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Effects of high atom densities on the NMR relaxation times in solid T2 and DT
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Experimental NMR data on solid T2 and DT are used to study the effects of high-atom densities
on the transverse and longitudinal relaxation times. Data for the second moments, the self-diffusion
coe%cient, and T& are analyzed and compared to similar measurements in H2, D2, and HD in order
to isolate the contributions to these quantities due to atoms. Subtle effects are seen on the second
moments but no direct effect is seen on the value of T, even for atom densities of order 10' cm

I. INTRODUCTION

The stable isotopes of hydrogen, H2, D2, and HD, have
been extensively studied by means of NMR. One of the
earliest applications of a then new NMR technique was
to solid H2 by Hatton and Rollin. ' The later study of the
phase transition in nHz by Reif and Purcell is a classic
paper in the field. The use of NMR techniques to mea-
sure the molecular self-diffusion coefficients (and activa-
tion energies) in Hz and HD by Bloom and later in D2 by
Meyer et al. provided the temperature dependence of
the molecular dynamics in the solid hydrogens.

Measurements of the spin-lattice relaxation time (T, )

from 4.2 to 1.4 K in both Hz and in HD containing H2
impurities by Hardy and Gaines, along with the sys-
tematic studies of the temperature dependence of T& and
the second moment (Mz) determinations of the resonance
line by Meyer et al. provide a relatively complete
description of the NMR properties pertinent to applica-
tions such as dynamic nuclear polarization (DNP) in the
solid hydrogens.

To polarize a nuclear-spin system by DNP, a static po-
larization of an electron-spin system is transferred to the
nuclear-spin system. If we think of highly polarized sys-
tems as being "colder" than systems with a smaller polar-
ization, the cold electron-spin system is used to reduce
the spin temperature of the hotter (by virtue of its smaller
magnetic moment) nuclear-spin system. As a rule, the
number of electron spins available (N, ) is much smaller
than the number of nuclear spins (N„) to be cooled. The
cooling is still possible if the ratio of the nuclear-spin sys-
tem T&„ to the electron-spin system T„ is suKciently
large.

The earlier relaxation studies on H2 and D2 can be
used to predict the situations where dynamic polarization

is possible. For instance in H2, if the oH2 concentration
is sufBciently high, a rotational ordering occurs at a tem-
perature T& that is accompanied by a large increase in

T, . Specifically, T, can change from 0.28 s in the disor-
dered state to more than 100 s in the ordered state. Thus,
from the standpoint of T& alone, rotationally ordered H2
could be a candidate for DNP. Since the maximum or-
dering temperature is about 1.5 K and the oH2 to pH2
conversion (a rate of about 1.9% per hour) is relatively
fast, there are formidable technical difhculties in polariz-
ing H2 with high J=1 concentration. On the other hand,
in the orientationally disordered state, the maximum re-
laxation time observed for high oH2 concentration sam-
ples is under 0.3 s. Reducing the oH2 concentration (x, )

is of no help since (i) a decrease of x, from the "normal"
value (0.75) is accompanied by a T, decrease to a value
below 1 ms before a slight increase, at extremely low con-
centrations, is found and (ii) the number of polarizable
nuclei is decreased. These observations virtually rule out
H2 as a candidate for DNP if it is in the disordered state.

The situation in D2, from the standpoint of T& alone is
not so pessimistic. Again, the solid can exist in a rota-
tionally ordered or disordered state depending on the
concentration of J= 1 molecules (x, ) and the tempera-
ture. First of all, for a given concentration of J=1 mole-
cules, the value of T, is much larger than in H2, even in
the disordered state. Secondly, the J=O molecules, most
of which have a nuclear spin in Dz, have no relaxation
mechanisms of their own and must be relaxed by the J= 1

molecules making the observed relaxation time for a
mixed system of J=1 and J=O molecules longer than
that of the J= 1 molecules alone. A relaxation time of 9 s
can be obtained for nD2 at 4.2 K while T, 's of several
hundred seconds would not be dificult in the ordered
state. The maximum Tz for D2 is larger than for Hz and
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the conversion rate is much slower. Thus, D2, based on
T, values, appears to be a viable candidate for DNP.

It was the experiments on HD that originally seemed
to provide the most hope for DNP in the solid hydro-
gens. Due to the fact that J=O molecules have no intrin-
sic relaxation mechanism of their own, the overall T& of
HD (where essentially all the molecules are in the J=O
state below 4.2 K) with a small impurity concentration of
0H2 could be more than 100 s even at 4.2 K or higher.
Moreover, comparison of the HD- experimental results
with those on H2 provided a good understanding of the
relaxation times of a mixture of spin systems, such a mix-
ture being commonly encountered in the solid hydrogen
isotopes. While HD seemed to be a good candidate for
DNP, no one has achieved a large nuclear polarization in
HD by DNP, although Solem did produce some polariza-
tion. '

The possibility of using a 50-50 mixture of D and T
spins as a target for laser fusion was raised as a result of
the theoretical work of Goldhaber et al. ' The perfect
such target, with both the D and T nuclear spins polar-
ized to 100%, would provide a cross-section increase of
50% over similar target of unpolarized nuclear spins, re-
ducing substantially the size and the cost of the laser sys-
tem needed for fusion. With an ultimate goal of produc-
ing highly polarized nuclear spin systems of both D and
T spins, we have started NMR experiments on solid T2
and a high-temperature equilibrium mixture of 25% T2,
25% D2, and 50% DT that we will call nDT. To date,
our experiments have produced results on the oT2 to pTz
conversion time as a function of temperature, " the spin-
lattice relaxation time T, and the spin-spin (SS) relaxa-
tion, responsible for NMR signal dephasing. To charac-
terize this latter quantity, we obtain the NMR line shape
and measure the line's second moment, M2. In this pa-
per, we will present the measurements of M2, T„and the
self-diffusion coefficient, D ( T), that we have made to date
and compare and contrast them with previous work on
H2, D2, and HD.

The major difference between this present work and
that on H2 or D2 comes from the radioactivity of the T
nucleus which P decays with a half-life of 12.3 years. A
solid such as Tz is then bathed in a constant Aux of elec-
trons with energies large enough to shatter the molecules.
Many different molecular fragments can be made, but it
is clear from the work of Leach and Fitzsimmons' and
Sharnoff and Pound' that atoms are formed. In the
Leach and Fitzsimmons work, a pulsed electron source
was used so that the atom recombination coefficient could
be measured directly from the EPR signal decay follow-
ing an electron pulse. In the Sharnoff and Pound experi-
ment, small amounts of T2 incorporated into a D2 sample .
provided an electron Aux that could not be turned off, re-
sulting in a measurable stable atom population. Our
work on ortho to para conversion in solid T2 (Ref. 14) is
best interpreted by postulating that a gas of mobile T
atoms exists in the molecular solid with the number den-
sity of atoms, inferred from a model, that increases with
decreasing temperature reaching a value in excess of 10
atoms per cm at about 6 K. Since each atom carries a

free-electron spin, the atom gas should alter the behavior
of the nuclear-spin system. Thus, in addition to the prac-
tical problem related to nuclear-spin polarization, this
system is scientifically intersting due to problems present-
ed by spin diffusion.

This paper is organized in the following manner: Sec-
tion II contains a discussion of the expected values of the
second moment if Tz and DT were not radioactive (and
behaved as the other hydrogen isotopes do) which is fol-
lowed by the results obtained for the second moment in
our experiments; Sec. III parallels the development in
Sec. II except it deals with T&, Sec. IV is devoted to mea-
surements of the self-diffusion coefficient; and Sec. V con-
tains a discussion of the results and our conclusions. The
experimental techniques and apparatus have been de-
scribed elsewhere' and will not be repeated here.

II. THE SECOND MOMENTS
(SPIN-SPIN REI.AXATION)

A. Basic ideas about second moments

One of the quantities that can be calculated with some
ease is the "second moment" of an NMR (or EPR) line.
A quantum-mechanical technique originated by Van
Vleck gives a closed form expression for the second mo-
ment in terms of the Hamiltonian that expresses all the
magnetic interactions. Moreover, the expression for the
second moment depends on the "trace" of the commuta-
tor of I„(the x component of the spin system being ob-
served) with the magnetic Hamiltonian. Since a trace is
involved, the exact eigenstates of the system do not have
to be known since any complete set will suffice. The clas-
sical example of a second moment calculation is provided
by the magnetic dipole-dipole interaction, described in
great detail in the standard reference works on NMR by
Abragam' and Slichter. '

For those systems with only magnetic dipolar interac-
tions, the contribution to the second moment comes from
just two of the six terms used to characterize the dipolar
interaction. The two important terms are the ones that
are time independent in the rotating frame of the nucleus
of interest. Thus, only the term that produces a static
field in the z direction and the term that corresponds to a
mutual spin Aip, with no dipolar energy change, need be
considered. When the dipole-dipole (d-d) interaction is
written

g2
Hd d= (A+B+C+D+E+F),

~&z

only the terms A and B can possibly be time independent
in the rotating frame of nucleus 1. In fact, if the nuclei 1

and 2 are different, then their mutual spin Hip does not
conserve "spin energy" and even that term can be dis-
carded from the calculation. When the nuclei are identi-
cal and both the A and 8 terms contribute, their relative
contributions are not equal, the contribution from the B
term being 4 the contribution from the A term.

The ease of calculation of the second moment is not
the sole justification for its widespread use in characteriz-



39 EFFECTS OF HIGH ATOM DENSITIES ON THE NMR. . . 3945

ing NMR lines. A great deal of its utility comes from the
fact that the second moment is invariant to lattice motion.
This invariance stems from the fact that the coordinates
that contain lattice information are "space coordinates"
and they commute with "spin coordinates" making no
contribution to the second moment. This is a very im-
portant idea as it indicates that temperature changes will
only alter the second moment through changes in the
density (the factor r,z). This result seems to contradict
common experience since the NMR line in a liquid is
very narrow, but in the solid it is much broader. The
theory of "motional narrowing" due to Anderson' re-
moves this apparent dilemma. The square root of the
second moment +M2 is used in the Anderson theory as
the "benchmark" frequency. If the angular frequency
that characterizes the motion (I ) is large compared to
V Mz(I ))QMz), liquidlike behavior is observed and
the line has a width given by Aco=M2/I . If the motion-
al frequency is small compared to QMz(I ((QM2),
solidlike behavior is observed and the width b,co= QM2.

Physically, the second moment is a quantitative mea-
sure of the local magnetic field in a rigid system. The
second moment is obtained from Eq. (1), after calculating
a trace and a lattice sum. The complete lattice sum is
usually only about 20% larger than the contribution from
just the first nearest neighbors and so M2 is very sensitive
to short-range order.

B. Calculation of the second moment for solid tritium

In solid tritium, either in the form of T2 or DT, the
magnetic dipolar interaction is the only interaction that
must be considered. For solid T2, only the ortho-T2 mol-
ecules have a nonzero nuclear spin (I= 1) and all such
molecules are identical so the second moment contains
contributions from both the A and B terms. The only
complication with the calculation comes in performing
the needed lattice sum to include the interactions with all
the magnetic dipoles in the system. This is not so bad a
problem as it seems since the contribution to the second
moment depends inversely on the distance from the "cen-
tral" spin to power six ( I/r, 2 ). Thus, nearest neighbors
make the most significant contribution. The usual way to
handle a magnetically diluted system (one where there is
not a spin at every lattice site) is to sum over all sites (as
you would with a perfect spin system) but multiply the
sum by the probability that the site is occupied by a spin
(i.e., multiply the ordinary lattice sum by the concentra-
tion of spins). Such an approach should be reasonably
correct until the probability of the central spin having
one nearest neighbor with spin become smaller than uni-
ty, zx & 1, where z is the number of nearest neighbors and
x is the concentration of spins. The lattice structure of
solid T2 is hcp above 4 K but could be fcc below 4 K de-
pending on the oT2 concentration. In either case, z=12,
so the preceding treatment of the magnetic dilution
should be acceptable for x larger than 10'. Making that
assumption, the second moment, Mz, becomes

4g2
M2=17. 34 x, (rads ') =(M2O)x, ,

a

In addition to the contribution to M2 from the inter-
molecular dipolar interaction between oT2 molecules,
there are several other contributions to Mz. (1) Magnetic
impurities in the system could also contribute to Mz. For
all of the solid hydrogens, this situation appears to be rel-
atively simple. As the hydrogens are liquefied, nearly all
impurities other than hydrogen isotopes are excluded so
that the samples are very pure in this sense. However,
other hydrogen isotopes can remain in solution and con-
tribute to Mz. These would include H2, D2, HT, HD,
and DT as all have at least one molecular species with a
nonzero nuclear spin. (2) A second source of line
broadening (and a contribution to Mz ) could come from
any unpaired electron spins, possibly on free atoms.
Their contribution to M2 would be due to the large local
magnetic field they generate. (3) Another contribution to
Mz could come from quenching the free rotation of the
J= 1 moleules giving rise to a nonzero average of the in-
tramolecular interaction. The first two contributions to
the second moment are independent of x, but the in-
tramolecular interaction is a complicated function of x, .
At this time we will not distinguish between the first two
sources of line broadening but instead lump them alto-
gether in a term, M2, , an "impurity" contribution that is
independent of x] ~ There is no experimental evidence for
anything but a linear dependence on x, and so we will

neglect the broadening due to quenching of molecular ro-
tation. The complete second moment can be regarded as
the sum of the impurity contribution (M2, ~

and the can-
tribution from the local field due to oT2 moleules given in

Eq. (2):

M2 =M2; +(M20)x ] (3)

Measurements of M2, at fixed temperature, for dift'erent

0T2 concentrations, can then be used to find Mz; and
M2O. The NMR signal height in T2 or DT is linear in x„
so as x

&
changes due to ortho-para conversion, one can

obtain M2 as a function of x& in a straightforward
manner.

C. Experimental values of the second moment

The second moment, M2, is obtained from the data by
fitting an analytic function to the short-time behavior of
the free-induction-decay technique (FID). Depending on
the visual appearance of the FID, we use one of two func-
tions for the fit. If the FID contains a damped oscillation
(called a Lowe-Norberg' beat), we use the function

S ( t) =Soexp( —
—,
' a t )

z 2 sinbt

=So[1 ,'(a +b /3)t —+—.], (4)

0
where a =3.53 A is the nearest-neighbor distance for T2,
and x

&
is the 0T2 concentration. The quantity M2o would

be the rigid lattice second moment for a sample of solid
tritium with an OTz molecule at every lattice site. From
the density of T2, we can calculate the quantity M2o to be

M20=[6.60X10 (rads ') ] .
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so that the second moment is

M2=a +b /3

The value of b can be found from the nulls in the FID
and a can be found from the decay. If there is no visible
beat on the FID, we use the function

S(t)=Soexp —Mz~ exp —— —1+—
'r

=S (1—
—,'M t'+ ) .0 p 2

This latter function has "Gaussian" short-time behavior
but the long-time behavior of the exponential. The time ~
characterizes the transition from one behavior to the oth-
er. When using this latter function, we actually fit to the
complete function and do not use the short-time limit.

Al 4—
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1. "Pure" T2

For our experiments on oTz-pT2 mixtures, the signal at
t=0, So, is a reliable measure of the oT& concentration.
To be sure, there is a small contribution to this signal
from DT and HT impurities in our samples, but since the
total impurity concentration (from gas analysis) is about
3% (and the impurities have a T spin of —,), their contri-
bution to the signal is of order 1%. Thus, for oT2 con-
centrations above 50%, we can regard So as linearly pro-
portional to x &, the oT2 concentration. Thus, in the same
fit of the FID we obtain the concentration xi (from the
signal height) and Mz (from the time decay). The oT2-
pT2 conversion rate is found from the time dependence
(at fixed T) of So.

The data for all temperatures and all samples, even
mixtures of DT, Tz, and Dz follow the general behavior
indicated by Eq. (3) for at least a limited range of x&

values (the higher ones). This is shown in Fig. 1, where
the data points for samples of "pure" T2, at low concen-
trations, are omitted. This enables us to fit the experi-
mental values of M2 versus x& to a straight line and ex-
tract the slope and intercept. The values of the quantities
Mzo and M2; are plotted in Fig. 2 as a function of tem-
perature.

Several trends in the data are worthy of comment: (i)
the straight line fit is very good at large values of x„' (ii)
the agreement of the experimental value of M&0 and the
calculated value is not too bad at high temperatures; but
(iii) the agreement becomes poorer at lower temperatures
where the impurity contribution appears to grow. It
should be noted that the impurity contribution is much
too large for the known nuclear-spin impurities in our
samples (HT and DT being the most important ones).
This suggests that there must be another line broadening
mechanism that is independent of x

&
~

2. Mixtures ofDt, T2, and D2( nDT)
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FIG. 1. The second moment M2 in pure T2 is plotted as a
function of the oT2 concentration at five temperatures. The
temperatures are: 6.4 K (A ); 8.0 K ( ); 9.5 K ( ~ ); 12.6 K (0 );
and 14.9 K (C'). The lines are drawn as a guide only.
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we will designate as nDT) although the actual concentra-
tions are not always exactly the same as these nominal
ones. The predicted value of the second moment for a
DT mixture such as we described can be obtained by a
suitable scaling of the values calculated for pure T2. For
instance, the decomposition of Eqs. (3) will still hold
where x& is the oT2 concentration, but the value of M2O
must be changed to account for the differences in molar
volume between nDT and T2. We do not know the molar
volume of nDT with great precision so we used the

If DT is made from Dz and T2 with final concentra-
tions given by the high-temperature equilibrium ratios,
we will have 50 at. % DT, 25 at. % D~, and 25 at. %%uoT2.
We have done NMR experiments on such samples (which

FICx. 2. The coefficients determined from the data of Fig. 1

by fitting to Eq. (3) in the text. The dashed line represents the
theoretical M2 for pure oT, . The symbol (I) represents Mzo
while the symbol (E ) represents M&;.
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weighted averaged volumes of its constituents leading to

M2o(DT) =M20(T2)( VT2/VDT )

=6.23X10 (rads ')

The term that is independent of x, is expected to be con-
siderably larger in "DT" than in Tz since 50% of the
molecules are DT. This contribution can also be predict-
ed fr om the scaled value of M2p by taking into account
the differences in the factor I(I+1) for the various nu-
clei. Additionally, there is a contribution to M2 for the T
resonance from the D nuclei on DT molecules and nuclei
on D2 moleules that is slightly uncertainty due to the ex-
act 0Dz and pD2 concentrations, but since this overall
contribution from D spins is smaller than our probable
error in measuring M2, it should not affect any but the
most detailed results. If the J=1 concentration in the
sample is zero, the predicted value of M2 is

1.24X10 (rads ')

whereas the infinite temperature values of the J=1 con-
centrations would lead to

M2 =2.4X 10 (rad s ')

Extracting x& from the signal height measurement is
less precise because of the large "background" signal
from the T spins on the DT molecules than it is in pure
T2, but it still can be done. Observed M2's for such "gar-
den variety" DT samples are given in Fig. 3, and the pa-
rameters M2, and M2p taken from the straight line fits are
plotted in Fig. 4. The same general trends observed in T2
are seen here along with one very interesting new feature.

The interesting new feature is seen in Fig. 5 where the
M2 data at our lowest temperature are shown. Here, the
second moment actually increases between the first and
second data points. One possible interpretation of this
effect is that the atom poulation has not reached its equi-
librium value at the time the first data point was taken
but has by the time the second data point was taken.
Everything is regular after the second point. This inter-
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pretation permits us to crudely estimate the time con-
stant for the atom distribution to reach its equilibrium
value at this lower temperature. The 10%—90% rise time
is about 24 min so that the estimated atom recombination
coefficient (a) is

a=1.66X10 cm s

While such an estimate based on such scant data cannot
be very accurate, it at least should provide the correct or-
der of magnitude of the atom recombination coefficient at
4.7 K.

FIG. 4. The coefficients determined from the data of Fig. 3
by fitting to Eq. (3) in the text. The dashed line represents the
theoretical value of M20 while the dot-dashed line represents the
M2 for the DT background. The symbol ($) represents Mzo
while the symbol ( 4 ) represents M2 i.
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FIG. 3. The second moment M2 in nDT at four temperatures
is plotted as a function of the oT2 concentration x, . The four
temperatures are: 6.8 K (E ); 10.8 K (o ); 12.6 K (Q'); and 14.5
K (I).

FIG. 5. The second moment at 4.7 K for nDT is shown as a
function of the oT& concentration. At the highest concentra-
tion, M2 is reduced, possibly due to the atom concentration be-
ing smaller than its equilibrium value.
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III, THE SPIN LATTICE RELAXATION TIME ( T) )

The relaxation times reported here include measure-
ments on pure T2 where the ortho to para ratio is varied
as well as measurements of T, in the isotopic mixture,
nDT. In both cases, at fixed temperature, the oT2 con-
centration changes with time so the T&'s can be obtained
for various oTz concentrations. For relaxation in DT, the
pD2 concentration is important and it varies in time also.
Unfortunately, while the total D2 concentration is
known, the pD2 concentration is not directly measured in
our experiments nor easily inferred.

A. Spin lattice relaxation in pure H2 and T2

All of the earlier theories of the longitudinal or spin
lattice relaxation time in solid H2 were extended and
summarized in the extensive work of Harris. ' The in-
tramolecular interaction in oH2 couples the molecule's
nuclear spin (I= 1) with its rotational spin (J= 1) so that
changes in the orientation of an oH2 molecule (J, ) pro-
vide a nuclear-spin relaxation mechanism. Para-H2 mole-
cules have no nuclear spin (I=O) and at low temperatures
only the J=O rotational state is occupied, so they have no
direct influence on the relaxation process. For a less ob-
vious reason, a molecule with J=0 but I nonzero (such as
HD) still has no appreciable longitudinal relaxation
mechanism. This results from the fact that the direct
coupling between nuclear spins and phonons is extremely
weak because the density of phonon states at the nuclear
Larmor frequency is very small. Thus, the rotational de-
grees of freedom of the J= 1 molecules in solid hydrogen
samples have a catalytic effect on the spin lattice relaxa-
tion; they couple nuclear spins to the lattice phonons
effectively because the spectrum of rotational transitions
(at constant J) is broad and overlaps the spectrum of
nuclear-spin transitions. This makes the coupling of the
phonons to the rotational degrees of freedom much
stronger than their coupling to the nuclear spins. The
strength of this coupling is such that no experiments to
date have seen a "breakdown" that would produce a
"bottleneck" in the relaxation process. Thus, the "real"
relaxation problem is that between nuclear spins and the
rotational spins: The rotational spins are always in
thermal equilibrium at the lattice temperature.

The preceding general ideas lead to a few simple rules
for spin-lattice relaxation in the molecular hydrogen iso-
topes containing no free-electron spins: (i) at low temper-
atures all the molecules either have J=O or 1, but none of
the molecules have a direct spin-lattice coupling of any
consequence; (ii) molecules with nuclear spin but J= 1,
have a link to the lattice governed by their quadrupole-
quadrupole (EQQ) coupling to other molecules having
J=1 so that their T, is a function of the concentration of
J=1 molecules (x, ) of any origin (H2, Dz, or T2); (iii)
molecules with nuclear spin but J=O, have no measur-
able direct link to the lattice nor any coupling to other
rotating molecules and hence have an intrinsic T& of
infinity; and (iv) nuclei with the same magnetic moment
(such as HD and H2 for the proton resonance) can
"cross-relax" allowing nuclei with J=O to equilibrate

with the lattice through like nuclear spins on moleules
with J=1.

To avoid confusion with the usage of the symbol T, to
denote the measured relaxation time, we will use the sym-
bol T» to denote the spin-lattice relaxation time of I=1
nuclear spins in an alloy of J=O and J=1 molecules of
the same species. This quantity T» can, in principle, be
calculated with no adjustable parameters as it depends on
the EQQ coupling constant and the concentration. The
agreement between the calculated and measured values of
T» at high concentrations is truly impressive. Although
there is no closed form theoretical expression for T»,
valid for all concentrations, there does appear to be a
universal behavior for all the solid hydrogens. This is
shown in Fig. 6 where the data on H2 and T2 are different
only because of molar volume differences, and the data on
oH2 relaxation in D2 indicate that any hydrogen quadru-
pole moment is effective at spin relaxation.

B. Spin lattice relaxation in isotopic mixtures

O.I—

O.O I—

e

e)

&(eP

O.OO I—
I

O.O I O. I

X(J=I)

FIG. 6. The quantity T» used in Eq. (7) is plotted as a func-
tion of the total J=1 concentration, x (J= 1), for oH2 in pH~
(E) at 4.2 K; oT2 in @TED (4) at 6.4 K; and 1% nHz in D2 (o )

with various J= 1 concentrations at 4.2 K.

The spins on a molecule with J=O can be brought into
equilibrium with the lattice through mutual spin Aips
(cross relaxation) that eventually reach a molecule with
J= 1 (spin diffusion) that has a shorter relaxation time la-
beled T».

By using the spin temperature approximation, the fol-
lowing expression for the total relaxation time T~ for all
the spins of a given gyromagnetic moment can be ob-
tained:

Co+ Ci
T] T„(x,),

Ci

where Co and Ci are the spin specific-heat capacities
[proportional to the number of spins, Xo or X, and
I (I + 1) where I is the nuclear spin]. This expression has
been derived independently by Nakamura and Fujio for
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relaxation of HD molecules with H2 impurities present.
Moreover, measurements by Hardy and Gaines on H2
and HD containing controlled amounts of H2 have
verified the correctness of this simple picture.

The previous equation forms the basis for producing
very long relaxation times in DT. If solid DT is pro-
duced with a few percent of T2 and D2 impurities, then
Cp ))Ci and

T, =(Co/Ci )Tii =(3/8x, )T„(xi ) .

As the metastable J=1 concentration decays, T&& goes
through a minimum for x, below a percent and increases
slightly at lower x&'s. Thus, below the minimum in T&&,
the quantity T& can increase significantly due to the fac-
tor (1/x, ). In HD, T, 's of 1000 s have been produced by
Hardy and Gaines and Honig and co-workers ' for small
values of x, . The relaxation time in DT as a function of
time is shown in Fig. 7. Increasing time leads to reduced
1= 1 concentration and T, does change after there is no
detectable change in M2 indicating that decreasing J=1
Dz concentration changes T, .

At very low concentrations, we see slight increases in
T, with time. One possible explanation is that D2 is con-
verting very slowly producing this change. More likely is
that the D2 is also in a dynamic equilibrium just as the Tz
is, so another explanation is needed. Possibly the slight
increase comes from the breakdown of the spin-Hip term
in the dipolar Hamiltonian seen in the M2 data. If the
nuclear spins are not on "speaking terms, "

T& can in-
crease as spin diffusion takes longer.

2 1+~ ~
(9)

where A is the hyperfine coupling constant, ~ is the
electron-spin correlation time, and co is the difference fre-
quency between the electron spins and the nuclear spins
(essentially the electron-spin resonance frequency). The
minimum relaxation time corresponds to ~~=1 and has
the value 4'/A . By taking r to be the inverse of I, the
hopping frequency that has been deduced from the
analysis in Sater et al. and found to be less than I = at
19 K, we see that co~)) 1 for our experiments so that the
observed relaxation rate due to the hopping electron
spins is given by

where I is the electron-spin hopping frequency (deter-
mined from the o-p conversion rates), c is the electron-
spin concentration, and 0 ' is the relaxation time of a
nuclear spin caused by a nearby electron spin. We could
imagine that the nuclear spin and the electron spin are
"in contact" and use the hyperfine interaction to calcu-
late Q.

In the preceding picture of relaxation of nuclei by
free-electron spins, the electron spin hops to a site occu-
pied by a nucleus and interacts with the nucleus through
the hyperfine interaction, characterized by the splitting in
an atom of H by the field of 509 G (and 544 G for T).
The T& due to this interaction has been worked out in
Abragam and is given by

C. The effects of free-electron spins on T& R, =c0=2c ( A /2' ) I (10)

Since most of the features of our observed relaxation
times are adequately predicted by Eq. (7), it appears that
the unpaired electron spins that noticeably effect M2 have
little to no effect on T, . Considering the large densities
of unpaired electron spins in the solids inferred from the
o-p conversion rates, it is quite remarkable that there is so
little effect of these spins on T, . The simple hopping
model we used to interpret the o-p conversion rate data is
also useful here in estimating the effect on T~ of the
mobile electron spins. If we denote their contribution to
the overall spin lattice relaxation rate as R„then

since A/co((1 at the fields we use. Because of the in-
equality 3 /co ((1,we have 0 ((I except near the max-
imum in the rate. At 6 K, the quantity I is approximate-
ly 3X10 s ', so if 0/I «1, the relaxation rate in gen-
eral equals cI . Taking c =4.6X10, we estimate a T,
at 10 s. Even at the maximum of Eq. (8), the relaxation
time is still 30 min (the o-p conversion time). Thus, for
our short relaxation times resulting from the EQQ in-
teraction, we are justified in ignoring the contribution
from the free-electron spins, even though they are in
motion.

IV. THE SELF-DIFFUSION COEFFICIENT

200—
E
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I

0
I I

2000 4000 6000 8000
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FICx. 7. The relaxation time Tl measured in nDT is plotted
as a function of time at T=6.8 K. The changing oT2 concentra-
tion produces the minimum seen.

There are not very many experimental techniques that
can measure a diffusion coeKcient. Radioactive tracers
can be used if the element in question has a radioactive
isotope. NMR can be used for self-diffusion measure-
ments because "spatial motion" can destroy spin phase
memory and hence produce a measurable decay of a spin
echo. We have used appropriate spin-echo techniques to
measure the spin-diffusion coefficient, D(T), for HD,
nDT, and T2. These measurements are quite important
to the interpretation of the data on second moments and
even the ortho to para conversiop time data because they
yield quantities such as the motional correlation time as a
function of the temperature.

To measure D(T), we used a Carr-Purcell, Meiboom-
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Gill pulse sequence to obtain a spin-spin relaxation
time, Tss. This quantity was related to the correlation
time for diffusion (r, ) by a motional narrowing expres-
sion

1 quainterci"i 2
Tss

In turn, the diffusion coefficient was related to the "hop-
ping frequency" (I ) or the correlation time (r, ) by

D =(r')r/12=(r')/(12&, ),

500

400—

300—
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Ltj

200—

100—
I

I
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where the nearest-neighbor separation is used for r.
All of the measurements of the diffusion coefficient

have been fitted to the "thermally activated" form

FIG. 8. The activation energy, E„is plotted for the various
hydrogen isotopes as a function of the isotope mass. The
straight line is drawn as a guide.

D(T) =Doexp( E, /k—T), (12)
V. DISCUSSION AND CONCLUSIONS

where E, /k is the activation energy in degrees Kelvin.
The quantities Do and E, obtained in this work and by
others are summarized in Table I.

Examination of these results reveals that the two mea-
surements of D(T) for HD are in disagreement. If we
drop the earlier determination of D(T) in favor of our
more recent one, the activation energies become a rnono-
tonic function of the isotope mass. This is shown in Fig.
8. An interesting addition to the preceding data comes
from the measurement of D(T) for HD impurities in pH2
(Ref. 25) where

Do =5.7X 10 cm s

and E, /k=196. 8 K were obtained. For the measure-
ments on the nonradioactive hydrogen isotopes, Do is
subject to considerable scatter and both different models
and different relationships are used to extract Do from a
relaxation time measurement so it it now possible to gen-
eralize. Nevertheless, the values we obtain for nDT and
T2 appear to be anomalously large. The value of E, /k
obtained for H2 and D2 agree well with the calculation of
Ebner and Sung, and the trend of values for E, /k, seen
for the isotopes where no calculations exist, appears
reasonable, but we will elaborate on diffusion results in a
subsequent paper.

The data on D(T) is interesting in its own right, but the
main reason for introducing it into this discussion is to
quantify the molecular motion as a function of tempera-
ture so that the temperature below which the second mo-
ment attains its rigid lattice value can be predicted. We
will call this temperature the "freezing temperature"
(Tf). Even in Hz, which solidifies at 14 K, the NMR
linewidth does not reach the value predicted by the rigid
lattice Mz until T & 10 K. For solid H2, Tf = 10 K.

A. The "freezing temperature" for T2

The experimental values of M2 in HD as a function of
temperature are shown in Fig. 9. Below 10 K, the experi-
mental Mz agrees perfectly with the calculated "rigid lat-
tice" value for a powdered sample. Above 10 K, it can be
seen that the apparent M2 is reduced. If we interpret this
effect as a rnotional effect, the "freezing" temperature for
HD is about 12 K. Using our measurement of D(T) for
HD, we find that I /QMz = 1 at 12.4 K, consistent with
the M2 data. Using D(T) for T2 to find the temperature
where I =QM2, it is found that the second moment of
T2 should attain its rigid lattice value below 16 K. This
estimate cannot be taken too seriously but it is not bad.
For instance, if we use the law of corresponding states

TABLE I. Values of the diA'usion coefficient.

Isotope

H2

HD

Dp

DDT
T2

E,(K)

191
200
198
197
302
250
276
290
368
411

Do (cm s

1.4X 10
3.0X 10
2.0x10-'
0.6X 10
0.17
2.6x10-'
0.4X 10
0.7X 10
0.138
0.392

Comment

experiment (Ref. 3)
experiment (Ref. 6)
experiment (Ref. 23)
theory (Ref. 24)
experiment (Ref. 3)
experiment (this work)
experiment (Ref. 4)
theory (Ref. 24)
experiment (this work)
experiment (this work)
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FIG. 9. The second moment of HD is plotted as a function of
temperature. The straight line represents the calculated rigid
lattice value.

(and the triple point and critical point temperatures) to
extrapolate behavior from HD to T2, we find that a tem-
perature at 12.4 K for HD corresponds ot a temperature
of 15.4 K for Tz, in reasonable agreement with our
diffusion-motional narrowing argument. Thus, we take
T) =15 K for T2.

From the T2 data, it can be seen that M20 has not
reached its rigid lattice value by estimated freezing tem-
perature of 15 K, although the triple point is near 19 K.
The apparent reduction in the second moment could be
due to motion; most likely the motion of atoms since that
of molecules should be frozen out at these temperatures.

B. Second moments

Several trends are evident from Fig. 2. It should be
noted that M20 appears to be increasing from 20 K to 12
K, but peaks there and decreases again at lower tempera-
tures. We interpret the temperature dependence above
12 K as a motional effect. The apparent value of M2O,
rejecting the oT2-oT2 dipolar interaction, depends on the
temperature, peaking near 12 K. There is still significant
molecular motion above 15 K so it is not surprising that
Mzo falls below its "rigid lattice value" at the higher tem-
peratures. It is surprising to note the decrease in M2O at
the lower temperatures. The temperature dependence
below 12 K cannot be due to molecular motion which
should be frozen out.

In addition to the question raised by the earlier discus-
sion, namely below what temperature should we observe
"rigid lattice" behavior, there is another point to be ad-
dressed, namely the magnitude of the impurity" contri-
bution to M2 and its origin. The increase in M2; that
occurs at lower temperatures is suggestive of an atom
buildup. Such a buildup has been indicated from mea-
surements of the oT2-pTz conversion rate. The value of
M2; obtained from the data is higher than that calculated
for the impurities known to be in the sample and also
higher, for the three low-temperature points, than the ac-
tual M2 obtained at the lowest concentration.

To explain why the value of M2, is larger than the ac-
tual Mz obtained for the lowest concentration at the
three low-temperature points, we note that the oT2 con-
centration at the end of a run is not zero. At the higher

temperatures, the equilibrium concentration, as measured
from the signal heights, is found to be as large as 18%,
decreasing to 1.8% at 8 K before rising to 2.3% at 6.4 K.
These latter concentrations are in excess of the
Boltzmann values calculated from the known spacing of
the molecular rotational levels and have been interpreted
as arising from a "pumping" of the J=1 level due to
atomic recombination. Therefore the "ending" M2 is
predictably larger than that expected from just the im-
purities. We will examine the possible contribution to
M2 from atoms trapped in the solid using just the three
points at the lowest temperatures.

C. The local field of atoms

The effects of atoms, with their unpaired electron spin,
on the second moment of the nuclear spins is an issue of
central importance to this study. Unfortunately, there is
no existing framework for us to use in quantifying the
effect of electron spins located on atoms on the observed
M2 of the nuclear spins in our sample.

The portion of the second moment that is independent
of J= 1 concentration increases as the temperature is re-
duced. This is seen in both the Tz data and the nDT
data. Such an increase could be due to quenching the ro-
tation of the J=1 molecules so that the intramolecular
interaction produces a contribution to M2 but this contri-
bution would not be independent of x&. In our data, the
increase in M2 at low temperatures, while less pro-
nounced in nDT than it is in T2, indicates that quenched
rotation is not the cause of the increase. Thus, the atoms
may be producing this additional contribution to M2.
We will try to estimate the order of magnitude of their
contribution.

The initial assumption that we make is that the atom
concentration is 1% or below, so that we are considering
a "dilute" magnetic system. The second moment calcu-
lated for a rigid lattice of T2 molecules can be scaled to
estimate the electron-spin contribution. This scaling in-
volves some obvious numerical factors such as: a reduc-
tion by —, since spin Aips are not energy conserving; a
reduction by —', to correct for the spin differences; an in-

crease bp (yz/y, ) where yz is the electron-spin
gyromagnetic moment and y &

is the nuclear-spin
gyromagnetic moment; and finally, a "lattice scaling" by
the factor (ao/a, ) where ao is the near neighbor dis-
tance in T2 and a

&
is the average distance between elec-

tron spins. This last factor introduces the square of the
electron-spin concentration (c). This gives for the atom
contribution to the second moment,

(M2)„, =4. 1 X 10'" (rad s ') c

Converting this (rough estimate) second moment contri-
bution to a spread in frequency, 5, we obtain

5=(2X10 rads ')c .

From the data, we must remove the contributions from
the known DT and HT impurities in the T2 and then sub-
tract the contribution from the remaining oT2. After
these two corrections, our "excess" second moment, con-
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verted to an angular frequency, does appear to be linear
in the atom density inferred from the ortho to para con-
version experiments in T2 (c, ) and the model we used,
but the experimental result, 5=(0.8X10 rads ')c„
gives a coefficient three time smaller than the estimated
one. This could be reconciled if the actual atom concen-
tration, c, is a factor of 3 smaller than that inferred from
the OT2-p T2 conversion experiments.

D. The spin-lattice relaxation time

Since one of our original goals was to produce long
T, 's suitable for dynamic polarization experiments, much
of our analysis has focused on this problem. There are
two apparent methods of producing such long T&'s in an
isotopic mixture: (i) distill the sample until almost no
J= 1 molecules remain; and (ii) let the J= 1 to J=O con-
version in the solid remove the J= 1 impurities. The
former technique, used by Hardy and Gaines, could be
applied to DT but it would be very costly. Even if the
distillation was successful, there might still be problems
because of some unique features of the radioactive hydro-
gen isotopes. The latter technique, used by the Honig
group, has been tried in this work but it still does not
produce long T, 's.

The problem in producing long T, s in the radioactive
hydrogen isotopes based on Eq. (7) does not come from
the rate of 0-p conversion but from the fact that rapid
recombination of atoms produced by the P decay repopu
lates the J=1 state leading to a dynamic equilibrium
where, below 8 K, x, is much larger than the value pre-
dicted from the Boltzmann distribution applied to the ro-
tational levels. This dynamic equilibrium value of x

&
ap-

pears to be about 1.5%, leading to a value of T» of about
1 ms and hence a value of T& of order 100 ms. Unfor-
tunately, the rapid recombination combined with an 0-p
rate that decreases below 10 K in the solid, seems to
doom even the distillation approach unless a way is found
to inhibit the recombination.

There is a less apparent way to increase T, that does
work to a limited extent. The specific-heat factors appear

in Eq. (7) because of cross relaxation. If nDT is aged at a
y.ven temperature until the oTz concentration has
reached its lowest value, the factor Co/C& is approxi-
mately 12.5. If this sample is suddenly mixed with an
equal amount of nHz (because of the different nuclear
spin there is additional cross relaxation and no change in
the specific-heat ratio), where 75% of the molecules are
in the J= 1 state, the new effective J= 1 concentration is
38% and T» is driven to a value above 100 ms producing
a T& in excess of 1 s.

One final method, as yet untried, for obtaining long
Ti 's in a 50-50 mixture of D and T molecules would be to
start with equal amounts of pDz and nT2 (an effective
J= 1 concentration of 87%) and cool the sample below
the quadrupole-quadrupole ordering temperature (Ti„)
where a dramatic increase in T& is observed in H2 or D2.
For such a mixture, T& should be of order 3 K and a tem-
perature of 2 K would probably be low enough to see a
large increase in T, . Working at high magnetic fields
would also be advantageous as T, in Hz, according to
Sullivan and Pound, increases significantly as the field in-
creases.
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