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Calculation of the phase diagram of He- He solid and liquid mixtures
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The phase diagram of He- He mixtures has been calculated for temperatures from -0.02 to —1

K using well-known phenomenological models to describe the liquid and crystalline phases. For the
bcc and hcp phases the regular solution model is shown to agree with measurements of the isotopic
phase separation and the hcp-bcc transformation. The theory can be applied in thermodynamic
equilibrium or when the crystalline transformation is too slow for complete equilibrium to be
reached. For the liquid phases the theory is confined to fairly dilute solutions of either 'He or He,
where the models of Landau and Pomeranchuk and Zharkov and Silin can be applied. The input
parameters for the calculation are taken mostly from measurements made on the pure isotopes or
single-phase mixtures. . The analysis includes the determination of the free-energy difference at
T =0 between the bcc and hcp structures in both pure He and pure He. The calculated phase dia-

gram agrees well with experiment, mostly within the experimental uncertainties which are some-

times quite large. The comparison with experiment includes measurements of freezing and melting

curves, univariants (three-phase equilibrium lines) and the two quadruple points. Parts of the phase
diagram which have not yet been measured are described in detail.

I. INTRODUCTION

This paper deals with the phase diagram of liquid and
solid He- He mixtures primarily in the temperature
range from about 0.02 to 0.5 K. These temperatures are
such that, in the crystalline phases, ordering of the He
nuclear spins and the effect of thermally excited phonons
are both almost negligible. At the same time, in the
liquid phases, we are well below the superAuid transition
in the He-rich liquid and well above it in the He-rich
liquid. Even so, the phase diagram is well known' to be
very complicated, with two, or possibly three, quadruple
points: points in the pressure-temperature (PT) plane
where four phases may coexist. The complexity is due to
phase separation of the isotopes in both the liquid and the
solid, and to the existence of two crystalline structures in
the solid at low pressure, hexagonal close packed (hcp)
and body-centered cubic (bcc).

The work we describe is a calculation of the phase dia-
gram using well-known phenomenological models to de-
scribe each of the liquid and crystalline phases. Such a
calculation, which has not been performed before, is use-
ful in several ways: First, it allows the extensive measure-
ments on the phase diagram to be used to test the accura-
cy of these models and to determine some of the empiri-
cal parameters contained in them. For instance, by ap-
plying the "regular solution model" to solid mixtures of
He and He, we have found that it provides a fairly ac-

curate description of both the isotopic phase separation
and the crystalline hcp-bcc transformation. This is one
of the principal results in the paper. Secondly, a theoreti-
cal description of the phase diagram allows one to make
predictions for regions of the P T Xspace (X is th-e -He

concentration) where measurements have not yet been
made. For example, He bcc crystals at low temperatures
have recently been observed to grow dendritically when

small amounts of He are present. To interpret these
measurements, the relative solubility of He in bcc and in
liquid He must be known as a function of concentration
and temperature. A formula for this is given at the end
of the paper. (In general, a calculation of any part of the
phase diagram requires a simple computer calculation as
described in the Appendix. ) A third application of the
theory is that it suggests experiments which are not
direct measurements of the phase diagram but which cast
light on its structure. Since direct measurements are
often hampered by very long relaxation times, superheat-
ing and supercooling etc. , these experiments can be more
accurate and easier to carry out than direct measure-
ments.

The paper is written in the following order: Section II
is on the regular solution model and its application to
solid He- He mixtures; Sec. III deals with the determina-
tion of the free-energy difference between hcp and bcc
He or He, and the fit of the regular solution model to

various experiments; Sec. IV is on models appropriate for
liquid mixtures and their application to complete the cal-
culation of the phase diagram; and Sec. V contains our
conclusions.

In comparing the theory with experiments on solid
mixtures, we may allow for the fact that equilibrium with
respect to the crystal structure is attained much more
slowly than for the separation of the isotopes, so that
sometimes only partial equilibrium is attained. How this
is done is explained in Sec. II C.

In Sec. III E we include the effects of thermal phonons
using a simple approximation. This allows the theory to
be extended up to —1 K or more, provided the concen-
tration of either He or He is not too large. The phonon
terms have been included in all the numerical calcula-
tions described in the paper, but their effect is negligible
below -O. S K.
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II. ISOTOPIC PHASE SEPARATION
AND THE bcc-hcp TRANSFORMATION IN SOLID

He- He

0.6

A. The regular solution model

The regular solution model relates the Gibbs free ener-
gy g(P, T,X) of a mixture of He concentration X to the
Gibbs energies of the pure substances g3 and g4. We
define the "excess" free-energy gz per atom by the equa-
tion

g(P, T,X)=(1 X)g4(—P, T)+Xg3(P, T)

—TS (X)+gF (P, T,X),
where

0.4- I

0.2

&b

h+ b2

54at

S = —k~[X lnX+(1 —X) ln(1 —X)] (2)

g~ = AX(1 —X), (3)

where the quantity 3 depends only on the pressure P.
Since g, as defined by (1) to (3), is a continuous function
of X, from X =0 to 1, the model cannot be applied direct-
ly to situations where the pure states have different crys-
tal symmetry. On the other hand, we can apply it sepa-
rately to the two structures hcp and bcc, with two
different constants 3 and 3 to interpolate between
states of the pure isotopes with the same structure.
Defining the free-energy differences,

b,4(P, T)=g 4 (P, T) g4 (P, T), —

b 3(P, T)=g,"(P,T) g3 (P, T), —

between the metastable and the stable pure phases, then
the excess free energy defined with respect to hcp He
and bcc He, is

g = A X(l —X)+Xh

for a mixture which has the hexagonal structure, and

g~ = A X(1—X)+(1—X)b,4

for a bcc mixture.
The regular solution model Eqs. (1) to (3), without tak-

ing differences in structure into account, fit the phase sep-
aration data of Edwards, McWilliams, and Daunt
(EMD) quite closely. The model gives, below a critical
temperature T, = 3/2k~, separation into two phases of
concentrations X and 1 —X where the temperature and
concentration are related by

k~T= A(1 —2X)/ln(X ' —1) . (7)

The phase-separation line, shown in Fig. 1, is symrnetri-
cal about X=—'.

The specific heat of the phase-separated mixture, mea-
sured in the EMD experiment, is

C/k~ = ( 1 —2X)

r —1
4X( 1 —X')

is the classical entropy of mixing. ln a regular solution
gz has a particular, simple form

I I I I I l I

0 60 80 100
X (%)

FIG. 1. The equilibrium phase diagram for hcp and bcc heli-
um at P =34 atm, assuming that hcp and bcc mixtures are regu-
lar. The hcp, bcc&, and bcc2 phases are labeled h, b&, and b2.
The bl-b2 equilibrium line is given by Eq. (7). It has been ex-
tended (dotted line) into the (h+ b2 ) region for comparison with
the h-b2 equilibrium lines. (Note the asymmetry of the h-b&
and h-b2 parts of the diagram. ) The horizontal line represents
the temperature at which the three phases h, b &, and b~ may be
in equilibrium. In P-T-X space, such lines form a ruled surface
called a univariant. The experimental points are from Ref. 7.
Although the agreement with the theory is fairly good, the mea-
surements did not achieve equilibrium with respect to the hcp-
bcc transformation.

l
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where X is a function of T, given by (7), and
r=T/T, =2k~T/A. This means that the specific heat
below the phase-separation (PS) temperature,

Tps(XO) =( A /k~)(1 —2Xo)/ln(Xo ' —1),
does not depend on the initial concentration of the sam-
ple Xo, but follows a universal curve.

In writing (8), we have neglected the small lattice
specific heat and the equally negligible nuclear-spin
specific heat. We make this approximation in most of the
paper. It means that, in the temperature range (0.02
to 0.5 K), g4 depends solely on the pressure while the
temperature dependence of g3 is g3(P, T)=g3(P, O)—k~ r ln2.

The empirical value of 3/k~, fitted to the data of
EMD at 3S.8 atm, is 0.76 K. This value and its pressure
dependence, the volume B=d 3 /dP, measured by
Panczyk et al. and others, are explained by theories
developed by Prigogine and his collaborators, Klemens
et al. , Coldwell-Horsfall, ' and Mullin. " The two main
results of the theories are the following: First that the
isotopes are randomly arranged in the crystal lattice, in
agreement with the classical mixing entropy, Eq. (2).
Second that the energy change in mixing the pure iso-
topes is mostly the work done in compressing the He
and expanding the He, so as to bring the two crystals to
the same lattice spacing. The theories neglect differences
in crystal structure, but give values for 3 which agree
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with experiment quite well.
One diSculty in obtaining a precise value of A from

these theories is that one needs the properties of pure
crystalline He where, in fact, the liquid is stable. More-
over, Mullin predicted that the simple quadratic depen-
dence of gE on X in Eq. (3) is only an approximation, and
that there should be an asymmetry in the phase-
separation curve. Such an asymmetry was apparently ob-
served in the constant-volume pressure measurements of
Panczyk, Scribner, Gonano, and Adams (PSGA).

One way to represent such an asymmetry in the excess
free energy is to modify (3) to

gz = AX( 1 —X)( 1+eX),

where the quantity e is approximately —0. 1, according to
Mullin's calculations and the measurements of PSGA.
(An even larger value, ——0.2, was recently proposed by
Uwaha and Baym, ' based on a particular analysis of
some of the x-ray data of Fraass and Simmons. ' A more
general analysis, '. based on all of the data, does not seem
to confirm this result. )

With the asymmetry included, the equations for the
phase-separation curve, the pressure at constant volume
and the specific heat, which are derived from the equality
of the He and He chemical potentials p3 and p4 between
the two phases, are much more complicated and we have
solved them nuInerically. In comparing the theory with
the EMD experiment, we have taken into account the
small change in pressure during the measurements of the
specific heat which were performed at constant volume.
We find that the specific heat, which no longer follows a
universal curve, does not agree with the results of EMD
if e is assumed to be —0. 1. Consistency with the EMD
data requires that e =0+0.006.

This conclusion is in agreement with the recent results
of Ehrlich and Simmons' ' who concluded that
a=0+0.01. Ehrlich and Simmons used x-ray measure-
ments of T~s on a series of bcc single crystals with con-
centrations from XO =10%% to 70%%uo. In contrast with
PSGA Tps was determined when the crystal was first
cooled into the phase-separation region.

In what follows we shall demonstrate that the large
asymmetry observed by PSGA was probably caused by
the effects of the bcc-hcp transition. Since the asymmetry
e from EMD arid Ehrlich and Simmons is so small we
shall henceforth neglect it.

The excellent agreement between the specific heat data
of EMD and the simple regular solution model (with
e=0) demonstrates that the solid samples in their experi-
ments, which were initially bcc, separated into two bcc
phases. Apparently the bcc-hcp transformation in the
He-rich phase did not take place. Such a metastability

of the bcc He-rich phase is consistent with other experi-
ments we have analyzed, for example that of Iwasa and
Suzuki. ' However, in the PSGA experiment, the crystal-
line transformation was observed to take place very slow-
ly at all temperatures below the phase-separation temper-
ature TI,s

B. Regular solution bcc-hcp phase diagram

The chemical potentials in a bcc or hcp mixture,
p3=g+(I —X)(i)g/BX) and p4=g —X(Bg/BX) from (5)
and (6) substituted in (1) and (2), are

p"' '=g +A '"'(1 —X) +k TlnX (+b, )

"+3"'"'X +k Tl (1—X) (+b. )
(10)

where the term in 63 appears only in p3, and that in A4
only in p4.

The phase diagram resulting from equating p3 and p4
between phases in equilibrium at a pressure of 34 atm is
shown in Fig. 1. The choice of the parameters A, A",
A3 and A4 used in calculating this diagram is explained
in Sec. III.

In Fig. 1, at the triple point temperature T,„(P)=0.353
K, equilibrium between three phases, hcp, bcc&, and bcc2,
is possible. (In common with other authors we use the
subscripts 1 and 2 to denote the He-rich and He-rich
phases. ) The coexistence of three phases represents a
univariant state where, following the phase rule, there is
only one independent variable (e.g. , the pressure P). The
concentrations of the three phases in equilibrium lie on
straight lines which form a ruled surface in P-T-X space
(with the rulings parallel to X). The projection of the
ruled surface on to the P-T plane is a univariant, or triple
line. We label these using the notation of Tedrow and
Lee. For instance b

&
hL, z is the univariant where bcc&,

hcp and He-rich liquid L2 coexist.
Below T„, isotopic phase-separation occurs between

hcp and bcc2,' above T„, separation into hcp and bcc, or
into bcc& and bcc2 may take place. The equation for the
(bcc, +bcc2) line is, of course, Eq. (7), but the (hcp+bcc, )

and (hcp+bcc2) lines were obtained numerically (see Ap-
pendix). Alternatively a simple approximation for the
(hcp+bcc2) line may be used when the He concentra-
tion X and the He concentration Y"=1—X are very
small;

+3 (1—2X) X'«1,
ln[(X") ' —I ]

54+ A (1—2Y") 7"«1 .
ln[( I'") ' —I )

These approximate equations put X = F and A"= A
in the small terms, so as to keep their form similar to (7).

Figure 1 shows the experimental values of T~s deter-
mined by PSGA at pressures close to 34 atm. Although
the data agree fairly well with the theoretical phase dia-
gram, they really should be compared to the theory ex-
plained in Sec. IIC. This is because the measurements
were made quickly without allowing equilibrium with
respect to crystal structure to be attained.

We have also calculated the volume and pressure
changes accompanying the phase separation for the con-
centrations Xo in the PSGA experiment and the specific
heats which would have been observed in the EMD ex-
periment. Some of the volume changes are compared
with the PSGA measurements in Table I. The agreement
is quite satisfactory, and this includes the data at
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TABLE I. Comparison between regular solution theory and solid phase-separation data.

X
(%)

P
(atm)

&R'
(Measured)

(K)

TÃ
(Theory)

(K)

u(0) u( Tps) v(0) —u{Tps)
(Measured) (Theory)
(mm'/mol) (mm'/mol)

Reference,
remarks

8.4

16.6

33.5

35.4

0.31+0.01

0.345+0.01 0.345 —29+3

Metastable fitted points
0.310 —46+4 —49

—29

PSGA (Ref. 7)

f"=0.82
PSGA (Ref. 7)

f"=0 56.
Iwasa and Suzuki

(Ref. 27)
hcp precipitating bcc

Iwasa and Suzuki
(Ref. 17)

bcc precipitating bcc

0.16050.158+0.005 —3. 199.13 32.8 —3.3

Other fitted points, treated as equilibrium measurements
0.84 32.35 0.189+0.005 0.185 —4.4 —4.5

3.0 28.6 0.27

48.5 . 31.5 0.38

38.5 0.37

92.8 33.9 0.255

99.61 33 ~ 8 0.138

PSGA (Ref. 7)
hcp precipitating bcc

(treated as equilibrium)
PSGA (Ref. 7)

metastable, f"-0
PSGA (Ref. 7)

metastable, f"-0
PSGA (Ref. 7)

metastable, f"-0
PSGA (Ref. 7)

metastable, f"-0

—1090.389 —91

—760.374

0.266

—91

—31 —24

—1.70.142 —1.4

Comparison with some other data (not used in the fit)
0.251 —14 —16

X0=8.4% and 16.6% which agree with the theory ex-
plained in Sec. II C. On the other hand the specific heat
calculated assuming that the hcp-bcc transformation is in
equilibrium disagrees greatly with the EMD data. This
implies that their samples (which were contained in a
copper sinter with 10-pm pores) remained bcc
throughout the experiment.

C. Phase separation in metastable hcp-bcc mixtures

According to the equilibrium phase diagram in Fig. 1,
a solid mixture cooled to low temperatures separates into
two phases of different crystal structure. In the experi-
ments of PSGA the crystalline transformation was ob-
served to take place very slowly compared to the separa-
tion of the isotopes. After an unspecified period at low
temperatures the data were taken while warming at a rate
which was fast compared to the rate of crystalline trans-
formation. In other words the fraction f" of the sample
which was in the hcp phase did not change appreciably
during the measurements. In these circumstances only
partial thermodynamic equilibrium is achieved. The ap-
propriate equation is

h h hh (fh f—xed) (12)

This assumes that the bcc phase (or phases) can exchange
a He for a He in the hcp phase but the total number of
atoms in the hcp phase remains constant.

For a bcc mixture of initial concentration Xo, the max-
imum value of f" after a long time at T=O is 1 —Xo
(which is the minimum f for an initially hcp mixture).

Figure 2 shows the result of applying Eq. (12) and (10) for
two of the concentrations used by PSGA, with
0 (f"( 1 —Xo adjusted in both cases to agree with the
observed transition temperature. This figure, which bears
a superficial resemblance to Fig. 1, is conceptually quite
different from the equilibrium phase diagram. A sample
which was originally bcc of concentration Xo becomes, at
T=O, separated into three phases; fractions f" of hcp,
(1 —Xo f ) of bcc& —and Xo of bcc2. As the sample is
warmed, the three phases follow the curves marked with
the arrows until, at the apparent phase-separation tem-
perature Tps, the bcc2 phase disappears. This is marked
by a sharp decrease in the rate of change in volume with
temperature. Table I shows that the volume changes ob-
served by PSGA agree fairly well with values calculated
from our model.

III. DETERMINATION OF THE PARAMETERS
IN THE MODEI. : THE FREE-ENERGY DIFFERENCE

BETWEEN hcp AND bcc

Since we are neglecting the effect of the phonon and
spin specific heats, the free-energy differences 63 and A4
between the metastable and stable crystal structures in
the pure isotopes and their pressure derivatives, the
volume differences 6U3 =863/BP = v

&

—v 3 and 5U4

954/BP=U4 —v4, are only functions of pressure. In
the narrow range of pressure in which isotopic phase sep-
aration proceeds rapidly, it would probably be sufficient
to treat 5U3 and 6U4 as constants. In pure He, extrapo-
lating the data of Straty and Adams' to the T =0 end of
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0.6 therefore use thermodynamic data ' ' on bcc He to ex-
trapolate the Gibbs free energy of bcc He to T =0.

At a point on the transformation line T„P„

0.4—

ih'
I g"(P„T,)=g (P„7;),

where

g(P„O)=g(P„T, )+f S(P„T)dT,

(15)

D..
I

54otm
S(P„T)=S(u„T)+(BSIBP)z[P, P(v„—T)] . (17)

20
I

40
X (%}

I

60
I

80

the bcc-hcp transformation line gives 5u3 6u3 —0.09
cm /mol at P=P3 =105 atm. This pressure is much
higher than the pressures we are interested in, but we can
make use of these data if we assume u3 to depend linearly
onP:

5u3 =5u3+p3(P P3 ), —

so that
Pf 5v3dP' = (P P3 )[5u 3 + 2p3(P P3—)]

3

(13)

(14)

which leaves one parameter P3 to determine.
For He, P4 is clearly less than the melting pressure at

T=O, 24.993 atm, ' otherwise P4 and 5u4 are unknown.
On the other hand there are many accurate measure-
ments along the hcp-bcc transformation line from the
lower triple point with the liquid at 1.463 K and 25.9 atm
to the upper triple point at 1.772 K and 29.7 atm. We
have reduced these transformation line data to T =0 by
allowing for the eAect of the thermal phonons. The
method is as follows.

Edwards and Pandorf pointed out that SIC„, the ra-
tio of the entropy to the specific heat in bcc He, plotted
against T/O where 0 is the T-dependent Debye tempera-
ture, falls on the same curve as that for He at the same
molar volume. This implies that the phonon spectra in
the two solids have the same general shape. One can

FIG. 2. The coexistence of hcp (h) and bcc (b& and b2)
phases in partial equilibrium, according to Eq. (12). The experi-
mental points are from Ref. 7. The fraction of the atoms in the
hcp phase f is fixed, but the hcp and bcc phases may exchange
'He for He or vice versa. The curves shown are for two of the
samples in Ref. 7 of average concentrations XO=8.4% and
XO=16.6% and with f =0.82 and f"=0.56. The average con-
centrations are shown by the vertical lines. The dotted line is
the equilibrium b~-b& phase separation line. At low tempera-
tures the solid consists of three phases h, b&„and b&. As the
temperature is raised the concentrations in the three phases fol-
low the curves marked by the arrows. At the apparent "phase-
separation temperature" TPP', shown by the horizontal lines,
the b2 phase disappears, leaving two phases h and b 1.

We can define the Gruneisen constant y by writing
(BSIBP)r= —(Bu/BT)I, = uar

—= yKC—, where K is
the compressibility, o.'z the thermal expansion coeKcient,
and C, the specific heat. We assume that y is indepen-
dent of T (the Griineisen law). As shown by Edwards and
Pandorf and Gardner et al. this is a very accurate ap-
proximation for hcp He, and it is a reasonable approxi-
mation for bcc He. ' ' Integrating (BP/BT), =yC, /v
with respect to T at constant u gives

P, P(u„T—)=(ylu, )[u, —u(v„T)], (18)

where u, = u (v„T, ) is the internal energy per atom.
Combining Eq. (18) with (16) and (17),

T
g(P„O) g, = f S—(u„T)dT —,'(y K, /u, —)

X [u, —u(v„O)] (19)

v(P„O) =u(P„T, ) yK, [u, —u (u„O)] . — (20)

To estimate the uncertainty in our procedure we also
used the hcp He tables (rather than bcc 3He) to correct
the bcc He data, giving the error bars on the results in
Fig. 3.

Figure 3(a) shows that, in the pressure range of in-
terest, it is suKciently accurate to take 5u4=u4 —u4
=5u 4 =0.16 cm /mol, a constant. With 6u 4 as the slope
of the straight line in Fig. 3(b), the difference in CJibbs
functions is

b~=g4 —g4 =5u4(P P, ), — (21)

where P~=(22.2+I) atm. This would be the hcp-bcc
transformation pressure in pure He at T =0 if the liquid

In the last term, which is small, we have neglected the T
dependence of K.

For hcp He the right-hand side of (19) is easily evalu-
ated from tables of the "reduced" thermodynamic func-
tions, S(r) and (u —u )o/k~ T as a function of

/T0 ( o)uor TIOM(u), given in Refs. 22 and 23. The

important assumption that we make, based on Edwards
and Pandorf's remark about 5/C„ is that this procedure
can also be applied to bcc He using tables from the
data ' ' for bcc He at the same molar volume. Starting
from S or C„at the transformation line, one finds from
the tables ~= T, /Oo giving Oo. The value of y is found
from a&, C„Ketc. at the transformation line.

In a similar way, we can correct the volumes of bcc
and hcp He on the transformation line to T =0 using
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FIG. 3. (a) The molar volume difterence 6U4=v& —
U4 be-

tween bcc and hcp pure He at T =0, as a function of pressure.
The squares and their errors were calculated from experimental
data as described in the text. The horizontal line is 5U4=0. 16
cm /mol. (b) The difference in Gibbs function 64=g4 —g4 be-
tween bcc and hcp pure He at T =0. The straight line
represents Eq. (21) with 6U4=0. 16 cm'/mol and P4=22. 2 atm,
The calculation of the circles from experimental data is de-
scribed in the text.

did not have a lower free energy than the solid. In
analyzing the data on phase separation in solid mixtures
in Table I, we have used (21) up to —36 atm.

The other parameters in the theory, f33 in (13) and (14)
and A, B and A ",B"were fitted to the first four points
in Table I, and to a limited extent, to data on the hcp-bcc
transformation in mixtures. The mixture data are the fol-
lowing.

Grigoriev et al. observed coexistence between hcp
and bcc at P =34 atm and T=0.5 K in a sample with
X0=6.3%. In contrast with Grigoriev et al. , Miyoshi
et al. observed coexistence at 1 K over a range of pres-
sure, as one would expect. For Xo=7.78% they found
coexistence from —30 to —37 atm (our calculated range
is 27.4 to 28.3 atm) and for XO=32. 1'//o they observed
-45 to —51 atm (we calculate 43.5 to 46;5 atm). At
higher pressure and concentration Vignos and Fairbank
observed coexistence for Xo=75%%uo at p = —80 to —83
atm. Our calculated range for this concentration is 76 to
79 atm.

There are serious discrepancies between the coex-
istence data at low pressure and the theory, particularly
with the measurements of Grigoriev et al. We cannot ex-
plain the discrepancies, except to remark that PSG-A
showed that equilibrium with respect to crystal structure
is attained very slowly.

Two important fitted points in Table I are those of
Iwasa and Suzuki. ' ' In these experiments the ap-
proach to equilibrium was carefully monitored by both
ultrasonic and pressure measurements. It was observed
that, in general, there are three processes taking place
after a change in temperature; isotopic phase separation

(or remixing if the temperature is increased), the hcp-bcc
transformation, and the relief of the strain caused by the
first two processes by the production of dislocations. All
three of these processes were studied in rapid and slow
warming and cooling.

Ih fitting the parameters of the model we found little
advantage in using different values for A and A ", even
when using a larger number of data than in Table I, with
a more complicated volume dependence for A4. There-
fore we have taken A "/k~=A /k~=0. 76 K at 35.8
atm, the value found by EMD. The fitted value of
B =B is —0.364 cm /rnol, in good agreement with that
found by Ehrlich and Simmons, ' B= —(0.43+0. 13)
cm /mol. In arriving at this estimate they considered a
wide range of other experiments. ' ' ' These results
are somewhat lower than the recent determination by
Fraass and Simmons, ' B = —0.54 cm /mol.

The fitted value of 133 is such that 5v3 changes from
6v 3

—0.09 cm /mol at P 3
= 105 atm to —0. 176

crn /mol at 35.8 atm.

IV. CALCULATION OF THE PHASE DIAGRAM:
THE LIQUID PHASES

A. The He-rich liquid L&

Here E4(P) is the difference in chemical potential for one
He atom in liquid He at T =0 compared to liquid "He

at T =0. The temperature T4 (P) is defined by

k T* =(27r~ri /m*)/(v )
~ (23)

where v3 is the volume per atom in pure liquid He. Al-
though the He quasiparticles are bosons, Boltzrnann
statistics are used in (22), since the concentration of He
vanishes exponentially as T~0.

The first term in (22), g4 (P), is the chemical potential
of pure liquid He. In terms of g4, the chemical potential
in pure hcp He, which we use as the "standard" or refer-
ence state for He

g4(P) g4(P)+ J (v4 ——v4)dP'
4

(24)

The integrand is the volume difference between liquid and
hcp He at pressure P', and P4 =24.993 atm is the melt-
ing pressure. All the properties of pure 4He, g4, g4, v4~,

v4, P4 are independent of the temperature, since we are
presently neglecting thermal phonons. Phonon effects are
considered in Sec. IV E.

The quantities E4(P) and T4 (P) have been determined
by Laheurte between P =0 and P =20 atm. Laheurte

To complete the phase diagram we need expressions
for the chemical potentials in the liquid phases. The
He-rich liquid Lz is straightforward since (1 —X), the

concentration of He, is small in the whole temperature
range (X & 0.95 ). According to the Zharkov-Silin
theory the dissolved He behaves like a gas of quasipar-
ticles of mass I~ so that

p4(P, T X)=g 4 (P) +E4 + k& T ln[( T4 / T )
~

( 1 —X)] .

(22)
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from a fit to the data of Grilly. '

The He chemical potential in L2 is obtained from the
Gibbs-Duhem relation and Eq. (22);

p, ,(P, T,X)=g, (P, T)+ks T lnX,

where g 3 is related to g 3, the reference state for He, by

g, (P, T)=g, (P, T)+ f [v3(P', T) —v, (P', T)]dP' .
3

(27)

We used Greywall and Busch's polynomial representa-
tion for the He melting curve P 3 ( T) up to the
minimum (T;„=0.318 K) and a simple quadratic fit to
Grilly's data from the minimum up to 0.8 K. The tem-
perature dependence of v3 (P', T) was included in the in-

tegral using data from Refs. 35—37,

v~ (P, T) —v 3(P, T) = (1.241 cm /mol)

X [1—(P —P,„)/(157.4 atm)

—(T —T,„)/(5.26 K)] . (28)

For 0~ T~0.07 K, the term linear in T in (28) was
smoothly joined to one proportional to T .

B. The He-rich liquid L
&

Although the He-rich liquid L
&

has been studied more
extensively than any other phase of He-"He mixtures,
the task of accurately representing the chemical poten-
tials in L

&
is more difficult than in the other phases. This

is because the concentration becomes as high as 22% at
0.5 K on the b, L,L2 univariant and most theoretical and
experimental work on L& has been concerned with low
temperatures and concentrations.

The formulas for p3 and p4 we use are

p3(P, TX)=g3 (P, O)+ E3(P)+kg~(T, TF* )

+ksTgo[1 —XPF/(m4s) ]

+ —,'x( Vo/v4 )+(I+a)(p4 —g~ ), (29)

and

p4(P, T,X)=g4 (P)+ ,'huF(T, Tg )—

+ ', ka TFo[1—", XpF/—(m4s ) ]-
+-,'x'(V, /v4) . (30)

The pressure range for which we need (29) and (30) is
rather narrow, from about 24 atm to about 26 atm. Con-
sequently, in the following, most of the quantities have

found that T4 =1.114 K could be taken as independent
of P. Extrapolating his results for E4(P) to 25 atm, gives
E~=(0.476+0.005) K with negligible pressure depen-
dence in the range of interest to us.

To represent the integral in (24) conveniently, we take

v4L —
v& =(2. 165 cm /mol)[1 —(P P—

4 )/(83. 3 atm)]

(25)

been taken as pressure independent. Unfortunately the
highest pressure at which the single-phase properties of
L, have been studied is 20 atm. The highest concentra-
tion at which single-phase data are available is —12%.

The various quantities appearing in (29) and (30) are as
follows: E3(P) is the difference in free energy for one 3He

atom in liquid He compared to liquid He at T =0. The
quantity x =X/(1+aX)=n3v4 is the ratio of the num-

ber density of He in the mixture to that of He in pure
He at the same pressure. The "BBP parameter" a

[which also gives the pressure variation of E3(P) through
BE3/BP=(1+a)v4(P) —v3(P)) is taken to be 0.165 by
extrapolation from Watson et al. The velocity of
sound s =366 m/s is taken to be independent of pres-
sure. The Fermi temperature TFp defined by

TP p 2/2m e Q2(3~2n )2/3/2m e (31)

calculated with m p3 =3.0m3 from Ref. 41, is used to cal-
culate the T =0 contributions to the chemical potentials.
The other Fermi temperature TF, calculated with

m 3 =3.3m3 from the results of Landau et al. ,
' is used

to calculate the temperature-dependent contributions.
(The use of two effective masses in this way is part of the
"Fermi-entropy" model, see Refs. 38, and 41).

The functions kg~( T, Tg ) =gz( T, TF' )
—gF(0, TF') and

AuF =u~( T, Tg )
—uF(0, TF" ) are the temperature-

dependent parts of the Gibbs and internal energies of an
ideal Fermi gas with Fermi temperature TF*. They were

obtained from the polynomials given by Owers-Bradley
et al. The small terms in g are due to the nonparabolic
form of the quasiparticle energy. The dimensionless pa-
rameter g, which has not been determined under pres-
sure, was taken as 0.2, its approximate value at P =0.38,43

The terms in y are rather small and they have little effect
on the results.

The term (I+a)(p4 —g4 ) in (29) ensures that p3 and

p4 satisfy the Gibbs-Duhem relation. If this relation is

not exactly satisfied the chemical potentials do not
represent tangents to a Gibbs free-energy surface, giving

problems in finding phase equilibrium.
In terms of the He reference state, bcc He at P and T,

g3 (P, O) =g 3(P, T)+ks T ln2

+ f [v3(0)—v3(0)]dP', (32)
ply [p)

where P3 (0) is 33.95 atm. The first two terms on the
right-hand side of (32) represent g3b(P, O).

In writing Eqs. (29) and (30) we have taken a very
simplified form of the effective interaction between He
quasiparticles, namely V(p„p2, q ) = Vo, a constant.
More precise analyses ' of data at lower pressures have
assumed various forms, e.g. , a dipolar interaction propor-
tional to p, .p2, polynomials in q etc. Apart from the
large number of parameters to be determined, these
forms gave problems at high X, because the L& phase
usually became intrinsically unstable, i.e., B G/BX &0,
for plausible values of the parameters. The intrinsic sta-
bility of L, seems to put quite stringent conditions on the
interaction, and we were able to achieve a satisfactory fit
only with V(p„pz, q ) = Vo, a constant.
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Once the simple form of the interaction was decided
upon, we used the properties of L, at the end of the
hL&L2 univariant at T =0 to determine the values of
( Vo/v4 )/m4s and E3(P). According to the recent
freezing curve measurements of Lopatik, the end of the
univariant occurs at a concentration X», in L, which is
not less than 8% and at a pressure p* =25.29 atm. This
maximum concentration X„,is consistent with extrapola-
tion of the results of Landau et al. and Watson et al.
The pressure p* is related to ~„„the osmotic pressure '

of L, ; since L& is in equilibrium with the hcp phase
(which at T=0 is pure He)

The possibility of a third quadrupole point Q3 or ( —h)
is implicit in the work of Vvedenskii. On the basis of his
experiments he asserted that the three univariants
b, b2L2, b2L )L2, and bL]L2 meet at about 0.38 K and
25.7 atm, near the critical line (b, =b2). This is the vi-

cinity of the point marked C& in Fig. 4. [The notation
bL&Lz instead of b]L,L2 or b2L, Lz is used because,
above the critical line (b, =bz), which in the regular
solution theory is given by kz T(P) = 3 (P) /2, there is no
distinction between b

&
and b2.]

According to the thermodynamics of a binary mix-

Using (24) to relate g4 to g4, and ignoring the small
changes in volume between p

* and p 4,

(33)

The p
* found by Lopatik corresponds to ~ t U 4 /k~ =7. 8

mK, assuming that the freezing pressure of pure "He is

p4 =24.993 atm. On the other hand, extrapolation of
the data of Landau et al. gives 9.3 mK, a discrepancy
which is probably outside the experimental error. [Lopa-
tik states that his pressure measurements are consistent
with the osmotic pressure measurements of Landau
et al. , but this seems to be based on a comparison made
with the volume of L

&
substituted for U4 in the denomi-

nator of (33), which is not correct. ] Since the effect of
the discrepancy on the phase diagram is small and
Lopatik's results do not involve extrapolation from
lower pressures, we have used his ms*„and X», to
obtain ( Vo/v„)/m4s = —0.053 [corresponding to
( Vo/u4, )/k~ = —3.38 K] and E3/k~ = —0.273 K at

p
' =25.289 atm, the values used in our calculations. Ac-

cording to Baym's theory (see Ref. 38 for instance) the
BBP parameter a and Vo are related: (Vo/u4 )/m4s
= —a = —0.0272, but since we are using V~ as a sort of
average for V(p„p2, q) this may not be a serious
discrepancy. In any case, the phase diagram is not very
sensitive to Vo.

C. The phase diagram: Univariants, quadrupole points,
and freezing curves

The results for the projection of the univariants and
quadrupole points on to the I'-T plane are shown in Fig.
4, together with some experimental data. ' ' '4 ' 7' Fig-
ure 5 shows some of the univariants in P-T-X space. In
discussing the quadrupole points it is convenient to use
the notation ( L& ) for Q I, ( —b—2) for Q2 and ( —h) for
Q3 rather than the traditional Q I, Q2, . . . originating in
the pioneering work of Tedrow and Lee. (In any case
Vvedenskii and Lopatik seem to have interchanged Q I
and Q2). Our notation refers to the one phase (out of the
five L„Lz, b„b2, and h) which is missing from the equi-
librium at a given quadrupole point. The separation of
hcp into h, and hz does not occur until the pressure is
above that of the critical point (h, =hz, b2), which is at
83 atm, so only h needs to be considered in connection
with the quadrupole points.

29—

28—

27—
E

26—
O o~ahL) L2

25 —-

I

0.1 0.2 0.3 0.4
T (K}

0.6

FIG. 4. Projection of the phase diagram of liquid and solid
He- He mixtures in the P-T plane. The five difterent phases

are: He rich liquid (L&), 'He rich liquid (Lz), He rich bcc
solid (b, ), 'He rich bcc solid (b2), and hcp solid (h). According
to the phase rule three of these phases may coexist on univari-
ants (the solid curves) and four may coexist at the two quadru-
pole points where four univariants meet. The univariant b2hL2
ends at T =0 where it meets the pure 'He melting curve (dot-
dash) tangentially. At the point C1, the univariant b&b2L2 ter-
minates the critical line b& =b, (broken line) for phase separa-
tion of the bcc solid into b, and bz. [A third quadrupole point
( —h) would exist if the b& b2L& line met the b &L IL2 line instead
of ending on the critical line. ] An azeotropic line is shown dot-
ted. It starts and ends tangentially on bjL&L2 (at 0.34 K,

b) L( b1 I.
1X '=X '=15%) and on b&hL] (at 0.41 K, X =X =5%%uo).

The crossing of these two univariants around 0.36 K occurs
only in the P-T plane and does not represent a meeting in
P-T-X space (see Fig. 5). The experimental points are from
Brandt et al. (Ref. 47, hexagons), Edwards et al. (Ref. 6, star),
Lopatik (Ref. 45, rectangles), Tedrow and Lee (Ref. 2, circles),
Vvedenskii (Ref. 3, crosses), and Zinovieva (Ref. 48, triangles).
There is excellent agreement between the calculated hL &L2 and
b

& L, h univariants and the recent work of Lopatik. Vvedenskii's
results for the b

~
L &L2 univariant and the Brandt et al. results

for the hL&L2 univariant also agree well with the theory. In
drawing their phase diagram Tedrow and Lee apparently la-
beled their measurements of bjb2L& as belonging to blhL&. The
point at 0.14 K, 30 atm was obtained by Edwards et al. for
b, L2b2 in metastable equilibrium. However, the theoretical
metastable b, L2b, univariant is hardly distinguishable from the
stable hL&b& univariant drawn here.
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ture.quadrupole points, at the ends o az
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0.296
0.283
0.403
0.376
0.275
0.337
0.411
0.572
0.61
0.85

Ql or ( L,)—
Q2 or ( —bz)

C1 or (bl =b2, L2)
C2 or (bi =b2, h)

C3 or (h1=h2, b2)
b1 — L1(X '=X,L, )

(X"=X ', b, )

(X"=X ' 0)
Minimum in b1hL1

27.72
26.00
25.35
37.7
83.0
25.68

25.26
25.01
24.989
24.868

12.9

14.7
5.1

3.38
0
2.33

2.1

2.1

5.5

3.5

5.4
3.7

14.2
50

3.4
3.38
0
2.71

10.9
7.3

50
50

14.7
5.1

4.40

3.24

10.9

50
50
11.0
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26.2

25.8—

1.03 %
3: 204%

cause (P P—
4 ) is second order in X. Writing the first

two terms in the high-temperature expansion for gF ..

gF(T, T~ )=k~T ln[X(T 3/T) ]+Xkii T(T3 /2T)

(35)

25.4—

24,6
0

l

0.1 0.2 0.3 0,4 0.5

where

T3 = (2vrR lm3 )/[2v& )
~ kii]= 1.696 K ,

one obtains

X[22 + Vo/2v4+k~T(T3 /2T) ~ ]

+b, 3
—E3 —kiiT in[2(Tf /T) ~ ]

pm( T]
+ f [u3 (0)—u3(0)]dP' . (36)

FIG. 6. Freezing curves for various He concentrations. The
dashed ( AL

& ) and dotted I b
~
L

& ) curves represent our calcula-
tion while the numbers represent the data of Lopatik (Ref. 45)
at various He concentrations. The solid lines are the univari-
ants hL

& L, and b
& hL, which meet at the quadrupole point

{—b2). The dashed-dot curve is the freezing (melting) curve of
pure He.

For X=0, the solution of this equation is T=T0=0.61
K. Equation (36) has the form Xf, (T)=fz(T) where f,
and f2 are functions of temperature and fz( To ) =0. Ex-
panding both f, and f2 in ( T —To ) gives the asymptotic
form of the azeotropic line

X=(T—To)f2(TO)/f )(To)

where

D. Azeotropic lines

pm( y)
=k&T ln2+ f [v3 (0)—v3(0)]dP

pm(0)

+~E+g( FTTF")+X(Vo/2ug ), (34)

where we have dropped terms in X etc. All pressure-
dependent quantities are evaluated at P=P~ in (34) be-

An interesting feature noticed by Lopatik is the line
b) Liof equal concentration or "azeotropic line, " X '=X

shown dotted in Fig. 4. One point on this line can be
seen in the T Xdiagram a-t P =25.6 atm in Fig. 7. (The
data in this figure are from Refs. 1, 2, 45, and 50.) The
point A at the maximum of the L

&
region is a point on

the azeotropic line. Among other possibilities an azeo-
tropic line may begin or end on a univariant which it
must meet tangentially. According to our calculations,
the line shown in Fig. 4 joins b~L]L2 at 0.34 K where

X '=X '=15% and b&hL& at -0.41 K. where X '

L)=X '=5%%uo (see Table II).
LlAnother azeotropic line, (X"=X '

), which was
discovered by Le Pair et al. ,

' begins on the b
&
hL,

univariant at 0.572 K where X"=X ' =3.4% (see Table
II). This line ends on the melting curve of pure He
which it meets at 0.61 K.

Since this azeotrope occurs at low concentrations in
both h and L &, and at comparatively high temperature, it
is possible to obtain its asymptotic form analytically.
Equating p3 in h and L, , with concentration X(&1 in
both phases, and using (10), (29), and (32)

A "(1—2X)+k~ T lnX+ 63

f~(TO)/k~ =—', —in[2(T3 /To) ]

and where we have neglected small terms proportional to
dP /dT evaluated at To. We find f, (TO)/ks =0.926 K,
so that X= ( T To )/( 1.27—K) for small X.

K. Freezing and melting lines for nearly pure He or He

Since the melting curve of pure He has a shallow
minimum near T4 =0.775 K, the form of the phase di-

min

agram for small concentrations of He is quite complicat-
ed. We show a series of T-X diagrams at closely spaced
pressures in this region in Figs. 7, 8, 9, and 10. (These di-
agrams take thermal phonons and rotons into account in
a way described below. )

An interesting feature of the phase diagram in this re-
gion is the minimum in the univariant bhL

&
versus pres-

sure. [See Table II and Fig. 9(a).] The minimum corre-
sponds to the lowest pressure, 24.868 atm according to
our calculation, at which hcp solid may exist. There is
also a minimum pressure for the existence of bcc solid.
The bcc minimum occurs in a region of concentration in
the liquid which is too far from 0 or 1 for our models to
be accurate, and we have not attempted to calculate it.

The temperature dependence of the He melting pres-
sure P~ ( T) is of course due to the thermally excited ro-
tons in liquid He and the phonons in both the solid and
the liquid. We have taken these effects into account in
the calculation of the phase diagram near melting for
small concentrations of He. For P4 (T) we used a quad-
ratic interpolation between the tabulated values given by
Grilly. Then terms representing the phonon contribu-
tions to the Gibbs energies were inserted in g4(T) and
g~(T). The temperatures at which these terms are
significant are high enough that the Debye theory is
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TABLE III. Calculated temperatures, pressures, and concentrations (in %) on the univariants.

0
0.12
0.18
0.24

0.32
0.38
0.44
0.50

0.32
0.38
0.44
0.50
0.60
0.70
0.80
0.90

0.29

0.32
0.36
0.40

0.08
0.12
0.18
0.24

0.32
0.36

P
(atm)

25.29
25.50
25.72
25.92

25.81
25.21
24.22
23.14

25.66
25.36
25.20
25.10
24.98
24.91
24.87
24.87

26.75

27.28
26.44
25.43

31.37
30.50
29.52
28.65

29.80
34.88

8.0
8.8

10.0
11.6

14.1

16.3
18.8
21.8

8.9
5.9
4.6
3.9
3.1

2.8
2.5
2.2

(1—X )

(hLiLp)
0
0.06
0.41
1.22

(b)L)L~)
3.0
4.9
7.1

9.6

(bihLi )

(bihL2)
2. 1

(b)b~L2)
2.7
3.9
5.3

(b2hL2)
0.0007
0.021
0.24
0.91

(bib~h)

0
0.02
0.40
1.8

3.6
3.5
3.4
3.4
3.2
3.1

2.9
2.6

4.5

0.0013
0.052
0.65
2.4

7.3
11.9

11.9
24.2
46.5
52.8

6.2
$4
4.9
4.6
4.2
3.8
3.5
3.0

8.8

14.6
23.5
42.5

15.5
29.7

(1—X )

14.6
23.5
42.5

0.0047
0.13
1.3
4.6

15.5
29.7

inadequate. A reasonable fit to the empirical data for hcp
He and bcc He near 1 K is found to be

TI ~pl-o. dT'=&OT /O(5 '
0

(37)

where /=4. 6, 005 is the empirical Debye temperature at
T/Q=O. OS, and ao —86k& for hcp He and ao —125k&
for bcc He. The parameter OO5 is related to the atomic
volume U by the approximate relation

Q~ =Q~ (v /v )
3'

v =v, [1+PK,(P P, )]— (38)

which is obtained by integration of a simple power-law
J

with @=2.6. Here U, and B, are the values at an arbi-
trarily chosen standard pressure I', . We chose
P, =P4 (0)=24.993 atm for He and P, =P3 =28.933
atm for He. Finally we used the approximate equation
of state

dependence of the compressibility on the volume:

K =K, (v/v, )~ .

Substituting these equations into (37):

J SdT'=[aoT~/O~ '][1+pK, (P P,)]—
(39)

Table IV summarizes the various parameters we have as-
sumed for both isotopes and both crystal structures. For
consistency the phonon terms in g3 and g3 have been in-
cluded, although they have no appreciable e6'ect on the
results. All the numerical calculations in this paper in-
clude the phonon terms in both pure He and He.

The inclusion of the phonon terms in the Gibbs ener-
gies of the pure solid phases does not take into account
the eA'ect of thermally excited phonons on the excess
function gE. We have continued to represent g by the
regular solution theory, Eq. (3) with A independent of
temperature. This means that the theory assumes that
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cterizin the honon contributions to the Gibbs energies of hcp and
dfo th l fo th oth t l tbcc He and He. Values in parentheses have been assumed from the va ues or e o e

=2 6 d ~~=4. 6 were the same for all four crystals.ture. The parameters y = . an

Crystal

hcp He
bcc He
bcc 'He
hcp 'He

P,
(atm)

24.993
24.993
28.933
28.933

4.95
(4.95)
S.52

(5.52)

K,
(atm ')

0.0038
0.0077
0.0062

( —0.0062)

(125)
125
(86)

0~

(Kelvin)

24.6
20.3
12.3
19.0

0.3

0.2 &0

0.1 I

20

0.36—

T{K)

0.5
C

T(K)

0.4 — g o

Dl

I

40
X (%)

l

60

Q 0

Z5. 6 atm

80 100

the phonon contribution to g for a mixture is merely a
linear interpolation between the pu pre hases. This is

1 rl oversimplified but it is probably an adequate ap-
proximation for very small concentrations, as req

'

for the calculations of Figs. 9 and 10.
Another interesting part of the phase diagram is the re-

gion c ose o1 t the minimum in the melting curve of pure
He. Figure 11 shows T versus X at the pressure o t e

The sha e of our calculated curves is in com-
b Lifshitz andpiete agreement with the theory given y i s i z an

Sanikidze ' a long time ago.
We now turn to the problem mentioned in the Intro-

duction, name y e1 th relative solubility of small concentra-
tions of He in solid He (b2) and liquid He (Lz).
Equating p4 in the two phases, using ,10 and (22) to (24),

3 "(X ) +k~T ln(1 —X )+64

=E4+ k& T ln[(T4 /T)3~ (1 —X )]

+ (u —u )dP' . (40)
pm

4

Since Xb and X are both close to 1, so that P=P3 (T),

0.34

Q.6

h

0.32—

h+Li

L)+L2 T (K)

04

0.30
0 8 12

X{%)
1

16

(b)

20
0.2

L)+Lp

FIG. 7. (a) The T-X phase diagram at 25.6 atm. The experi-
mental points are from Lopatik (Ref. 45, ), Tedrow and Lee
(Ref. 2, o), Le Pair et al. (Ref. 1, V), and Weinstock et al. Ref.
50, X). The calculated temperature of the hL&L2 three-phase
equihbnum a1'b ' t 0 15 K is lower than the measurements of Lopa-

~ ~

ti . an'k (0.17 K) and Tedrow and Lee (0.2 K). An azeotropic point
are e ual. (b)( A ) exists where the concentrations in b and L

&
are equa .

Enlargement of (a) showing the structure of the phase diagram
near the azeotropic point A.

Z5. 1 atm

l

60 10080
0

20 40
X (%)

FIG. 8. The T-X diagram at 25. 1 atm. The experimental
oints are from Lopatik (Ref. 45, 2), Weinstock et al. (Ref. 50,

X) Le Pair et al. (Ref. 1, V), and Zinovieva (Ref. 48, A).
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1.2 1.2
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0.8

L1
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1.2

X {%)
1.2

T(K)

X (%)

1.0 1.0

0.8 0,8

0.6 0.6

X (%) X(%)
FIG. 9. The existence of an azeotropic line joining the melting curve of pure He to the bhL

&
univariant, and minima in both these

curves has interesting consequences for the phase diagram near 25 atm (see also Fig. 10). (a) At 24.9 atm, which is above the
minimum in bhL, at 24.868 atm, an hcp pocket exists inside the region of coexistence of the L

&
and b phases. The two dotted hor-

izontal lines both belong to the bhLI univariant. (b) At 24.985 atm, the pressure of the minimum in the melting curve of pure He,
the freezing and melting curves of the hcp phase are tangent to the pure He axis at T;„=0.775 K. (c) At 24.989 atm, the pressure
at which the azeotropic line joins the pure He melting curve, an azeotropic point first appears on the T axis [the low-temperature
coexistence domain of the h and L, phases is so narrow (-0.25 mK near X=3%) that it is invisible on this scale]. (d) At 24.991
atm, the melting pressure of pure He at 0.5 K, the azeotropic point A is at Xh =XL

I
—1% and the h phase extends to T=0.5 K.

28.933atm

T(K)

0.8

T(K)

0.4

0.4 0.2

25 atm

X (%)

FIG. 10. At 25.00 atm, which is above the freezing pressure
of pure He at T=0 (24.993 atm) but below the pressure (25.01
atm) at which the azeotropic line joins the bhLI univariant, the
azeotropic point 3 still exists at Xz =XL =2.8%. The hcp

1

phase extends down to T=0. The freezing curve starts from a
nonzero concentration (X-0.7%) at T=O. The shape of the
phase diagram at lower pressures is shown in Fig. 9 and at
higher pressures in Figs. 7 and 8.

I

96
0
95

I I I

98 100
X (%)

FIG. 11. As predicted by Lifshitz and Sanikidze (Ref. 51) the
existence of a minimum in the melting curve of pure He at
P =28.933 atm and 0.318 K has a particular effect on the phase
diagram of He- He mixtures at the same pressure. Both the
melting and freezing lines are tangent to the pure He axis. Our
calculation shows that He is more soluble in solid He(b2) than
liquid He{L&). This is connected with the fact that the univari-
ant hb2L2 is lower in temperature than the melting curve of
pure He.
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we find

(1—Xb)/(1 —X )=(T4 /T) ~ exp[E(T)/ks T], (41)

where

P3 (T)
E(T)=Eq A4 A + f (u4 uq)dP (42)

4

and E&, 6&, and A" are the values at P3 ( T). At extreme-
ly low temperatures where P3 (T)-P3 (0)=33.95 atm,
E(T)=E(0)=(—0.09+0.02) K where we have taken

E4 = (0.476+0.02) K at 33.95 atm, extrapolated from the
data of Laheurte.

Since E is negative, (41) predicts that, at sufficiently
low temperatures, the solubility of He in liquid He will
eventually become larger than in the solid. However this
occurs at T= 14 mK where the maximum solubility in ei-
ther bcc or liquid He is completely negligible. For ex-
ample the limiting form of the maximum solubility in the
solid is found by equating p4 in b2 and in pure hcp He at
P& (0), giving

1 —X = exp[ (b,„+3 ")/—kti T]= exp( —0.79 K/T) .

(43)

At 0.08 K this formula gives 1 —X =5X10 in agree-
ment with the concentration on the univariant bzhL2 in
Table III. At 14 mK it predicts (1—X ) —10 . For all
practical purposes therefore (41) shows that the solubility
of He in bcc He is always larger than in liquid He.
This result is relevant to the observed dendritic growth of
bcc He crystals at low temperature.

V. CONCLUSIONS

One of the principal results of this work is the
discovery that the phase diagram of solid mixtures, in-
cluding the hcp bcc transfor-mation, is well explained by
the regular solution model which assumes that "the
asymmetry parameter" e in (9) is small. There are cer-
tainly some disagreements with experiment but the
discrepancies between one experiment and another are
frequently just as large. These discrepancies may some-
times be attributed to difhculties in achieving equilibri-
um, particularly with respect to crystal structure, and to
inhomogeneity in concentration and strain. (The effects
of dislocations, which are themselves generated by the
bcc-hcp transformation and the isotopic phase separa-
tion, are very complicated and interesting. )

Although the regular solution theory roughly agrees
with the theories of Prigogine, Klemens et al. , Coldwell-
Horsfall and Mullin, the reason why it works so well
remains somewhat of a mystery, since the theories ap-
parently predict a large asymmetry. On the other hand
the theories do not include the effect of the crystal struc-
ture, on which the free energy depends quite strongly.

Another of our results is the determination of the
difference in free energy A4 and volume 5v4 between bcc
and hcp He at T =0, for the pressure range from about
25 to 30 atm. The corresponding quantities 63 and 6v3
for pure He at T =0 have been obtained for pressures in
the range from 25 to 35 atm, although with probably

more uncertainty. As we have shown, these quantities,
with the parameters in the regular solution theory
and 2 and their pressure derivatives, specify the proper-
ties of solid mixtures completely. They should also prove
useful to compare with first-principles calculations of the
properties of the pure crystals.

With regard to the part of the phase diagram involving
the liquid phases, the agreement with the latest measure-
ments of Lopatik is very good and, with earlier measure-
ments, probably within the experimental uncertainties.
The formulas we have used for the chemical potentials in
the liquid phases cannot be applied near the tricritical
line or the lambda transition and this is one direction in
which the calculation could be improved.

A straightforward elaboration of the formulas we have
presented would include the effects of He spin ordering
in the solid phases, and the effect of a magnetic field. The
theory could then be applied at much lower tempera-
tures.
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APPENDIX

In general, the problem of solving for the pressure, the
temperature and the concentrations which correspond to
equal He and He chemical potentials in the various
phases in equilibrium was solved numerically using a pro-
gram called CURFIT. This is a program intended to fit
experimental data, y;(x;) say, to any arbitrary function

y =f (x, . . . G, . . . ) by varying the adjustable parameters
G . The program fits nonlinear functions of G by com-
bining the methods of "steepest descent" with "linearized
least squares. " It usually converges rapidly and it can be
applied to problems other than fitting data. Examples are
magnet design (where the "experimental data" are the re-
quired fields at specified positions) and the solution of
coupled transcendental equations as in the present work.

To find a univariant line, for example, the temperature
T can be stepped through a set of values. For each T
there are four "data points" with x, =i and y, =0. The
"function" fitted to these data is p3 —p3 for i = 1, p4 —p4
for i =2, p3 —p3 for i =3, and p4

—
p4 for i =4, where the

superscripts a, b, and c refer to the three phases which
are in equilibrium. The adjustable parameters G &, . . ~, G4
in the function correspond to X', X, X', and I'. Since
concentrations must be between 0 and 1, we define
X'= exp[ —(Gi ) ] etc. to prevent physically meaningless
solutions. CURFIT requires subroutines defining the fitted
function f and also its partial derivatives r)f /r)G . To
avoid algebra we used numerical differentiation for the
derivatives:
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"r)f /"r)G =[fI. . .(I+a)G,. I

f I . .(I —e)G. . . I)/(2eG )

with e chosen as 10 . The program ran quite fast in

BAsIc on a Hewlett Packard 98458 personal computer.
For instance, the univariants and other features shown in

Fig. 4 took about ten minutes to calculate and to plot on
the screen.
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