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Population dynamics of a Bose gas near saturation
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At low density a gas of bosons achieves a classical equilibrium distribution of energies within just
a few characteristic scattering times. At sufficiently high densities, stimulated emission comes into

play, increasing the rate of scattering into low-energy states. This results in the well-known Bose-
Einstein equilibrium distribution. In this paper we show —by numerical calculation —that for a
weakly interacting Bose gas the number of characteristic scattering times required to achieve an

equilibrium Bose-Einstein distribution increases with increasing degeneracy. However, we find that
the characteristic scattering time for the degenerate gas is significantly shortened by the stimulated

emission, with the net result that equilibration times may be comparable to the classical case. These
results have a bearing on recent experiments that produced degenerate Bose distributions of exci-
tons. A basic question from these experiments is whether Bose-Einstein condensation can occur
within the particle lifetime. Our calculations indicate that condensation may take place. We also
show in this paper that exciton-phonon interactions will not significantly increase the rate of ap-
proach to condensation.

I. INTRODUCTION

The basic result of Bose-Einstein statistics is the occu-
pation number for bosons in equilibrium,

f (k)=f(E(k);p, T)= 1

where E(k) is the single-particle energy for state k, p is
the chemical potential, and T is the temperature. This
result follows' from postulating a process of stimulated
emission, i.e., that the probability of a particle scattering
into a state k is proportional to P = [1+f (k)], in con-
trast to the Fermi-Dirac case of repressed emission,
P =[1 f (k)]. The chem—ical potential p in Eq. (1) is
determined by the condition N= ff(E;p, T)D(E)dE,
where 1V is the total number of particles in volume V, and
D(E) is the density of states, which is proportional to
VE' for constant potential energy.

A direct consequence of the form of f, for fixed tem-
perature, is that above a certain critical density all added
particles must enter the ground state. For constant po-
tential energy, this critical density is given by

n, =N, /V=2. 612g(m/2irfi )
~ (ktt T) r

( T3/2

where m is the particle mass and g is the spin degeneracy.
SuperQuid helium is generally believed to manifest this
effect, known as Bose-Einstein condensation, even though
helium is a strongly interacting liquid.

In the above formulas, chemical and thermal equilibri-
um are assumed. For the case of liquid helium, the as-
sumption of equilibrium seems satisfied because He
atoms, which do not decay, undergo roughly 10" inter-
particle scattering events per second, assuming classical

hard-sphere scattering. In other boson systems, however,
non-equilibrium effects may have significant effect. For
excitons in a semiconductor, the lifetime of the particle
may only be a few hundred scattering times. Spin-
polarized hydrogen also has a finite lifetime to nonpolar-
ized states. Naively judging from classical behavior,
hundreds of scattering times may seem more than ade-
quate time to establish equilibrium. The case of Bose
condensation is unique, however, since a macroscopic
number of particles must enter a single quantum state,
which by random scattering processes alone is highly im-
probable. Therefore we need not assume that the time
for Bose condensation is short.

Recently, experimental data have been reported which
have raised the question of whether condensation may
indeed take longer than the particle lifetime under some
conditions, even though the excitons undergo many inter-
particle collisions during their lifetimes. Excitons in a
semiconductor such as Cu20 have been shown theoreti-
cally and experimentally to act as bosons under certain
conditions of density and temperature. In recent experi-
ments, at low density, the exciton gas exhibited equilibri-
um near the lattice temperature. As the exciton density
increased to approach the Bose-Einstein condensation
boundary given in Eq. (2), highly degenerate Bose-
Einstein momentum distributions were observed, but a
significant condensate fraction did not appear. Instead,
the gas increased its temperature to accommodate extra
particles, reaching temperatures well above the lattice
temperature. The temperature of the excitons at high
densities is affected by the balance of a number of pro-
cesses, including the acoustic and optic phonon emission
rates and the Auger recombination rate. Still, the close
proximity to the phase boundary over the wide range in
density strongly suggests that the quantum statistics of
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the near-condensate region plays an important role in the
temperature rise.

In the present work, we address the question of how a
nonequilibrium nearly-ideal Bose gas approaches quan-
turn saturation and condensation. We present the results
of two numerical models, first, the time evolution of the
energy distribution of a weakly interacting Bose gas, and
second, the time evolution of the energy distribution of
an ideal Bose gas with inelastic interaction with a phonon
bath.

II. PREVIOUS WORK

where F is some function of the instantaneous number
densities n (k;) and wave vectors k;, i = 1, . . . , d, for d
incoming and outgoing wavevectors in a given scattering
process. This equation was then manipulated through
various approximations to take on the following form:

dn (E) =G(E, n (E, t), t),
dt

(4)

where 6 is some explicit function. This equation could
then be solved analytically for certain cases, but in gen-
eral it was solved numerically.

Two recent theoretical works have specifically ad-
dressed the question of the time evolution of a weakly in-
teracting Bose gas. Before discussing the modeling we
have done, we briefly review the scope of each of these.

Inoue and Hanamura considered the evolution of an
ideal Bose gas of excitons coupled to a phonon bath with
infinite heat capacity. Considering only phonon scatter-
ing with small energy exchange, and using several other
approximations, they obtained a numerically solvable
Fokker-Planck equation. Although their discrete energy
points were not close enough to model a true condensa-
tion, they found a lower limit on the time to reach con-
densation of several phonon scattering times, on the or-
der of nanoseconds for excitons at low temperatures in
some semiconductors. Despite the degree of approxima-
tion, this study showed that the time for condensation
can possibly be comparable to the carrier lifetime.

Levich and Yahkot studied the same problem, except
that they considered an ideal Bose gas coupled to a Fermi
heat bath with infinite heat capacity. They analytically
calculated that the time for condensation in this situation
should be infinite By includin. g weak boson-boson in-
teractions but excluding terms which led to spectral
"peak broadening, " they later found a solution which
led to an explosive appearance of a condensate, but they
concluded that this effect could have been an artifact of
their approximations.

In each of the above calculations, the time evolution of
the bosons was expressed in terms of a Boltzmann equa-
tion of the form

dn(k) = fF(k,k„.. . , kz „n(k),n(k, ), . . . , (knz &))
dt

Xdk, dk~

(3)

Another approach —the one we take here —is solve
Eq. (3) directly, by evaluation of the integral I. Once the
rate of change in n (k) has been calculated for all points
on some grid in k space, then dn (k) can be added to each
of the n(k) for some small time step dt, and the integral I
can be recalculated. Following this iterative process, the
distribution can be determined for all times.

The problem with this iterative approach is that for
even a small number of k-points, the integral 1 can be-
come formidable; for instance, for two-body elastic col-
lisions, finding the rates at all k, at a single point in time,
involves integration over four wavevectors in three di-
mension, which naively would require a number of calcu-
lations which goes as the twelfth power of the number of
k-points! We can make this problem tractable, however,
first by mathematically reducing I to an integration over
only three energies, and second by utilizing the power of
modern array processors. In doing so, we can model the
time evolution of the nonequilibrium boson gas without
any additional approximations.

III. MODEL OF THERMALLY ISOLATED
BOSE GAS WITH INTERPARTICLK SCATTERING

As in the above references, we use the random-
phase approximation, which is valid for a weakly in-
teracting, noncondensed Bose gas. Excitons in Cu20 are
expected to interact like hard spheres of radius &10 A
(Ref. 9), therefore up to densities of 10 cm an exciton
gas in Cu20 may be treated as weakly interacting. The
random-phase approximation will break down when
coherence appears; however, it will be valid to very near
condensation.

In this approximation we write the probability of two
bosons with wavevectors k&, kz scattering to k3 k4 as

S(k„k~;k3,k4)

=M 5(k, +k2 —k3 —k4)5(E, +E2 E3 E4)——

Xf(k, )f(k2)[1+f (k3)][1+f (k4)],

where M is the matrix element of the interaction. We as-
sume here M constant, but the exact form of M turns out
not to be important as long as it remains finite at all k.
f(k) is the number of particles in state k; the (1+f)
terms give the effect of stimulated emission for bosons, as
opposed to (1 f) for fermions. The—total scattering rate
into state k can then be expressed as

r, (k)= Jd'k, d'k, d'k, S(k„k„k„k) .

The scattering rate out of state k, l, (k), is the same
expression, but with the integrand S(k, k&, kz, k3). One
can check that the distribution function given in Eq. (1) is
the equilibrium solution simply by substituting it into the
equation for equilibrium, r;(k) =1",(k).

As shown in the Appendix, the ninth-order integrals
for I,. and I, can be simplified by integrating out all the
delta functions and angles, leaving the integral only over
energies. We then obtain
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I;(E(k))dE= f dEdE, dE M f(E, )f(E2)[1+f(E3)][1+f(E)]~~

(2ir )'
24 BE BE BE BE

Bk2 k k3

1 1 1
[min(k&+k&, k3+k) —max(~k& —k2~, ~k3

—k ~)] . (7)

We obtain a similar expression for I, . For the dispersion
relation E =A k /2m, the derivatives in the denominator
are constant. Interactions will in general change the
form of the dispersion relation, and in principle we could
use a density-dependent dispersion relation without
greatly increasing the difficulty of the calculation. Our
present calculations use a constant-mass dispersion rela-
tion with no renormalization; this is consistent with the
weak-interaction assumption.

In this simulation, we place an initial nonequilibrium
distribution of particles on a grid of discrete energy
points and calculate I; and I, at each point using Eq. (7)
and the similar expression for I,. In a single iteration,
the change in the number of particles with energy E is
given by

r, (E)
dN(E) =x¹

k

t

result is that regardless of the initial distribution, the par-
ticles move to the classical Maxwell-Boltzmann distribu-
tion in less than five scattering times. In this particular
case, the initial distribution corresponds to a uniform oc-
cupation number for k-states up to Eo and zero occupa-
tion number of k-states above this energy. The average
particle energy in this system is

Eo EoE= E dE E' dE =0.6Eo-
0 0

We can express this average energy in terms of the equi-
librium temperature of a classical gas To given by
E=1.5k&T0, so that E0=2.5k&T0. For a low-density

where X is the total number of particles, and x is an
overall multiplicative factor. x is determined by the con-
dition that the total change in the spectrum, g&dN(E),
must be small compared to X. x~ is the time step for a
single iteration, where ~ is a characteristic scattering time
for particles in the gas. ~ depends on the matrix element
M, the gas density and average energy, and —as we shall
see —the degeneracy of the gas.

In principle, one could use a grid of evenly-spaced en-
ergy points; however, as condensation nears, the distribu-
tion becomes sharply peaked at low energies, requiring a
high-density grid. Since computation time goes as the
cube of the number of grid points, if an evenly-spaced
grid is used, a near-condensate with a narrow peak will
require far too much time. We used a nonuniform grid of
points with many points near E =0. To eliminate
round-off errors, the particle energies for each calculation
were picked randomly within each energy interval
(E(i —1),E(i)). As a measure of the error in our pro-
gram, an equilibrium distribution with p= —0.001k&T,
which ideally should not change at all, was allowed to
scatter. The relative change g&dN(E)/N was less than
one part in a thousand per iteration, for x = 1. The calcu-
lations for the evolution of a nonequilibrium system,
placed on a 256-point grid of energy points and evolved
through 100 iterations, took eight hours on an FPS 264
array processor.

IV. RKSUI.TS

We erst model the behavior of a low-density, nearly
classical gas, thermally isolated from its surroundings.
Figure 1 shows the evolution of such a system after one,
two, and four interparticle scattering times, where one
"scattering time" is defined as (1/x ) iterations, the time
for all X of the particles to scatter once. An interesting
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FIG. 1. Particle distribution for a boson gas undergoing only
interparticle scattering, for the low-density case, n =0.00125n, ,
where n, is the critical density at temperature To, and To is
defined by E=1.5k&TO. The top curve is the initial distribu-
tion, and the following curves correspond to the distribution
after all the one, two, and four characteristic scattering times.
The index i,„.,« is the number of scattering events per particle
since the initial creation. The last curve is within 1% of a
Maxwell-Boltzmann distribution.
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case, To is the temperature which describes the final
Maxwell-Boltzmann distribution of the gas. Although
the fu11 quantum statistics are included in this calcula-
tion, the particle density for this case is only
n =0 0.0125n, , where n, =n, (TO) is the critical density
at temperature To. Therefore, quantum effects are not
observed.

As the density is increased into the quantum regime,
we find that the system takes many more scattering
events to come into equilibrium. Figure 2 shows the en-
ergy distribution at different times for a Bose gas above
critical density with fixed volume, energy, and density,
for the same initial energy distribution as the case in Fig.
1. The transients caused by the initial discontinuity at
E =ED continue up to roughly 20 scattering times. After
80 scattering times, the distribution is still far from con-
densation.

Upon reflection, it is not surprising that the Bose sys-
tem takes many scattering events to approach condensa-
tion. From Eq. (5) one can show that the scattering rate
into the ground state is identically zero for a noncon-

densed system. ' The rate into nearby states goes as the
magnitude of the wavevector k for constant matrix ele-
ment M. Terms of M with higher- orders of k will con-
tribute to scattering into these states even less.

We find that after the initial transients die away, the
distribution fits reasonably well to a single-chemical-
potential Bose-Einstein distribution f (E) as given in Eq.
(1); a fit to the distribution at t =80 is shown as the dot-
ted line in Fig. 2. Each fit has two free parameters, the
temperature T„which determines the energy scale, and
the ratio a, = —p, /kz T„which determines the spectral
shape. The fitted values of a, and T, change in time,
moving toward their equilibrium values. In the case
shown in Fig. 2, after 80 scattering events the system has
reached only u, =0.024, with T =1.625To. The equilib-
rium distribution for this case is a 50% condensate (a =0)
at a temperature of 3TO. As the gas is equilibrating its
energy spectrum will look similar to that of a much less
dense gas in equilibrium at an elevated temperature.

Figure 3 shows the evolution of the fit parameters,
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FICz. 2. Particle distribution for a boson gas undergoing only
interparticle scattering, for the high density case, %=12.5n, ,
where n, is the critical density at temperature Tp, and Tp is

defined by E=1~ 5k' Tp. The top curve is the initial distribu-
tion, and the following curves correspond to the distrjbution
after all the particles have scattered 20, 40, and 80 times. The
curve at i„,« =80 is best fit by a Bose-Einstein distribution of
the form of Eq. (1) with T, =1.625Tp (x =0.024, shown as the
dotted line.

&scatt
FICs. 3. (a) The temperature T„ from best fits of the Bose-

Einstein distribution in Eq. (1) vs i„,«, the number of scattering
events per particle, for bosons undergoing only interpartiele
scattering. Three cases with varying density are shown, all with
the same average energy. (b) The best fit value of cx, vs i„,« for
the same three cases. (c) The values of density n, deduced from
Eq. (10) using the fit values of T, and a, for the above three
cases.
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starting from the same constant-occupation-number dis-
tribution, for three different densities at the same average
energy. Figure 3(c) shows the "spectroscopic density" n„
defined by the relation

n, =g(m/2mB )
~ ff(E;a.„T,)E'~ dE . (10)

As seen in this figure, in contrast to the two cases below
the critical density, above the critical density the spec-
trum at intermediate times appears to be that of a gas in
equilibrium at much lower density —here almost an or-
der of magnitude less. We stress that the number of par-
ticles in each calculation is strictly conserved —n, is
merely a deduction from spectral fits. Although n., /n,
can be greater than 1, the spectrum never appears con-
densed because the gas temperature is greater than To,
which is used to calculate n, by Eq. (2). That is, the ratio
n, In, ( T, ) is always less than one.

As seen in Fig. 3(a), the equilibrium temperature rises
with density. This reAects the fact that for a given tern-
perature the average energy of a Bose gas decreases as the
gas becomes more degenerate. Specifically, for a Bose gas
at constant potential energy the total number of particles
1S

X=(c nost)(k~T) f f(e;a)e' de

and the total energy is

U=(const)(k&T) f f(e;a)e ~ de,

where the unitless integrals depend only on the quantity
a = p/k~ T. T—hus E = U/N = (k~ T)g(a), where g has
the classical value —,

' for o. ))1, approaches —,
' for a near

zero, and goes to zero as an increasing fraction of the gas
enters the condensate. For constant total energy, then, if
the degeneracy increases, so must the temperature. Fig-
ure 4 shows the equilibrium temperature versus density
of Bose particles at constant average energy.

So far we have described the thermalization process in
terms of the number of scattering events per particle.
The average time per scattering event for a particle obvi-
ously depends on the actual particle density n =X/ V, the
average energy, and the scattering cross section of the
particles. The average scattering time also depends on

the degree of degeneracy, since the (1+f) stimulated
emission terms enhance the scattering rate. At high
quantum degeneracy, the scattering rate increases as n,
instead of linearly with n as expected from classical
statistics. Also, the average scattering rate changes in
time as the degree of degeneracy changes during equili-
bration. In the example of the high-density case shown
in Fig. 2, the average scattering time, proportional to the
sum of all I;, decreases by almost an order of magnitude
between the first and 200th iterations. Figure 5 shows
the values of the fitted a, and the spectral half-width 6 as
a function of real time, where we have calibrated the time
scale by equating the rate sums gk I, and gk I, at low

density to the classical collision rate 1/~o=o. nP, where o.

is a constant collision cross section, n is the density, and
V=(3k~TO/m )'~ is the classical average particle veloci-
ty. Both the fit value of a, and the halfwidth are well de-
scribed by an exponential decay in time. For the example
of excitons in CuzO with density n =10' /cm, average
energy E=1.5k&TO, TO=4. 3 K, mass of 3mo (Ref. 11),
and scattering cross section 20 A, the gas takes roughly
100 ps to reach the value of o., =0.01.

At first, it may seem that since o., never reaches zero,
that the system can never condense. However, from Eq.
(1) the occupation number of the ground state is given ap-
proximately by —I /(p/kz T) —= I /a. Therefore, when a,
reaches values around 1/N, the gas is effectively con-
densed. Figure 5 shows that e, decreases by 2 orders of
magnitude in a time 0. 15' with ~~ the classical hard
sphere scattering time. If the system continues at the
same exponential rate it will reach condensation within
just a few classical scattering times. We see that al-
though the total number of scattering events to reach
equilibrium greatly increases at condensation, the real
time required does not, due to the enhancement of the
overall scattering rate by the stimulated emission effect.
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FIG. 4. The equilibrium temperature vs the density of bo-
sons, for constant average energy. Also plotted is the critical
temperature for Bose condensation, as a function of density.

FIG. 5. {a) The value of a, vs time for the case n =12.5n, .
The classical scattering time is given by 1 p 1/n o.U, where n, o.,
and U are defined in the text. (b) The halfwidth of the energy
distribution, 6, vs time for the same case.
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The application of these results to systems with finite
lifetime depends on the mechariism of decay. If the decay
rate were enhanced by stimulated emission in the same
way as the interparticle collision rate, then the lifetime
should remain proportional to the scattering time and
condensation would be impossible. In the case of exci-
tons in Cu20, the dominant decay mechanism is believed
to be an Auger process in which two particles collide
and one is annihilated. Since the final state of the
remaining particle is expected to be a high-energy ionized
state, the stimulated emission effect should not enhance
the decay rate, and the Auger process should simply be
proportional to the classical collision rate 1 lro=crnu A.s
shown above, a lifetime of a few classical collision times
is adequate for condensation. Therefore, if the Auger
cross section is smaller than the collision cross section o.,
the system can condense. In fact, the measured cross sec-
tion for Auger decay of in Cu20 is on the order of 2A
(Ref. 5), which is much smaller than the expected hard-
sphere collision cross section.

Although the numerical calculations described above
I

were done for particles with no decay, the results of these
calculations can be extended in a simple way to systems
with generation and decay of particles. We have repeated
the above iteration process for a gas in steady state, with
equal numbers of particles generated and eliminated each
iteration. For particles with lifetime of i scattering
times, the distribution reaches a value of a in steady state
which is nearly the same as the fit value a, found after i
scattering times in the calculation above. Thus these cal-
culations serve as predictions for the real steady-state de-
generacy of finite-lifetime particles.

V. MODEL OF BOSE GAS
WITH INELASTIC PHONON SCATTERING

In high density and temperature regimes, interparticle
scattering will be the main mechanism by which particles
such as excitons initially establish a temperature. At
suSciently low densities, however, collisions with a heat
reservoir of phonons will dominate. These collisions have
the following form:

S (k), k2, k~ ) =M~ t 5(k, +k —k2)5(E) +Ep E3 )f (k)—)F(k~ )[1+f (k2)]

+5(k, —k —k )5(E, E E)f—(k, —)[l+F(k )][1+f (k )]I, (13)

where F is the phonon occupation number. M&, which typically depends on the phonon momentum k, is the boson-
phonon interaction matrix element which determines the overall time scale. Using a procedure very similar to the
derivation of Eq. (7) in the Appendix, we integrate out the delta functions and angles, to obtain the scattering rate into
state k,

I;(E(k))dE= J dE k dk M' aE aE
Bk „Bk k,

X If (E, )F(E )[1+f (E)]6(E,+E(k +k))6(E, E(k —k ))~—

+f(E, )[1+F(E )][1+f(E)]6(E(k +k) E, )6(E, —E(k——k ))~ (14)

where 6(E) is the Heaviside function. For these calcula-
tions we assume M constant. The first term in the
brackets corresponds to phonon absorption, while the
second corresponds to phonon emission. As in the inter-
particle scattering case, the scattering rate into the E =0
state vanishes for a noncondensed system.

We can use this formula, plus the similar expression
for I 0, to calculate the scattering rates at every point on
a grid of energy points. We iterate as in the interparticle
scattering case, except that the phonon distribution is
kept fixed at the Planck distribution and thus total parti-
cle energy is not conserved. That is, we assume a phonon
bath of infinite heat capacity.

Figure 6 shows the halfwidth of the energy distribution
versus time for a system with a density slightly above the
critical density and initial temperature twice the phonon
temperature. In this case, the fit parameter a, goes
quickly to less than 0.001, but then slows down in its ap-
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FICs. 6. The halfwidth of the energy distribution, 6 vs nurn-
ber of phonon scattering events, ignoring interparticle scatter-
ing, for the case n =1.25n, , with initial E =2(1.5k~TO) and
final E = 1.Skz To, reached after three scattering events.
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proach to zero. The fit temperature goes to the bath tem-
perature almost immediately, within a few scattering
times.

In the case of Cu20, deformation-potential theory pre-
dicts' an exciton-phonon matrix element of

g~2 k~2— (15)
2pu& V

where D is the deformation potential, equal to 2.1 eV for
Cu20 (Ref. 13), p is the mass density of the crystal, UI is

the longitudinal acoustic sound velocity, and V is the
crystal volume. For a lattice temperature of 2 K, this
yields an average phonon scattering time of one
nanosecond. This implies that at 2 K, the phonon-
exciton scattering rate will be less than the interparticle
scattering rate of excitons in CuzO for densities above
roughly' /cm .

The degeneracy of the excitons does not affect the
phonon-exciton scattering rate very much. From these
calculations, when the system reaches the critical density,
the phonon-exciton scattering rate increases only about
30%%uo above the rate for a classical exciton gas. Also, the
average scattering rate does not vary significantly in time
as the system approaches equilibrium. Thus these calcu-
lations show that the time for condensation does ap-
proach infinity for a system with only particle-phonon in-
teractions. Interparticle scattering must always be the
mechanism by which an exciton gas Bose condenses.

VI. CONCLUSIONS

modifies the density of states near k =0. This effect is
small for Cu2O —especially paraexcitons —due to the
forbidden nature of the band-to-band transitions, but it
may affect the detailed kinetics near k =0. We note that
the formalism presented here seems well suited to consid-
ering polariton effects, since the scattering formulas do
not require a definition of chemical potential p. Finally,
the experimental situation involves particle diffusion,
which produces inherent spatial inhomogeneities in the
gas density. The present calculations best apply to a local
region in a gas over which density is relatively uniform.
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APPENDIX: REDUCTION OI' THE SCATTERING
RATE INTEGRAL

Let the probability for two bosons wavevectors kI, kz
to scatter into states k3, k4 be

S(k, , k2;k3, k~)=M (lk, —k3l) 5(k, +k2 —k3 —k4)

X6(E, +E~ E3 E4)f—(k, )f—(k~)

X [1+f (k3)][1+f (k~)] .

We have found that, under the random-phase approxi-
mation, the weakly interacting Bose gas requires many
scattering events per particle to approach equilibrium
and condense. Nevertheless, because of the increased
scattering rate due to the stimulated emission effect in in-
terparticle scattering, the gas does not take much longer
time to condense than it does to reach equilibrium under
classical conditions. For the case of excitons in CuzO, it
appears that the particle lifetimes are adequate for con-
densation. Our calculations indicate, however, that
exciton-phonon scattering will not help the system con-
dense. The question of whether coherent effects or strong
particle interactions initiate condensation on a shorter
time scale remain issues for experimental and theoretical
investigation.

The excitonic system in Cu20 possesses some interest-
ing complications which we did not incorporate into the
present calculations. Interconversion between ortho and
paraexcitons means that there are actually two separate
gas components to consider, presumably in good thermal
contact with each other. An Auger recombination pro-
cess at high densities will not only shorten the excitonic
lifetime, but it will also provide an effective heating
mechanism for the gas. On the other hand, the emission
of optical phonons is a rapid energy loss mechanism
which affects the high-energy tail of the kinetic-energy
distribution. Also, the exciton is weakly coupled to the
electromagnetic field by the polariton effect, which

where F is the product of the four occupation-number
factors. We now define k=k& —k3 and integrate over

diaz, eliminating cos02 via the energy delta function, to
get

f d k4d A2S =2~
aE
ak k =k4

1 e(E' —E(k+k ))
2k k

Xe(E(lk —k, I) —E,')
XM (k)F(E„E2,E3,E4)l

4 1 2 3

k~=k(E4) is the magnitude of k corresponding to the
energy E, +E2 —E3.

We can now integrate over d Q3, and convert the in-
tegration over cos03 to integration over k. If we assume
that E (k) increases monotonically with k, we find

The occupation number f depends only on the magnitude
of k. We integrate over k4, eliminating k4 =k

&
+k2 k3

via the momentum delta function, to get

Jd k S=5(E,+E EEg)M (—lk) —k31)

XF(E»Ez E3 E~)lz, =z(i~, +~,—~, i) ~



39 POPULATION DYNAMICS OF A BOSE GAS NEAR SATURATION 4037

2 2

Jd k4dQ2dQ3S=
BE
Bk 4

A:„

J dkM (k)F(Et, E2,E3,E4)~~.
1 2 3 ]0

with

k„=min(k, +kz, k3+k4)

To calculate the total scattering rate into states with
momentum k, we can substitute k for k3 and E =E(k)
for E3 in the above equation, and integrate over k& and
kz. Utilizing the relationship

k,.=max(/k, —k, f, /k, —k,'/) .

If M is constant, then the integral over k becomes just
k„„—k&, . Integration over dQ& at this point results in
simply multiplying the above integral by a factor of 4m.

dE= 2k dk
Bk

we recover Eq. (7) in the text. The total scattering rate
out of states with momentum k is found by substituting k
for k &, and integrating over k2 and k3.
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