
y(0)/yo(0) go(0)

for the present case we find

p~s~(2 —n/2) Jzp(1 n/—2)
(1—n /2)

(3.6)

(3.7)

1+ U/2U,r= 1 —Up ', +'
(1+U/U, ) @o

(3.8)

The preceding approaches lead to the value r~O as
C&o~0, if J&0.

By way of contrast we consider next the limit T~ ~.
All strongly correlated systems then exhibit Curie-Weiss
type of behavior in the susceptibility. This feature can
easily be derived within our approach. It is only neces-
sary to assume that the individual moments in the ab-
sence of exchange coupling follow the Curie law, i.e.,

Here, too, r depends on the strength of the exchange in-
teractions; r &1 only if the last term is larger than the
preceding one, which is in agreement with experiment.
Equation (3.7) may be compared with the expression for r
which can be derived from (2.12) and (2.16) at T =0 for
the case U ( U, and with the exchange part Jzm /4 add-
ed to (2.5). Namely,

1 —n om
1 —n /2 2(1 —n l2) 4(1 n /2)— (3.3)

(gp& )'&(&+1)
yo(T) =n

3 g T (3.9)

where, as before, m —= (n;t n;i). T—he ground-state en-

ergy, inclusive of kinetic exchange interactions between
nearest neighbors in the mean-field approximation, is
then given by

G + 1+ m (2 —n/2) + m @a+ Jzm (34)
4(1 —n /2) 4p 4

where

@o=(1 n)l(1 n/2) .——

The first term specifies the band energy, the second, the
work of magnetizing those electrons, whereas the last
provides the kinetic-exchange contribution to the total
energy. ' Gathering all terms proportional to m and
equating these with M /2y(0), where M is the magneti-
zation and y(0) the zero field susceptibility at T =0, we
obtain

E + +@ 2 n /2 2—
4(1 —n/2)'

3m km' Jz
8n V'(7+1) 4

(3.10)

where s is the average bare band energy (per site) of the
noninteracting electrons at temperature T*—+ ~, given
by

W/2 8' 4O2

6~=2 Ep c F—W/2 24k~ T
(3.1 1)

The meaning of the last two terms in Eq. (3.10) is the
same as in (3.4). Collecting the terms in m and express-
ing them again in the form M /2g( T) we obtain

~here 'T is the effective spin quantum number. The
internal energy of such system of correlated electrons is,
within our approach,

(0)/ (0)=
(1—n /2)

+ Jzp( 1 n l2)—
1 —n

(3.5)
with

(gp~) 'T('7+1)
3k~( T+0)T =n (3.12)
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o=n "~(~+I) J e
( (

2 —n/2 (313)
6kB ' "

(1 —n/2)

Thus, the susceptibility of correlated electrons contains a
temperature-dependent value of 0 since K,„—1/T. This
introduces a downward trend of the y '(T) curve for de-
creasing temperature, as is observed for almost all
heavy-fermion systems. Only in the asymptotic region
of high temperatures does one encounter true Curie-
Weiss behavior, with the sign of 0 ( )0) corresponding to
antiferromagnetic interactions between the particles.

The preceding treatment involves three parameters:
8' n, and Jz which can be determined from the experi-
mental values of y(0), and from the asymptotic values of
g(T~O) and O(T~~). As examples we consider the
heavy-fermion compounds CeA13 and CeCu6, for which
T= —,

' and g =
—,'. For CeA13 the following values are cit-

ed: y(0)=1.62 J/K mol, 0=39 K and y(0)=36
memu/mol; if one assumes that at T=0 p,,fr=ps one
obtains the following estimates: n =0.989,
m*/mb =46.7, 8'*:—40&=33.7 K, Jz =36.8 K, and
r =1.62. In these expressions m* is the quasiparticle
mass, while mb is the bare band mass. The bare particle
bandwidth is 8'=1578 K. Corresponding values for
CeCu6 are @=1.6 J/X mol, 0=45 K, g(0)=27
memu/mol, which yield: n =0.977, 8'*=39.8 K,
Jz =59.3 K, 8'=770 K, and m*/mb =22.5. One
should note the very narrow bandwidths and the corre-
sponding very large effective electron masses. For the
cited y(0) values, the anticipated mb/ma values would
have been 9 and 15, respectively (m0 is the free-electron
mass). Corresponding to the small 8'* values, the quan-
tum coherence of the electron states is thermally des-
troyed for T ~ 30 K; this provides an a posteriori
justification of the assumption that the heavy electrons
have atomic moments in the high-temperature regime. '

Also, the exchange interaction energy k&O is comparable
to quasiparticle bandwidth, suggesting that intersite sing-
let correlations have an important impact on heavy-
fermion properties.

IV. CONCLUDING REMARKS

The principal results of this paper include:
(i) The development for the first time of the low-

temperature expansion starting from the Gutzwiller ap-
proach, reinterpreted in quasiparticle terms, together
with application to the almost-localized system
(V, Ti„)203. A one-parameter theory has also been for-
mulated to establish a renormalized Stoner criterion for a
phase transition to the ordered magnetic state, and to re-
late this onset to that of the Mott localization.

(ii) A qualitative discussion of the need to include ex-
change interactions in real space to achieve closer agree-
ment between the theory of almost-localized Fermi liquid
and the experimental results in liquid He (Ref. 18) and in
some other correlation systems (Ref. 20).

(iii) The estimate of the effective narrow-band parame-
ters (n, W, m*/m0) for heavy fermions by including the
kinetic-exchange interactions in a theory of strongly
correlated, almost-localized systems.

We stress here the difference between the present varia-
tional calculation of thermodynamic quantities (via
minimization of F with respect to rl) and the perturbation
treatment of the interaction part within spin-fluctuation
theory. ' The latter is valid close to (but below) the mag-
netic transition (as determined by the Stoner criterion
Up=1), while our approach is also applicable close to
(but below) the metal-insulator transition (as determined
by the Brinkman-Rice criterion U = U, ).

Further work is needed on the inclusion of the ex-
change effect in the present theory of almost-localized
systems for U & U„as well as on the low-temperature ex-
pansion inclusive of exchange interactions for U)) U, .
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APPENDIX A: THE SOMMERFELD
LOW- TEMPERATURE EXPANSION

The make the approach self-contained, we provide in
this Appendix expressions for several thermodynamic
quantities of interest. Any physical quantity expressible
in the form

Q(T)=2 f p(E)f(E)d(E),
0

where p(e) is determined by the nature of Q, and

f (E)=—f((E—p)/k~ T)

(Al)

The expansion is valid for k~T/p«1; the second and
third terms involve first and third derivatives of p evalu-
ated at p, the Fermi level. This latter quantity also de-
pends on T and must be fixed in the standard manner by
specifying the average number of electrons per site

n =2f p(E)f(c, )d(E) .
0

(A3)

We set Q =n and p(E) =p(s) in (A2) and for T~O set
p(T) =s~+5p(T); we further expand p (p) in a Taylor
series about E~ (the Fermi level at T=O), and finally
write the first integral in (A2) with p=p as

cF +5P CFf p(e)dE= f p(E)dE= f p(E)dE
0 0 0

+p(s~)5@+—,'p"(E~)(5p) +. . . (A4)

Inserting all of the preceding steps into (A2) and collect-
ing terms to order T, one obtains a quadratic equation in
6p, of which only the root for which 6p~0 as T~O is

is the Fermi-Dirac distribution function, may be expand-
ed to powers up to T as

2

Q(T)=2f p(E)dE+ (k~T)2p'(p)

4

(A2)
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retained. %'hen the square root is expanded one finds
that

APPENDIX C: DERIVATION GF THE FQRMULA
FOR MAGNETIC SUSCEPTIBILITY

2 I

(k, T)'~
6 p

+ (k, T)'
72 p 5 p p

(A5)

In the presence of a magnetic field the occupation
n = ( n; ) in a narrow band half-filled by quasiparticles
of energy Ek is given by

n = f dEp(E)f (E), (Cl)—W4/2

where
wherein p and its derivatives are evaluated at p =ez.

Next, set Q =E ( T) /N (the internal energy per site),
then put p—= cp(c) in (A2), and evaluate the integral by
the same technique which led from (A3) to (A5). One
then finds

and

p(E)=p(c=EI& )IC

f~ (E)= [ 1+exp(E —
—,
' g gp~H —

pH )/ks T]
—'

(C2)

E(T) m 2 ~ 4 (p )

(A6)

= [1+exp(c—
—,'agp~H' pH*)/—ks T"]

(c—,'0 gps—H* pH*)—f (x), —
k, T* (C3)

and hence, the heat capacity C„=N '(i3EIBT)„as
I 2

with H*=H/4, T*=T/4, pH
—=pH/4, =cE/&P. The

magnetic polarization m = ( n; t n; &
) p—er particle is

given by

(A7)

The entropy is determined via S(T)IX=f (C, /T)dT
and the free energy is F/N =E/N —TS/N. On substi-
tuting this result into Eq. (2.4) one obtains Eq. (2.5) with
m =0. The term in Eq. (2.5) involving m is obtained by
the methodology of Appendix C.

f (E)=f
B

1 ~gc sH @"

k~ T ~& x =(E—p )/k T

Then

m= pE )E — gE dE.
In small applied magnetic fields one may wirte

(C4)

(C5)

APPENDIX B: CALCULATION UF g=q(&)

Apply the condition BFIBq=0 to Eq. (2.5). Then for
H =0 we obtain the expression

~4(k, T)4
c+ (kii T) p+ B 8(1—4g)+ U =0,

3N 4N

gpss

H W/2 E
m = f dc p(c)f'—:mo(T*, H*),—W/2 k~ T*

(C6)

where f'= df/dc. The —magnetic susceptibility (per site)
1S

where

(B1)
E pX(T)= ,'gpiim = — —f dcp(c)f'—W/2 k~ T'

1B=——
3

( l)2
p5 p

(B2)

Next, expand q in a power series in T:

g=qp —aT —bT —cT —dT (B3)

On substituting this power series into (Bl) one obtains
vanishing values for the coefficients c and d, as well as an
equation involving

Cp+C2T +C4T =0

whose coefficients must also vanish if the above expres-
sion is to hold for arbitrary T. The requirement
co =c2 =c4 =0 leads to Eqs. (2.9a) and (2.9b). Insertion
of (B3) into @yields Eq. (2.8).

—=yo(T')/4 . (C7)

pH(T*, H*)=p(T*)+bp(T, H*) . (C10)

The functions f+ in Eq. (C9) are then expanded to yield

The preceding result shows how the Pauli susceptibility
of an interacting system at temperature T may be related
to that of a quasiparticle system at temperature T*. The
function @ is itself T dependent, as shown by Eq. (2.14).

Equations (2.6a) and (2.6b) are found by rewriting m as

m =(gpsH) f dcp(c)[f+(x) f (x)], (C8)—
and using the condition for conservation of the number of
particles, i.e., the equation

n = f dcp(c)[f+(x)+f (x)] . (C9)

The chemical potential is now expanded in terms of H*,
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T

n =2f dip(e)f, dE —2bpf dE p(e)
0 o t)E

On substituting Eq. (C16) into the preceding expression
one obtains the magnetic term in (2.5); the Lande factor
has been taken as g =2.

2

+ (bp) + Wf dE p(E) . (Cll)
0 BE,

APPENDIX D: BAND NARROWING FACTOR
FOR H&0

The quantity n on the left cancels against the erst integral
on the right. Qne can then solve for Ap to obtain

As for the case H=0 we assume that the correlation
function g=g( T,H) can be expanded as

Ap=(gp~H*) I2(T*)/I, (T*),
where

W gn
I„(T)=f dE p(e)

c)c."

(C12) 'g =
7fo QT QfPl 6M T

This leads to the following expression:

(D 1)

=( —1)"f f(s)de .
d c."

(C13)
—8 I bI +a [4a +I —(1+I) ] I m T (D2)

Applying the low-temperature expansion of Appendix A
one finds in the limit H ~0 C'o= 8no(1 —2no) .

~p = (gpsH—*)'p'«p .

Expanding Eq. (C8) in a similar fashion yields

m =gp,sH [I,( T* ) ApI2 ( T—* )],
from which one obtains

(C14)

(C15)

The free-energy functional up to the order m T is then
given by

—=N(m, T)e+ Ug — T + 4(T,O),F ~O 2 m

24(m, O) 4pct( T* )

Xo(T*)= —,'(gp a)'Ii(T*) . (C16)

The low-temperature expansion of I& then leads to Eq.
(2.6b).

Finally, one can use Eq. (C7) to determine the work
(per site) involved in magnetizing the quasiparticle system
as

(D3)

where @(0,T) is given by Eq. (B2), and where 4(m, O) is
of the form (2.3b), with g=r)o. Substituting (Dl) and
(D2) into (D3) we obtain

T2 ( )2m 2
2

'Yo gPa
N 2(1 —I)2 8y( T)

(gp~) m m (gpss)

8y(T) 8y,(T*) (C17)

where g(T), the susceptibility per site, is of the form
(2. 16). Note that the coefficient b does not enter the ex-
pression (D4), since it is of higher order.
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