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Motivated by recent success in observing the ordering of copper nuclei at very low temperatures,
we have used first-principles electronic structure calculations to evaluate the conduction-electron-
mediated coupling strengths between the nuclear spins. Scalar-relativistic wave functions from a
self-consistent linear augmented-plane-wave calculation were used to evaluate the contact, dipolar,
and orbital electron-nuclear interactions. Besides the isotropic Ruderman-Kittel coupling between
nuclei, the electron-nuclear dipolar and orbital interactions give rise to significant anisotropic cou-
pling terms. The symmetry of the anisotropic coupling is not dipolar in form and the significance of
this for analysis of NMR line broadening is pointed out. The coupling strengths are in good agree-
ment with various NMR measurements. Using mean-field theory, the overall coupling predicts an
ordering wave vector at (2m. /a)(0. 87,0,0) and a helical spin structure; however, this state is only
0.6% lower in energy than the state with ordering vector (2~/a)(1, 0,0), which is the one recently ob-
served in neutron scattering experiments. The numerical calculations are not precise enough to ac-
curately determine the ordering vector because of this extremely small diA'erence in energy for states
near the zone boundary along the (1,0,0) direction.

I. INTRODUCTION

In some remarkable experiments utilizing a double-
stage nuclear demagnetization refrigerator, the magnetic
ordering of copper nuclei was observed at a 58-nK
nuclear-spin temperature. ' The measured susceptibility
indicated an antiferromagnetic ground state, and very re-
cent neutron scattering experiments have confirmed
this. The coupling between the nuclear spins in a non-
magnetic metal, like copper, arises from both dipole-
dipole interactions and the indirect interactions mediated
by the conduction electrons. Unlike most electronic sys-
tems, the resulting spin Hamiltonian is amenable to de-
tailed quantitative analysis so that these experiments may
herald the beginning of a new chapter in the study of
magnetism. Indeed, these ideal local moment systems
with the possibility of isotopic substitution for introduc-
ing disorder could provide the best experimental realiza-
tions of many tractable mathematical models. In this pa-
per we examine the conduction-electron-mediated in-
direct interactions. These have traditionally been studied
using a free-electron model along the lines first suggested
by Ruderman and Kittel, with the strength of the in-
teractions dependent on an empirical parameter whose
value is determined by NMR measurements. Besides the
contact interaction considered by Ruderman and Kittel,
orbital and dipolar electron-nuclear interactions are also
present. We have adopted modern electronic-structure
techniques to evaluate all of these electron-nuclear in-
teractions and thereby obtain the full nuclear-nuclear
coupling strengths starting from first principles. Besides

presenting our numerical results, we assess the present
state of the theory regarding the indirect interactions.
This seems particularly appropriate in view of the new
experimental results. We also discuss in this paper the
symmetry of the interaction which diA'ers somewhat from
that used in previous studies that invoked simplifying as-
sumptions about the band structure. A brief account of
our earlier work concerning the dominant contact in-
teraction has been reported. In Sec. II we develop the
formalism describing the indirect-coupling Hamiltonian,
starting with the electron-nuclear interaction. The nu-
merical methods are brieAy described in Sec. III, while
the results are presented in Sec. IV. The discussion of the
ordered spin structure based on mean-field theory is given
in Sec. IV C, and the conclusions and discussions are con-
tained in the last section.

II. FORMALISM

A. Hyperfine Hamiltonian

There are three closely related phenomena in metals
which arise from the hyperfine interaction between a nu-
cleus and conduction electrons: the Knight shift,
nuclear-spin relaxation, and indirect conduction-
electron-mediated nuclear-spin interactions. Although
quantitative understanding of the Knight shift and
nuclear-spin relaxation has been achieved in several met-
als, the same level of understanding has not yet been real-
ized for indirect interactions. While this paper is mainly
concerned with indirect interactions, we calculate other
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quantities related to the hyperfine interaction in order to
obtain an overall understanding of the hyperfine phenom-
ena in the same material. We also use these related phe-
nomena to test that our wave functions and matrix ele-
ments yield a consistent picture.

The hyperfine Hamiltonian between an electron and a
nucleus, in a nonrelativistic theory, consists of three
parts:
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and therefore only s electrons contribute to it. In atoms
which have one unpaired s-electron (or a large polariza-
tion of core s electrons due to exchange between electrons
and an unfilled shell), H i'"„' manifests itself in the
hyperfine splitting of atomic levels. (For a review of
electron-nuclear interactions in atoms we refer the reader
to Lindgren and Rosen. ) In several cases, the hyperfine
splitting has been used to estimate the magnitude of
hyperfine induced effects in a metal. This can be justified
if one limits oneself only to some column in the Periodic
Table, like Cu, Ag, and Au, since then the s-electron den-
sities are expected to rescale roughly in the same way in-
side the column as one goes from an atom to a metal.
This method has been used to estimate the magnitude of
indirect coupling in Au.

The other two terms in the hyperfine Hamiltonian, the
dipolar and the orbital, are only from electrons which
have a nonspherical charge density. The dipolar part is

H,P„= fi y, y„r, [—I S—3(I.r)(S r)] .

The minus sign results from our choice of a positive y, .
When calculating the matrix elements of H, i „, we have
found it convenient to expand in terms of spherical har-
monics.

H,P = gA y, y„I Pd; (S,r), a= —,z, +, (4)

where we have introduced a basis (I,I', I+) instead of
(I",I~,I') using the well-known transformation

I—=I +iI~ .

The functions Pd; (S,r) are
1/2

Pd, (S,r)=r ' [ + ( —')'~ Y—'(r)S' ——' Y'(r)S—
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where the different terms a're called contact, dipolar, and
orbital interactions, respectively.

The contact interaction depends on the charge density
of electrons at the nuclear site

Hg"„' = iri y, y„ti(r)I.S,8~

y= —,z, + .

Equations (6a) and (6b) define the values of c(y, a) and
m (y, a). Because the terms contain Y2 (r), the dipolar
interaction only couples states whose partial-wave num-
bers I, l' satisfy l —I ' =0, +2.

The orbital part of the hyperfine Hamiltonian is

orb g2y y p
—3I

where I is the orbital-angular-momentum operator. In a
crystal with inversion symmetry, the orbital-angular-
momentum matrix elements (kv~l, ~kv) are zero (here v
is the band index). In the calculation of spin-lattice relax-
ation and for the indirect interaction, the off-diagonal
matrix elements (kv~l, ~k'v') are involved in the second-
order perturbation theory, and their contribution can be
large. In copper, the orbital mechanism contributes
roughly 20/o to the spin-lattice relaxation rate, ' which
led us to investigate whether the orbital terms also would
make such a large contribution to indirect coupling.
Indeed, in a model calculation, which employed the so-
called Bardeen's spherical approximation for con-
duction-electron wave functions, orbital terms were
found to contribute significantly to indirect coupling. "

Since copper is a light element, relativistic effects are,
in general, unimportant for the electronic structure of the
metal; however, the l=0 radial functions are modified
significantly near the nucleus by relativistic corrections.
We have included the dominant contributions by using a
self-consistent scalar-relativistic method which neglects
spin-orbit coupling but includes all other effects such as
the mass enhancement and Darwin terms. ' We continue
to describe the formalism using the nonrelativistic form
of the interactions which are more transparent and are
suitable for application to copper if the radial matrix ele-
ments are treated properly. '

B. Indirect-coupling Hamiltonian

The hyperfine interaction between an electron and a
nucleus gives rise to a coupling of two nuclear spins, as
was found originally by Ruderman and Kittel. In
second-order perturbation theory, the effective Hamil-
tonian coupling two spins i and j becomes

H; = f (k, v, cr)[l f (k', v', o')]+c.c. —
,

E k, v, o. —E(k', v', o. ')
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where k is the wave vector, v the band index, and o. the
spin of a conduction electron. The energy
s(k, v, o ) =E(k, v) in our case, where the ground state has
no spin polarization. The function f (k, v, cr )=f(E(k, v))
is the Fermi function. In the above equation the elec-
tronic states are summed over, so that H; describes cou-
pling between the nuclear degrees of freedom.

Since we neglect the spin-orbit coupling, the cross
terms between the spin and orbital induced interactions
vanish. The remaining modes of interactions are de-
scribed by the following matrix elements (using a trans-
parent short-hand notation):

(H;;"„')(H;;"„')

(H;;"„')(H,",& )

&H,', ~ )&H,', ~ )-
(H;,"'„)(H;,"'„)

Ruderman-Kittel (RK), H,

pseudodipolar (PD), H..
tensor-tensor (TT), H,

orbital (orb), H,'"

On the right-hand side we have indicated the name and
abbreviation of the corresponding indirect-coupling mode
that we use in this paper. We are following the original
nomenclature by Bloembergen and Rowland, which was
based on the symmetry properties of the coupling modes
in the spin space and is awkward for the two terms in-
volving H,&~.

As a consequence of the fact that

H; ' can be decomposed in a way similar to H; as given
in Eq. (13)."

However, there is no reason for the anisotropic cou-
pling to have the dipolarlike symmetry in spin space as
was pointed out already by Abragam. ' As we will show,
the form of the anisotropic coupling is determined by the
symmetry of the crystal.

a d+d e —q I~

H,, = (r, r,.—S;) . d. —d b f+f
e+e f f c—

J

(14)

where the matrix elements are guaranteed to be real by
the addition of the complex conjugate in Eq. (9). Each
element is explicitly written as a sum of the symmetric
and antisymmetric parts. Equation (14) can be rewritten
as

H;q
— I, A;q. Iq

—D,~ I, XI
'

where 3, is the symmetric part

(15)

a d e

C. Symmetry properties

Generally, the Hamiltonian which couples two spins
can be written as

y (~~S I, ~~') &~'~S I, ~~) =-,'I, I, ,
cr, o'

(10)
A; = d b f

e f c
(16)

the RK interaction is isotropic in spin space. In the
free-electron approximation, the RK interaction takes a
simple form:

H, cc r, [cos(2kF r., . )

—sin(2kF r," )/(2kzr, )]I;I"
The interaction is oscillatory and of long range. These
general features were also found in two recent first-
principles calculations of the RF interaction in
copper. ' '

The rest of the coupling modes cause an anisotropic
coupling between nuclear spins. Bloembergen and Row-
land were the first to discuss these modes. By employing
the so-called Bardeen's spherical approximation' for
conduction-electron wave functions, they found that the
pseudodipolar interaction has the form

H, =B,J[I, I~
—3(r,j I. , )(r,, . I~)], (12)

where the range function B;~ =B (r;~) is oscillatory
and of long range. For the tensor-tensor interaction,
Bloembergen and Rowland found the form

and D;.= (f,e, d ) describes the antisymmetric
Dzyaloshinski-Moriya interaction which is known to play
a role in spin glasses, for example. In crystals with inver-
sion symmetry, the case we are considering is D; =0.
However, in a real sample, D," will always be nonzero
near crystal imperfections, impurities, and surfaces.

Now we consider the form of 2; assuming the crystal
has inversion symmetry. If the vector r; joining the i
and j sites lies in some symmetry direction, there exists a
non-unitgoint group operation P which leaves r;J invari-
ant, i.e., Pr; =r, Thus,

A, =A(r; )=A(Pr;, )=PA, .P

where the last equality follows from the fact that A (r, )

transforms like a second rank tensor with respect to r;,
which can be verified by a direct calculation starting from
Eq. (9). Depending on the symmetry of r;, various re-
strictions are imposed on elements of 2, For a cubic
lattice, we have the following six possibilities:

H =A I I +B [I I —3(r I )(r I )] (13)

where the range functions A," and B; depending on r;.
-are again oscillatory and of long range. Complete analyt-
ical expressions for the range functions within the spheri-
cal approximation have been given by Oja and Kumar
who also considered the orbital coupling and found that

a 0 0
r,"~~[100], A;1= 0 b 0

0 0 b

a d 0
r) ~~[ll0], A,, = d a 0

0 0 c,

(18a)

(18b)
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(add
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It can be seen that depending on the symmetry of r;., the
number of independent parameters for the anisotropic
coupling is different. If the anisotropic coupling could be
decomposed into an isotropic and dipolelike part, as in
Eq. (13), the number of independent parameters would al-
ways be two. From the above we see that this is the case
only when r; is in the [100]or [/ll] direction.

The underlying reason for Bloembergen and Rowland's
original result that the anisotropic interaction can always
be decomposed into an isotropic and a dipolelike part is
in their use of the spherical approximation for
conduction-electron wave functions. Then the interac-
tion is invariant under arbitrary rotations R about r,",
3,"=R A,"R, instead of a finite set of rotations P dic-
tated by the crystal. This results exactly in a decomposi-
tion into isotropic and dipolelike parts for 3, , as in Eq.
(13). We discuss consequences of the full interaction
symmetry on the interpretation of NMR line shape
analysis in Appendix A.

III. METHODS AND COMPUTATIONAL DETAILS

For a meaningful evaluation of the indirect coupling, it
is important to start with an accurate calculation of the
electronic structure (both energy bands and wave func-
tions). We have adopted the linearized augmented-
plane-wave (LAPW) technique to obtain a self-consistent
potential for Cu. The standard local-density approxima-
tion (LDA) is used to reduce the complicated (and un-
known) exact exchange-correlation energy to a tractable
single-particle type of potential. This approximation is
known to be remarkably successful in many electronic
structure applications, however, it should be used with
some caution for evaluation of densities near the nucleus
where there is a strong inhomogeneity in the electronic
density. ' We have also used a muffin-tin approximation
for the potential. For close-packed metals, this is a good
approximation which has minimal effect on the wave
functions near the nucleus. To make contact with previ-
ous work, we first calculated the nonrelativistic band
structure and charge densities which are essentially iden-
tical with the Cu results reported by Moruzzi, Janak, and
Williams (MJW) using the same potential and approxima-

tions. ' As mentioned in the Introduction, relativistic
effects are important, and our later calculations for the
evaluation of the indirect coupling were made with eigen-
values and wave functions obtained using exactly the
same techniques, but with radial functions evaluated by a
self-consistent, scalar-relativistic method. ' The band
structure (i.e., energy eigenvalues) is little affected by the
relativistic corrections. For speed in evaluating the q-
dependent matrix elements, the wave functions and eigen-
values in the —„th irreducible section of the Brillouin zone
were calculated once and stored in a large data base.

Before evaluating Eq. (9) for the indirect coupling, it is
worthwhile to investigate independently the spin-lattice
relaxation and the Knight shift, both of which involve
electronic matrix elements with the hyperfine interaction.
In order to assess the size of relativistic corrections and
make contact with previous calculations we evaluated the
spin-lattice relaxation and Knight shift both nonrela-
tivistically and relativistically. The numerical conver-
gence for the k space summation and the band summa-
tion are also important to consider since with the energy
denominator alone they are slowly convergent. ' After
discussing these topics below, we give expressions for the
indirect coupling matrix elements in terms of the LAPW
wave functions.

A. Spin-lattice relaxation and Knight shift

The spin-lattice relaxation involves the hyperfine cou-
pling between nuclei and the electron states at the Fermi
level. A calculation of the relaxation rate thus provides
a u'seful test for some of the wave functions and the ma-
trix elements required in evaluating the indirect coupling.
The spin-lattice relaxation rate of Cu also has been calcu-
lated by two other groups using modern techniques. ' '

In Appendix B, we give the formulas for the various
quantities which enter such a calculation and give a com-
parison of our results with those previously published.
The agreement among the three independent nonrela-
tivistic calculations is excellent; however, the final relaxa-
tion rate is about 17% smaller than the experimental
value. This discrepancy is largely due to relativistic
effects.

The importance of relativistic effects for Cu is perhaps
best illustrated by considering the atomic hyperfine split-
ting. ' The splitting involves i/4, (0)l in the nonrela-
tivistic formulation, while the corresponding relativistic
hyperfine operator is proportional to f o g(r)f (r) dr,
where g (r) and f (r) are the large and small components
of the relativistic 4s wave function. A self-consistent, rel-
ativistic calculation of the hyperfine splitting for atomic
Cu gives a value 14% larger than the corresponding non-
relativistic value. [Note that the density at the nucleus,

litj4, (0)l, is 41%%uo larger in the relativistic calculation. ]
Because it is the square of the hyperfine interaction which
enters the indirect coupling Hamiltonian, Eq. (9), it is im-

portant that relativistic effects be considered. Besides the
enhancement of the hyperfine matrix elements for the s
component of the wave functions, we also find that the
effects of relativity also cause a small change in the rela-
tive position of the d and s bands and a slight (but
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(19)

where gz is the Pauli paramagnetic spin susceptibility,
and the average is to be taken over the electronic states
on the Fermi surface. This can be easily evaluated by
noting

=2 X &(&g —&F ) I&i (0) I'

—:2n (EF ) & Iy(0) I'&~, , (20)

where n (FF) is the density of states per Ryspinatom.
Using the nonrelativistic values from Table IV we have

ap(0)

=2(0.222 e/Ry spin)(13. 92 a. u. )

=6. 18e /( Ry spin a. u. ) . (21)

This is within 1% of the MJW value. ' Also from Table
IV, n„,(EF ) = 1.958 states/Ry spin so we can derive

The enhanced yp of Eq. (19) is given by pz2n(EF)S,
where the Stoner enhancement factor, S=1.12, is taken
again from the tables of MJW. ' We therefore obtain a
nonrelativistic value for the Knight shift of K=0.156,
whereas the experimental value is 0.239. We should
mention that our nonrelativistic results using the poten-
tial of MJW have a systematic error, since their potential

significant) increase in the density of s-like states at the
Fermi level. We find the overall relativistic enhancement
for the s-component contribution to the spin-lattice relax-
ation to be +34% (see Table IV) while Ebert et al.
found a 26% enhancement.

It is also worth mentioning that atomic hyperfine split-
ting calculations using the local-density approximation
are not very reliable. The main problem is that at large
values of r, the potential falls off exponentially rather
than as e /r. The Cu 4s orbital density is sensitive to the
potential in this outer region and in turn the value of the
4s orbital density at the nucleus varies when corrections
to the potential are attempted at large r. We have found
that such variations in f~, (0)l can be as large as the
effects of including relativity for the hyperfine field.
Luckily such difficulties are not a problem in the bulk
solid. There still remains, however, the error caused by
using the local-density approximation (LDA) for a situa-
tion in which the charge density near the nucleus has a
large inhomogeneity. We do not believe this is a large er-
ror for Cu, given the overall agreement of our results
with experiments. Indeed, it will only be through careful
calculations and comparison with experiment that a valid
assessment of the use of the LDA for hyperfine interac-
tions can be made.

We now turn to the Knight shift. According to the
theory first proposed by Townes, Herring, and Knight, '

the dominant contribution to the Knight shift is given by

was obtained for the theoretical equilibrium-lattice con-
stant of 6.76 a.u. Our self-consistent relativistic calcula-
tions were all performed assuming the experimental-
lattice constant of 6.83 a.u.

We also evaluated the Knight shift using the results of
our self-consistent relativistic calculations. The relativis-
tic value is 0.172, leaving a 39%%uo discrepancy with the ex-
perimental value, 0.239. To investigate a possible reason
for this discrepancy, we evaluated the orbital contribu-
tion to the Knight shift. Walstedt and Yafet were simi-
larly motivated 25 years ago and made a back-of-the-
envelope estimate of the orbital Knight shift for Cu.
They found K„b-0.25, but argued that their matrix ele-
ment estimates were too crude and inaccurate so that
K„b was probably closer to 0.06 (which would bring the
total Knight shift into agreement with experiment). Us-
ing accurate matrix elements and summing over the first
nine bands, we find Ã„b=0.20. One might argue that
the reference salt (CuC1 or others) also has some orbital
contribution, but we estimate this could only bring the
effective K„b down to 0.17. We have also examined the
core-polarization contribution using spin polarized atom-
ic calculations and estimate a negative value of around
—0.017 or —10' of the Fermi contact term. In any
case, the situation now is that the theoretical K„, is 0.34.
We suspect that a major cause of this discrepancy with
experiment is caused by a large diamagnetic contribution
beyond the Larmor contribution which is, of course, also
present in the reference salts. This suspicion is
strengthened by estimates of the total bulk susceptibility,
where we find (in 10 emu/mole) yp, „„=10.9,
+v vie k= 16.6, and yd;, = —15.6; yielding y«, = 11.9,
whereas the experimental value is —5.5. The above esti-
mate of yd;, comes from just the Cu core and d'
configuration of the ion, leaving the conduction-electron
contribution to be a very large —17.4 to get agreement
with experiment. To our knowledge, this has never been
satisfactorily calculated for Cu and would require a major
effort.

In short, we believe the present interpretation of
Knight shift data is not complete and further effects have
to be considered.

B. k-space summation for indirect interaction

o f(k v)[1 f(k+q v )]x s(k+ q, v') —s(k, v)
(22)

where v and v' label the band indices and f is the Fermi-
Dirac occupation function. To evaluate this summation,
the so-called tetrahedron method is used. ' The Bril-
louin zone is partitioned into a large number ( —1000) of
small tetrahedrons, and the energy eigenvalues are calcu-
lated for the k points at the four corners of each tetrahed-
ron. Inside each tetrahedon, the energy dispersion is as-
sumed to be linear and the contribution to the suscepti-
bility can be evaluated analytically. As an example, we
show ig Fig. 1 the results of a numerical calculation of

Without the matrix elements, the Fourier transform of
Eq. (9) reduces to the expression for the bare susceptibili-
ty:
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Q4Q —x

0.32

0.24

using the tetrahedron method for calculating the suscep-
tibility term.

The matrix element M ~(k, v, k+q, v') is decomposed
into terms arising from the Ruderman-Kitte1, pseudodi-
polar, tensor-tensor, and orbita1 interactions

M ~=M ~ +M ~+M ~+M ~
RK PD TT orb (26)

Q.I6

0.08

I

0.20
I

0.60
~ (—:.)

I

I.OO

l

I.40

In the following, we give expressions for the various
matrix elements in terms of the LAPW wave functions,

P(k, v)= g [a,' (k)u, (r)+b(' (k)u,'(r)]Y, (r),

r (RMT, (27)

FIG. 1. Susceptibility Eq. (22), using free-electron energy
bands. The analytic Lindhard function is compared to the nu-

merical values obtained using the tetrahedron method as de-

scribed in the text.

g (q) for the free-electron gas. The corresponding
analytical result (Lindhard function) is shown as the solid
line. There is some systematic error for small q values,
since in this limit, the f (l f) factors r—estrict the sum-
mation to states near the Fermi level and the mesh of
tetrahedra is a bit coarse to give a good representation for
the Fermi surface.

C. LAPW matrix elements

Instead of calculating the interaction in real space,

where al and b& are the expansion coefficients for the
radial wave function, ul(r), and its energy derivative
u&'(r).

We neglect the contributions to the matrix elements
which come from outside of the muffin-tin sphere. This is
correct within 2% because of the relatively short range of
the interactions. In order to avoid unwieldy expressions,
we drop the bI' (k)u&'(r) terms from the three subsequent
equations. The expressions will be similar for any
method that decomposes the wave functions into angular
momentum components.

1. Ruderman-Kittel

MR~&(k, v, k', v')= —,'aoo(k) aoo(k') uo(0)5 ~,

H, = —QI, A, ~I~ c.c. , a,P—=x,y, z,
a, P

we calculate the Fourier transform of it,

(23) a,p=x, y, z . (28)

The 5 function makes the interaction isotropic in spin
space.

A ~(q)= g A;~~exp(iq r;, ) .
J

We write A ~(q) as

4 z z l f(k, v)[l —f(k+q, v')]
A q =A' y, y„—"N

z „, e(k+q, v') —E(k, v)

XM ~(k, v, k+q, v'),

(24)

(25)

where the sum over electronic-spin states has been per-
formed to obtain M ~(k, v, k+q, v') from the product of
the two matrix elements in Eq. (9). The advantage of cal-
culating A ~(q) rather than A,"~ is that only one k sum is
needed. The summation was performed by assuming
M ~ to be constant within each small tetrahedron and by

2. Pseudodipolar

This coupling mode involves both contact and dipolar
hyperfine interactions and is therefore proportional to the
product of the density of the conduction electrons at the
nuclear site and the expectation value of r . We define
the matrix element of r between difterent partial waves
as

~MT
m(~( (k')=a(~ (k)aI'~ (k') J ul(r)ui (r)r 'dr .

0

(29)

Now we can write the pseudodipolar interaction as

Mg(k, v, k', v')= —,'uo(0) g [m& I '(k, k')aoo(k')aoo(k)(l200~l'0)c(P, a")
I, m, l', m'

X (l'2m'm (P,a*)~lm )+mI .
&

(k', k)aoo(k)aoo(k')

X (l'200~10)c(a, P*)(l2mm (a,P*)~l'm')], a,P= —,z, + . (30)

The values c(y, a) and m (y, a) are defined through Eqs. (6) and (7) with (p=+ )* (p= —) and (p= —)*=-(p=+ )
and similarly for a . The quantities (l&12m&m2~13m3) are Clebsch-Cxordan coefficients which are defined in the same
way as those used by Jackson. Here, as well as in the following, we have found it more convenient to calculate the in-
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teractions in the (I,I', I+ ) basis rather than the (I', I~,I') basis. In the (I,I~,I') basis, the pseudodipolar coupling is
traceless like the dipolar interaction. Therefore, a maximum of five parameters are needed to specify the interaction be-
tween two spins. Pseudodipolar, as we11 as the tensor-tensor matrix elements contain contributions from terms like

f u&(r)ul, (r)r dr where / —l'=0, +2. However, the off'-diagonal (l&l') radial integrals are small in comparison with
the diagonal (/ =I') ones and can be neglected. For example, f ur(r)ul. (r)r 'dr for (I, l') =(0,2) is two orders of magni-
tude smaller than those for (l, I') =(l, l) and (2,2).

3. Tensor-tensor

The tensor-tensor interaction, which arises only from the dipolar hyperfine Hamiltonian, can be written as

M @ (k, v, k', v') =
I, m, I', m', I, m, I ', m '

m ~ (k k )m , p--(—k k)(1200II'0&&l'200llO&

c(y, a*)c(y*,P")(1—
—,'5, )(l'2m'm (y, a*)llm )

X (l2mm (y*,P*)ll 'm '), a,P= —,z, + .

This coupling mode has, in general, a nonzero trace.

(31)

4. Orbital

The orbital interaction between nuclear spins arises from the orbital part of the hyperfine interaction, Eq. (8). We
make use of the fact that the wave functions [Eq. (27)] are expanded in terms of the spherical harmonics. We first
rewrite I I as I'I'+ —,'(I+1 +I 1+ ). We are then led to calculate angular integrals

(Imll ll'm') =I Yl* (A„)l YI .(Q„)dA„, a= —,z, +, (32)

which are readily evaluated by using well-known equations. The matrix element for the orbital interaction can now

be written as

M fb ( k, v, k', v' ) =—,
'

I, m, m', f', m ', m

m& I (k, k')m&', , &, (k', k)(1+5,)(1+5&,)

X(lmll llm')(l'm 'll~ ll 'm ), a,P= —,z, +, (33)

where the spin degrees of freedom have been summed
over. In agreement with Ref. 11, we find that the orbital
coupling is anisotropic.

We have calculated the various indirect interactions
for copper up to nine nearest neighbors by using the
above expressions. The program was tested in several
ways to make sure that there were no computational mis-
takes. The integration of the energy denominator in Eq.
(25) was tested by a comparison to the free-electron Lin-
dhard function, Fig. 1. The part of the program which
computes the matrix elements for the various coupling
modes was tested against a paper and pencil calculation
in the case when all mI I ~ (k, k')= l. One further im-

portant test for the final results is that the matrix 3;
describing the interaction between spins i and j, satisfies
the general symmetry requirements which were discussed
in Sec. II-C to within the numerical accuracy of the com-
puter.

IV. RESULTS

A. Ruderman-Kittel interaction

ing a fine mesh in k space. For the other interactions
such a fine mesh is proved impractical. The fine mesh
consisted of 408 k points in the —,', th section of the first
Brillouin zone, giving rise to 2048 tetrahedrons. AR~(q)
of Eqs. (25) and (28), meaning the diagonal element

ARK(q), was evaluated at 23 q vectors along the symme-
try lines [100], [110],and [111]. These values were least-
squares fit using a nine-shell model. Table I lists the nine
A RK (r;, ) which were determined. As can be seen, the
values of

ARK�

(r;J ) drop rapidly with increasing distance.
Also shown in Table I are our previous nonrelativistic
values, a set of values based on the free-electron approx-
imation, and values obtained by Frisken and Miller using
a method which emphasized accurate integration of the
energy denominator but had less accurate matrix ele-
ments. ' ' Included also is a fifth set of values evaluated
with a coarse set of k points as described in Sec. IVB
below.

There are two dimensionless quantities which charac-
terize the overall strength of the RK interaction and have
been measured. The R parameter is defined by

Since the Ruderman-Kittel interaction is the dominant
contribution for the indirect coupling and the easiest con-
tribution to evaluate, we have calculated it separately us-

(34)
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TABLE I. Values of the Ruderman-Kittel coupling strength, A«(r), from various calculations. .

The values are listed in units of nK.

LWH' FM Free el. '
This work

~/8a mesh m/4a mesh Expt.

1

2
3
4
5
6
7
8
9
R

(1,1,0)
(2,0,0)
(2, 1,1)
(2,2,0)
(3,1,0)
(2,2,2)
(3,2, 1)
(4,0,0)
(4, 1,1)

—11.67
1.41

—1.31
0.11
0.25
0.61

—0.06
—0.18

—0.34
0.091

—8.99
1.56

—0.76
—0.67

0.61
0.34

—0.13
—0.17

—0.25
0.070

—11.60
5.18

—2.88
—0.36

1.47
0.25

—0.83
—0.49
—0.27
—0.42

0.101

—12.74
1.63

—1.88
—0.17

0.56
0.94
0.08

—0.35
—0.03
—0.37

0.101

—10.94
1.13

—1.47
—0.001

0.44
0.89

—0.12

—0.33
0.086

—0.42+0.05
0.095+0.003'

'Values from the nonrelativistic calculation of Lindgard, Wang, and Harmon (Ref. 5).
"Nonrelativistic values from the most recent calculation of Frisken and Miller (Ref. 14).
'Values obtained using the free-electron approximation and normalized to give the experimental value
for R.
Reference 28.

'Reference 29. The experimental value for Q is given for coupling between unlike nuclei. Here we have
scaled it down by 2.5% to give the Q between average moments.

where p is the number density. R is related to the aver-
age molecular field and has been measured for copper in
NMR experiments on highly polarized spins by Ekstrom
et al. The negative sign of R, which was found in the
experiment, indicates the antiferromagnetic nature of the
interaction. The second parameter, here defined as

g AR~(r;, )

is related to the average fluctuating fields. It has been
measured in copper in a magic angle spinning NMR ex-
periment by Andrew et al. We have listed the parame-
ters R and Q in Table I for the five sets of calculated
Aa~(r, ~) together with the experimental values. Our
present values are in excellent agreement with the mea-
surements.

The values of A a&(r;. ) for the rr/8a fine mesh given in
Table I include all contributions from the occupied states
in bands 1—6 to the unoccupied states in bands 6—9. In
view of the slow convergence when considering only the
energy denominator, ' we have extended the calculations
to include the unoccupied states in bands 10—20. With
matrix elements included, the convergence is much fas-
ter. The largest change occurs for the value of A a& (110)
which is reduced by 10%%uo. The value of R is reduced by
7 Jo. The LAPW wave functions for bands 10—20 were
expanded in a separate energy window centered about 1.5
Ry above EF. While further convergence tests are desir-
able, it is not known how accurate the calculated eigen-
values and wave functions are at energies (E +EF) 3 Ry)
above the Fermi energy. For this reason, there remains
an uncertainty in the values given in Table I of about
10%.

B. Anisotropic coupling

The tensor algebra involved in the calculation of the
pseudodipolar, tensor-tensor, and orbital contributions to
the coupling is quite time consuming so that we have lim-
ited the k-space summation to only 256 tetrahedrons.
The A (q) was evaluated at 10 uniformly spaced q vectors
in the —,th Brillouin zone. Using this mesh of q values, a
direct Fourier transform was made to obtain the A (r; ).
Because the q vectors are uniformly spaced at ~/2a inter-
vals, there are a limited number of unique A (r;~ ) which
may be determined since

A [r,"+(4la, 4ma, 4na)]= A (r; ),
with l, m, n integers. Nevertheless, the values of A(r;~)
drop rapidly with increasing r, - and the calculated in-
teractions provide a meaningful representation of the an-
isotropic coupling.

In Table II we list the elements for the total interaction
matrix for the different shells of neighbors. The matrices
for different r; within the same shell may be obtained us-
ing the symmetry relationship, Eq. (17). The Ruderman-
Kittel interaction is clearly dominant, and we have listed
separately this contribution in Table I where it can be
seen that, it spite of greatly reduced number of tetrahed-
rons, the magnitude and r dependence of the interaction
strength is reasonably well represented. The other contri-
butions, in particular the orbital contributions, can be
substantial as evidenced by the variations in the diagonal
elements and the values of the off-diagonal elements. To
give some idea of how much the various terms contrib-
ute, we give, in Table III, a breakdown of the contribu-
tions for the first nearest-neighbor interaction matrix.
After the RK interaction, the orbital contributions are
the largest, as was first suggested by Oja and Kumar, "
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TABLE II. Values of the elements for the total interaction matrix, Eq. (16), for different values of r;, .
The units are in nK. '

(1,1,0)
(2,0,0)
(2,

'1',
1)

{2,2,0)
(3,1,0)
(2,2,2)
(3,2, 1)
(4,0,0)
(4, 1,1)

R = —0.34
Q =0.092

XX
1J

—12.597
1.649

—2.003
—0.320

0.580
0.945
0.120

—0.350
—0.030

A vv
lJ

—12.597
1.802

—2.005
—0.320

0.487
0.945
0.098

—0.350
—0.030

ZZ

V

—9.428
1.802

—2.005
—0.272

0.714
0.945
0.117

—0.350
—0.030

XP'
IJ

—1.979
0.000
0.172
0.442

—0.008
0.034

—0.046
0.000
0.000

XZ
jJ

0.000
0.000
0.172
0.000
0.000
0.034
0.026
0.000
0.000

A v'-
lJ

0.000
0.000

—0.249
0.000
0.000
0.034

—0.050
0.000
0.000

'Here, as well as in Table III, we have used the average gyromagnetic ratio of Cu and Cu weighted
by the natural abundancies. The values in this table were obtained by adding the m/8a mesh RK in-
teraction results and the m/4a anisotropic interaction results. We believe these to be our most accurate
values from the calculations.

C. Spontaneous nuclear ordering

When nuclear spins are cooled to such a low tempera-
ture that the thermal energy is comparable to the interac-
tion energy, a spontaneous nuclear ordering takes place.
Ordering has been observed in copper in magnitude sus-

TABLE III. Contributions to the first nearest-neighbor in-
teraction matrix A {1,1,0). The orbital, pseudodipolar, and
tensor-tensor contributions are given for the different wave
function angular momentum components which enter the ma-
trix elements of Eq. (9). The units are nK. The calculations are
all done on a m /4a mesh.

RK
orb pp pp

pp dd
dd dd

PDss pp
ss dd
$$ sd

TT pppp
pp dd
dd dd
sd-
(pp, dd, sd)

A xx

—10.94
—0.27

1.60
—0.86
—0.17
—0.16

0.00
0.05

—0.07
0.01
0.00

A

—10.94
—0.45

1.93
1.22
0.33
0.31
0.00
0.00
0.07

—0.10
0.00

0.00
0.23

—0.96
—0.68
—0.48
—0.11

0.00
0.06

—0.12
0.09
0.00

however, they are at least a factor of 2 smaller than these
authors estimated from their calculations based on the
spherical approximation for the wave functions.

The full indirect interaction can be characterized by
properly defined R and Q parameters. We substitute
ARK(r; )~—,'TrA; in Eqs. (34) and (35) to account for
the matrix nature. This way, we find R = —0.34 and
Q=0.092. However, it is presently not clear if thereby
obtained values can be readily compared with the experi-
mental values, since anisotropic indirect interactions
were not considered in the analysis of the measure-
ments.

ceptibility measurements and, most notably, in a recent
neutron-diffraction experiment. The properties of the
ordered phase, particularly its spin structure, pose irnpor-
tant tests for microscopically calculated coupling con-
stants. In most of the previous work, the indirect in-
teractions have been described by the free-electron RK
interaction, with a strength fitted to reproduce the experi-
mental value. ' The RK interaction has recently been
calculated by two groups by starting from the ab initio
electronic structure. ' ' These studies supported the
picture of the strongly competing isotropic RK and dipo-
lar interactions. Now we can investigate how this deli-
cate balance is affected by the additional anisotropic cou-
pling modes as calculated from first principles.

We discuss the ordered spin structure by using the
mean-field (MF) theory, which has previously been used
in this context. ' The ordering in the MF theory takes
place through a second-order transition. Therefore, the
MF equations can be linearized at the transition tempera-
ture and the task of finding the ordering wave vector Qo
and the critical temperature T, can be formulated as an
eigenvalue problem

A'"(q) e„(q)=&„(q)e„(q), n =1,2, 3,

k~ T, "= ,
' I (I + 1 )&— (37)

where A, „(q), n=1,2,3 are the eigenvalues and e„(q) are
the corresponding eigenvectors, which determine the spin
polarization. The matrix 3""(q) is a Fourier lattice sum,
defined as in Eq. (24), of the total nuclear spin-spin in-
teraction 3 ' ', which is the sum of the indirect coupling
terms Eq. (16) and the direct nuclear dipolar interaction.
The Fourier sum of the dipolar part of 2 ',

"is calculated
by using Ewald's method. The ordering wave vector Qo
corresponds to the wave vector yielding the largest eigen-
value A. ,„=k„(Qo). Because of crystal symmetry, all
vectors belonging to the star of Qo are equivalent and
hence tht ordered structure shows degeneracy. The criti-
cal temperature is related to X „through
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Therefore, k „corresponds to the largest critical tem-
perature.

In Fig. 2, we have plotted the quantity

—,'I (I + 1)max[A, , (q), A2(q), A3(q)]
T(q)—:

B
(38)

200

— [100]—[110]-

100

f

1.0
I I I I I t t I I

0 0.5

q/q

FIG. 2. "q-dependent critical temperature" T(q), as defined
by Eq. (38) in the high symmetry directions of the q space. At
the ordering wave vector, T ( q) obtains its maximum value
which equals the critical temperature. Solid line: dipolar and
all indirect interactions. Dashed line: dipolar and RK interac-
tions for the [100] direction.

as a function of q in the high symmetry directions of q
space. The maximum of T(q) is obtained at

q=Qo=(2'/a)(0. 87, 0,0)

resulting in T, "=170nK.
This mean-field value for T, is considerably higher

than the observed T, of 58 nK. This is because the frus-
tration inherent in the fcc lattice results in strong Auctua-
tions and thereby lowers T, as was first shown by Kumar
et al. More recent calculations and numerical simula-
tions, which make use of the calculated RK interaction,
are able to account for the observed T, . '

The spin polarization corresponding to the ordering
wave vector Qo is perpendicular to Qo and gives rise to a
helical spin structure, as has been discussed previously in
this context. It is important to note, however, that
T(q) along the (100) direction is very Aat near the zone
boundary, with the zone-boundary value at (2vr/a)(1, 0,0)
being only 0.6% lower than at Qo. With the theoretical
uncertainty in the coupling constants arising from a
coarse mesh of k points sampled for the anisotropic
terms, limits on band summation, and the neglect of con-
duction electron spin-orbit coupling, we are unable to
make a precise determination of the ordering vector
along the ($,0,0) direction for g between 0.8 and 1.0.
Notice that the RK interaction alone gives the ordering
wave vectors at g= 1 as shown in Fig. 2. Thus our results
suggest that the anisotropic interactions tend to destabi-
lize the ordering at (2'/a)(1, 0,0). This was also the con-
clusion of Oja and Kumar, although their use of "spheri-
cal" wave functions tended to overestimate the impor-
tance of the anisotropic coupling. "

For other studies which employed the free-electron
form of the RK interaction, ' and also for the nonrela-

tivistic calculations of the RK interaction, the ordering
wave vector Qo was found to be (2~/a)(1, 0,0). This is
also the ordering wave vector that was found by neutron
scattering experiments for both low external magnetic
fields and for higher fields that were less than the critical
field for the polarized state. While the extremely small
difference in energy between our calculated state at Qo
and the observed state at (2'/a)(1, 0,0) means that nu-
merical noise may be responsible for the discrepancy, it is
prudent to ask if there is perhaps some physics that has
been left out. We can see no compelling reason that
correlation eAects beyond the mean-field theory would
tend to stabilize the (2m/a)(1, 0,0) structure. Higher-
order terms in the Hamiltonian might provide the neces-
sary tendency for the wave vector to lock in at the zone
boundary, since it would take so little energy. Spin-orbit
coupling of the conduction electron would supply a cou-
pling between the electron spins and the lattice and thus
might also provide a small energy favoring a zone-
boundary wave vector. It is clear that calculations of an-
isotropic interactions with better numerical accuracy are
needed, and it would be worthwhile to further consider
mechanisms which might stabilize the zone-boundary or-
dering wave vector.

V. DISCUSSION

The recent experimental achievements in nuclear or-
dering at low temperatures, particularly in copper,
motivated the present work. The Hamiltonian coupling
the nuclear spins is relatively simple, which suggests that
nuclear magnetism may provide interesting systems al-
lowing detailed comparisons between theory and experi-
ment. In this paper, we have used copper as a prototype
system to show how the full indirect coupling strengths
can be evaluated from first principles. Where we have
been able to make comparisons with experiment, the
agreement has been very good, suggesting that similar
calculations would be worthwhile for other metals being
considered experimentally. Among these metals are
Ag, Tl, Pr, and several Pr compounds. ' While the
larger atomic number of these metals means the relativis-
tic mass enhancement will cause the contact and hence,
the isotropic RK interaction to be dominant, there also
arises the dif5culty of assessing the importance of the
stronger spin-orbit coupling of the conduction electrons.
A full relativistic treatment is probably required and
could be carried out with methods similar to those used
for atomic hyperfine calculations. ' For copper we found
relativistic corrections to be important, although mainly
for the mass enhancement and the resulting changes in
the s components of the wave functions near the nucleus.
The form of the relativistic matrix elements in terms of
the large and small components of the wave functions
was also found to be important.

We have discussed the symmetry properties of the cou-
pling matrices, 3 (r; ), and in Appendix A we emphasize
that the common practice of decomposing 2, - into iso-
tropic (RK) and dipolelike parts is, in general, incorrect.
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The anisotropic part need not be dipolelike; indeed for
fcc or hcp metals the differences may be significant
'enough that line shape measurements on platinum,
lead, and thallium should be reanalyzed in terms of
the general symmetry conditions imposed on A;. . The
different components of A,- for nearest neighbors may
also be determined by performing NMR measurements
on single crystals using different directions of the magnet-
ic field with respect to the crystalline axis.

Two other metals which deserve renewed attention are
Rb and Cs. These metals are bcc and therefore the
nearest-neighbor coupling can be decomposed into RK
and terms with dipolelike symmetry. It is, therefore,
surprising to find an order of magnitude disagreement be-
tween theoretical and experimental values of the dipole-
like coupling. We suspect this discrepancy may be
resolved by including in H", all the anisotropic terms
some of which were thought to vanish in the earlier
theoretical work. The discrepancy certainly points to
an interesting case for further study.

Finally, we would like to mention that magnetic sus- .

ceptibility measurements suggest there is one and possi-
bly two phase transitions between different antiferromag-
netic phases which take place in Cu as the magnetic field
is increased. The spin configurations for these phases
have been the subject of several recent investiga-
tions. ' ' ' These theories, which go beyond the
mean-field approach presented in this paper, could readi-
ly adopt our new values for the coupling constants, in-
cluding the anisotropic contributions. We expect that
the calculated phase boundaries, especially for the phase
at intermediate fields if it is confirmed, will be sensitive to
the details of the assumed coupling parameters. With
further neutron scattering experiments planned, new ma-
terials being studied, and new theoretical approaches be-
ing applied, the study of nuclear ordering in metals prom-
ises to been an exciting field for the future.
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APPENDIX A:
NMR ABSORPTION LINK BROADENING

(b,v ) = —h TrI[H'"""',I"] j/TrI(I ) j, (A 1)

where I"=g I". H"""' is th. e so-called truncated Ham-
iltonian (i.e., the part which commutes with g I ). It is
easily shown that an isotropic interaction commutes with
I', and thus only the anisotropic part contributes to
(5v ). If the anisotropic coupling has a dipolelike sym-
metry, one obtains

(b,v2) =—', h I(I +1)g B~~j,
J

(A2)

where B;~ =B (r,~ ) is the range function of the dipolelike
coupling. For the dipolar interaction, B, =A y /I",'.
Equation (A2) holds for a polycrystalline sample, i.e. , an
average over the magnetic field directions has been taken.
If the anisotropic coupling is not required to have a di-
polelike symmetry but the general form of Eq. (16) is al-
lowed instead, we find

In this appendix, we consider the consequences of the
full interaction symmetry (Sec. II C) on the interpretation
of NMR line broadening. Several different NMR tech-
niques have been used to obtain information about in-
direct interactions. The cw NMR line shape itself con-
tains significant information about the nuclear spin-spin
interactions. In his classical paper Van Vleck showed
how one can exactly calculate various moments of the ab-
sorption line. When his results are combined with the
theory of Anderson and Weiss, one can estimate the
magnitudes of the indirect interactions from the mea-
sured line width at half maximum intensity. Assuming
isotropic and dipolelike interactions between neighboring
spins, two coupling parameters have been extracted from
line-shape measurements for Tl, and for Rb and Cs.
The coupling parameters have been determined also in Pb
and Pt using spin-echo techniques. ' Since all the
above mentioned measurements assume that the aniso-
tropic coupling has a dipolelike symmetry rather than a
symmetry determined by the crystal (see Sec. IIC), it
would seem worthwhile to reinvestigate the validity of
these analyses.

Here we briefly outline only the calculation of the
second moment of the absorption line and point out the
form it should take in general. Assuming the magnetic
field B~~z to be so large that the different harmonics are
we11 separated, the second moment of the absorption line
is given by

(bv ),„=—,', h I(I +1)g [a;&+b~+c; a, b, —ajcj b&c—~+"3—d"&+3e~+3f ~. ],
J

where we have averaged over the magnetic field direc-
tions and used the matrix elements of Eq. (16). This is a
generalization of Van Vleck's result, Eq. (A2). If conduc-
tion electron mediated anisotropic interactions are not

I

negligible in comparison to the dipolar interaction, one
has to use Eq. (A3).

In the previous measurements of isotropic and dipole-
like interactions, ' ' ' it has been the usual practice to
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neglect more distant than nearest-neighbor interactions.
This greatly reduces the number of parameters to be
determined. In the sc and bcc lattices, the nearest neigh-
bors are in the (100) and ( 111) directions, so that the
number of independent parameters for indirect coupling
is two in both cases, and a decomposition into isotropic
and dipolelike interactions can be made. Therefore, if the
couplings to more distant than nearest neighbors are
indeed negligible, no modification due to the non-
dipolelike symmetry has to be made. However, in the fcc
lattice, three independent parameters are needed to de-
scribe nearest-neighbor coupling [a, c, and d in Eq.
(18b)]. Since the previous work on Pt and Pb gives only
two relationships between these parameters, ' more in-
formation is needed to extract the nearest-neighbor cou-
pling constants. Similarly, further work is needed to
determine the nearest-neighbor coupling constants in Tl
(hcp). NMR measurements on single crystals using
different directions of the magnetic field with respect to
crystalline axis would probably make it possible to ex-
tract the nearest-neighbor coupling constants in these
metals.

4~k~
(T)T), '= [Ay„B,n, (E~)] (B1)

4~k~
(T, T)z,',b= —,'[A'y„B~,bn (EF)] (B2)

(B3)

4~k~
(T& T)d,',b= ',

&
—[fiy„B«bnd(E+)] f (2—

', f), —(B4)

4+k~
(T, T)d d~= —,', [Ay„B,",bnd(EF)] ( —,'f —2f +2),

(B5)

APPENDIX B
In this appendix, we give the results of our calculation

for the spin-lattice relaxation rate in Cu. For a more
complete discussion of this topic, the reader is referred to
the original paper by Obata and later numerical work by
Asada et al. ' and by Ebert et al. The formulas to be
evaluated include

TABLE IV. Calculated nuclear-spin-lattice relaxation rates for 'Cu, along with the various contri-
butions and angular decomposed density of states at EF.

a (a.u. )

by~ (10 '4 cgs)
EF (Ry)

n, (E, )

n, (EF)
n„(EF)
n tot

Asada et al'.

(Ref. 10)

7.51
0.651

0.271
0.744
0.98
1.995

Ebert et al.
(Ref. 19)

6.827

0.651

0.271
0.744
0.980
1.995

Nonrel.

6.76

0.6315

0.222
0.511
0.9335
1 958'

This work
Rel.

6.831

0.6042

0.2395
0.5092
0.9933
2.0603'

p,'(0, EF )/4m.
(r ')„
g rel

( 106 Qe)
g nrel

S

g orb

g orb
d

(T[T)
s,rel
s,nonrel

p,orb
p,dip
d,orb
d,dip
cp

Total (nonrel)
Total (rel)
Expt.

0.62
11.16
8.15
9.45

5.85
1.02
1 ~ 18

0.491
0.025
0.008
0.107
0.008

0.639

0.787

0.62

6.560
5.850
1.020
1 ~ 183

0.612
0.487
0.025
0.007
0.104
0.007

0.630
0.755
0.787

0.6027
13.92
11.91
9.71

7.31
1.49
1.21

0.514
0.025
0.008
0.100
0.007

0.654

0.787

0.6059
14.94
12.31
9.87

7.85

1.54
1.23

0.689

0.026
0.008
0.117
0.008

0.848
0.787

The nI (EF) in this column are decomposed inside the muffin-tin sphere and have an interstitial no
(EF ) added to get the total. The units for the nI (E+) are states/(Ry spin atom).
The corresponding value for the relativistic formulation, see text.
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where nt(E+), l =s,p, d are the angularly decomposed
density of states per spin at the Fermi level, k~ is the
Boltzmann constant, y„ is the gyromagnetic ratio of the
nucleus, and f is the ratio of the t2 contribution of
nd(E~) to the total nd(EF). The hyperfine fields are
de6ned by

pit( ~P, (0)~')~=E = hatt, (86)2 8~ ~ (" 0'EF)

where P, (r,E) is the normalized l=0 radial function at
energy E,

Note that because of the short range of the interaction,
less than 2% error is made by restricting the radial in-
tegrals to the muffin-tin sphere as we have done.

We have also estimated the core-polarization contribu-
tion based on spin polarized atomic calculations and find
it negligible. The dipolar interaction, coupling s and d
partial waves, was also estimated and found negligible.

Table IV gives the results of our calculations along
with those of Asada et al. ' and Ebert et al.
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