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Experimental NMR data on solid T, and DT are used to study the effects of high-atom densities
on the transverse and longitudinal relaxation times. Data for the second moments, the self-diffusion
coefficient, and T, are analyzed and compared to similar measurements in H,, D,, and HD in order
to isolate the contributions to these quantities due to atoms. Subtle effects are seen on the second
moments but no direct effect is seen on the value of T, even for atom densities of order 10?° cm 3.

I. INTRODUCTION

The stable isotopes of hydrogen, H,, D,, and HD, have
been extensively studied by means of NMR. One of the
earliest applications of a then new NMR technique was
to solid H, by Hatton and Rollin.! The later study of the
phase transition in nH, by Reif and Purcell® is a classic
paper in the field. The use of NMR techniques to mea-
sure the molecular self-diffusion coefficients (and activa-
tion energies) in H, and HD by Bloom? and later in D, by
Meyer et al.* provided the temperature dependence of
the molecular dynamics in the solid hydrogens.

Measurements of the spin-lattice relaxation time (7';)
from 4.2 to 1.4 K in both H, and in HD containing H,
impurities by Hardy and Gaines,> along with the sys-
tematic studies of the temperature dependence of T, and
the second moment (M, ) determinations of the resonance
line by Meyer et al.® provide a relatively complete
description of the NMR properties pertinent to applica-
tions such as dynamic nuclear polarization (DNP) in the
solid hydrogens.

To polarize a nuclear-spin system by DNP, a static po-
larization of an electron-spin system is transferred to the
nuclear-spin system. If we think of highly polarized sys-
tems as being ‘“‘colder” than systems with a smaller polar-
ization, the cold electron-spin system is used to reduce
the spin temperature of the hotter (by virtue of its smaller
magnetic moment) nuclear-spin system. As a rule, the
number of electron spins available (N,) is much smaller
than the number of nuclear spins (N, ) to be cooled. The
cooling is still possible if the ratio of the nuclear-spin sys-
tem T, to the electron-spin system T, is sufficiently
large.

The earlier relaxation studies on H, and D, can be
used to predict the situations where dynamic polarization
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is possible. For instance in H,, if the oH, concentration
is sufficiently high,” a rotational ordering occurs at a tem-
perature T, that is accompanied by a large increase in
T,. Specifically, T; can change from 0.28 s in the disor-
dered state to more than 100 s in the ordered state. Thus,
from the standpoint of T'; alone, rotationally ordered H,
could be a candidate for DNP. Since the maximum or-
dering temperature is about 1.5 K and the oH, to pH,
conversion (a rate of about 1.9% per hour)? is relatively
fast, there are formidable technical difficulties in polariz-
ing H, with high J=1 concentration. On the other hand,
in the orientationally disordered state, the maximum re-
laxation time observed for high oH, concentration sam-
ples is under 0.3 s. Reducing the oH, concentration (x)
is of no help since (i) a decrease of x; from the “normal”
value (0.75) is accompanied by a T, decrease to a value
below 1 ms before a slight increase, at extremely low con-
centrations, is found and (ii) the number of polarizable
nuclei is decreased. These observations virtually rule out
H, as a candidate for DNP if it is in the disordered state.
The situation in D,, from the standpoint of T; alone is
not so pessimistic. Again, the solid can exist in a rota-
tionally ordered or disordered state depending on the
concentration of J=1 molecules (x;) and the tempera-
ture. First of all, for a given concentration of J=1 mole-
cules, the value of T'; is much larger than in H,, even in
the disordered state. Secondly, the J=0 molecules, most
of which have a nuclear spin in D,, have no relaxation
mechanisms of their own and must be relaxed by the J=1
molecules making the observed relaxation time for a
mixed system of J=1 and J=0 molecules longer than
that of the J=1 molecules alone. A relaxation time of 9's
can be obtained for nD, at 4.2 K while T’s of several
hundred seconds would not be difficult in the ordered
state. The maximum T, for D, is larger than for H, and
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the conversion rate is much slower. Thus, D,, based on
T, values, appears to be a viable candidate for DNP.

It was the experiments on HD that originally seemed
to provide the most hope for DNP in the solid hydro-
gens. Due to the fact that J=0 molecules have no intrin-
sic relaxation mechanism of their own, the overall T'| of
HD (where essentially all the molecules are in the J=0
state below 4.2 K) with a small impurity concentration of
oH, could be more than 100 s even at 4.2 K or higher.
Moreover, comparison of the HD- experimental results
with those on H, provided a good understanding of the
relaxation times of a mixture of spin systems, such a mix-
ture being commonly encountered in the solid hydrogen
isotopes. While HD seemed to be a good candidate for
DNP, no one has achieved a large nuclear polarization in
HD t9>y DNP, although Solem did produce some polariza-
tion.

The possibility of using a 50-50 mixture of D and T
spins as a target for laser fusion was raised as a result of
the theoretical work of Goldhaber et al.'® The perfect
such target, with both the D and T nuclear spins polar-
ized to 100%, would provide a cross-section increase of
50% over similar target of unpolarized nuclear spins, re-
ducing substantially the size and the cost of the laser sys-
tem needed for fusion. With an ultimate goal of produc-
ing highly polarized nuclear spin systems of both D and
T spins, we have started NMR experiments on solid T,
and a high-temperature equilibrium mixture of 25% T,,
25% D,, and 50% DT that we will call nDT. To date,
our experiments have produced results on the oT, to pT,
conversion time as a function of temperature,!! the spin-
lattice relaxation time 7'; and the spin-spin (SS) relaxa-
tion, responsible for NMR signal dephasing. To charac-
terize this latter quantity, we obtain the NMR line shape
and measure the line’s second moment, M,. In this pa-
per, we will present the measurements of M,, T, and the
self-diffusion coefficient, D (T'), that we have made to date
and compare and contrast them with previous work on
H,, D,, and HD.

The major difference between this present work and
that on H, or D, comes from the radioactivity of the T
nucleus which B decays with a half-life of 12.3 years. A
solid such as T, is then bathed in a constant flux of elec-
trons with energies large enough to shatter the molecules.
Many different molecular fragments can be made, but it
is clear from the work of Leach and Fitzsimmons'? and
Sharnoff and Pound!® that atoms are formed. In the
Leach and Fitzsimmons work, a pulsed electron source
was used so that the atom recombination coefficient could
be measured directly from the EPR signal decay follow-
ing an electron pulse. In the Sharnoff and Pound experi-

ment, small amounts of T, incorporated into a D, sample .

provided an electron flux that could not be turned off, re-
sulting in a measurable stable atom population. Our
work on ortho to para conversion in solid T, (Ref. 14) is
best interpreted by postulating that a gas of mobile T
atoms exists in the molecular solid with the number den-
sity of atoms, inferred from a model, that increases with
decreasing temperature reaching a value in excess of 102
atoms per cm® at about 6 K. Since each atom carries a
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free-electron spin, the atom gas should alter the behavior
of the nuclear-spin system. Thus, in addition to the prac-
tical problem related to nuclear-spin polarization, this
system is scientifically intersting due to problems present-
ed by spin diffusion.

This paper is organized in the following manner: Sec-
tion II contains a discussion of the expected values of the
second moment if T, and DT were not radioactive (and
behaved as the other hydrogen isotopes do) which is fol-
lowed by the results obtained for the second moment in
our experiments; Sec. IIl parallels the development in
Sec. II except it deals with T';; Sec. IV is devoted to mea-
surements of the self-diffusion coefficient; and Sec. V con-
tains a discussion of the results and our conclusions. The
experimental techniques and apparatus have been de-
scribed elsewhere!* and will not be repeated here.

II. THE SECOND MOMENTS
(SPIN-SPIN RELAXATION)

A. Basic ideas about second moments

One of the quantities that can be calculated with some
ease is the “second moment” of an NMR (or EPR) line.
A quantum-mechanical technique originated by Van
Vleck gives a closed form expression for the second mo-
ment in terms of the Hamiltonian that expresses all the
magnetic interactions. Moreover, the expression for the
second moment depends on the “trace” of the commuta-
tor of I, (the x component of the spin system being ob-
served) with the magnetic Hamiltonian. Since a trace is
involved, the exact eigenstates of the system do not have
to be known since any complete set will suffice. The clas-
sical example of a second moment calculation is provided
by the magnetic dipole-dipole interaction, described in
great detail in the standard reference works on NMR by
Abragam'® and Slichter. !¢

For those systems with only magnetic dipolar interac-
tions, the contribution to the second moment comes from
just two of the six terms used to characterize the dipolar
interaction. The two important terms are the ones that
are time independent in the rotating frame of the nucleus
of interest. Thus, only the term that produces a static
field in the z direction and the term that corresponds to a
mutual spin flip, with no dipolar energy change, need be
considered. When the dipole-dipole (d-d) interaction is
written

— 71?’2ﬁ2

3
12

H;, (A+B+C+D+E+F), (1)

only the terms A4 and B can possibly be time independent
in the rotating frame of nucleus 1. In fact, if the nuclei 1
and 2 are different, then their mutual spin flip does not
conserve ‘“‘spin energy” and even that term can be dis-
carded from the calculation. When the nuclei are identi-
cal and both the 4 and B terms contribute, their relative
contributions are not equal, the contribution from the B
term being 2 the contribution from the 4 term.

The ease of calculation of the second moment is not
the sole justification for its widespread use in characteriz-
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ing NMR lines. A great deal of its utility comes from the
fact that the second moment is invariant to lattice motion.
This invariance stems from the fact that the coordinates
that contain lattice information are “space coordinates”
and they commute with “spin coordinates” making no
contribution to the second moment. This is a very im-
portant idea as it indicates that temperature changes will
only alter the second moment through changes in the
density (the factor r3,). This result seems to contradict
common experience since the NMR line in a liquid is
very narrow, but in the solid it is much broader. The
theory of “motional narrowing” due to Anderson'’ re-
moves this apparent dilemma. The square root of the
second moment 1/ M, is used in the Anderson theory as
the ‘benchmark” frequency. If the angular frequency
that_characterizes the motion (I') is large compared to
V' M,(T'>>1/M,), liquidlike behavior is observed and
the line has a width given by Aw=M, /I"._If the motion-
al frequency is small compared to Vv M,(T <V M,),

solidlike behavior is observed and the width Aw=1"M,.

Physically, the second moment is a quantitative mea-
sure of the local magnetic field in a rigid system. The
second moment is obtained from Eq. (1), after calculating
a trace and a lattice sum. The complete lattice sum is
~ usually only about 20% larger than the contribution from
just the first nearest neighbors and so M, is very sensitive
to short-range order.

B. Calculation of the second moment for solid tritium

In solid tritium, either in the form of T, or DT, the
magnetic dipolar interaction is the only interaction that
must be considered. For solid T,, only the ortho-T, mol-
ecules have a nonzero nuclear spin (I=1) and all such
molecules are identical so the second moment contains
contributions from both the 4 and B terms. The only
complication with the calculation comes in performing
the needed lattice sum to include the interactions with all
the magnetic dipoles in the system. This is not so bad a
problem as it seems since the contribution to the second
moment depends inversely on the distance from the “cen-
tral” spin to power six (1/7¢,). Thus, nearest neighbors
make the most significant contribution. The usual way to
handle a magnetically diluted system (one where there is
not a spin at every lattice site) is to sum over all sites (as
you would with a perfect spin system) but multiply the
sum by the probability that the site is occupied by a spin
(i.e., multiply the ordinary lattice sum by the concentra-
tion of spins). Such an approach should be reasonably
correct until the probability of the central spin having
one nearest neighbor with spin become smaller than uni-
ty, zx <1, where z is the number of nearest neighbors and
x is the concentration of spins. The lattice structure of
solid T, is hcp above 4 K but could be fcc below 4 K de-
pending on the 0T, concentration. In either case, z=12,
so the preceding treatment of the magnetic dilution
should be acceptable for x larger than 10%. Making that
assumption, the second moment, M,, becomes

42
MZ=17.3431(1’3—x,(raels*‘)2=(M20)x1 , )
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where a=3.53 A is the nearest-neighbor distance for T,,
and x, is the oT, concentration. The quantity M,, would
be the rigid lattice second moment for a sample of solid
tritium with an 0T, molecule at every lattice site. From
the density of T,, we can calculate the quantity M,, to be

My, =[6.60X10° (rads™')?] .

In addition to the contribution to M, from the inter-
molecular dipolar interaction between 0T, molecules,
there are several other contributions to M,. (1) Magnetic
impurities in the system could also contribute to M,. For
all of the solid hydrogens, this situation appears to be rel-
atively simple. As the hydrogens are liquefied, nearly all
impurities other than hydrogen isotopes are excluded so
that the samples are very pure in this sense. However,
other hydrogen isotopes can remain in solution and con-
tribute to M,. These would include H,, D,, HT, HD,
and DT as all have at least one molecular species with a
nonzero nuclear spin. (2) A second source of line
broadening (and a contribution to M,) could come from
any unpaired electron spins, possibly on free atoms.
Their contribution to M, would be due to the large local
magnetic field they generate. (3) Another contribution to
M, could come from quenching the free rotation of the
J=1 moleules giving rise to a nonzero average of the in-
tramolecular interaction. The first two contributions to
the second moment are independent of x; but the in-
tramolecular interaction is a complicated function of x,.
At this time we will not distinguish between the first two
sources of line broadening but instead lump them alto-
gether in a term, M,;, an “impurity” contribution that is
independent of x ;. There is no experimental evidence for
anything but a linear dependence on x; and so we will
neglect the broadening due to quenching of molecular ro-
tation. The complete second moment can be regarded as
the sum of the impurity contribution (M,; and the con-
tribution from the local field due to 0T, moleules given in
Eq. (2):

M,=M,,+(M,)x, . (3)

Measurements of M,, at fixed temperature, for different
oT, concentrations, can then be used to find M,; and
M,,. The NMR signal height in T, or DT is linear in x,
so as x; changes due to ortho-para conversion, one can
obtain M, as a function of x, in a straightforward
manner.

C. Experimental values of the second moment

The second moment, M,, is obtained from the data by
fitting an analytic function to the short-time behavior of
the free-induction-decay technique (FID). Depending on
the visual appearance of the FID, we use one of two func-
tions for the fit. If the FID contains a damped oscillation
(called a Lowe-Norberg18 beat), we use the function

sinbt

S(t)'—‘Soexp(—%aztz)T

~Sol1—a?+b2/3)>+ -+ - ], (4)
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so that the second moment is
M,=a’+b 2/3 .

The value of b can be found from the nulls in the FID
and a can be found from the decay. If there is no visible
beat on the FID, we use the function

~So(1—1IM,t2+ -+ -) . (5)

S(t)=Syexp [—szz exp

_Ll_HL
T T

This latter function has ‘“Gaussian” short-time behavior
but the long-time behavior of the exponential. The time 7
characterizes the transition from one behavior to the oth-
er. When using this latter function, we actually fit to the
complete function and do not use the short-time limit.

1. “Pure” T,

For our experiments on oT,-pT, mixtures, the signal at
t=0, S, is a reliable measure of the 0T, concentration.
To be sure, there is a small contribution to this signal
from DT and HT impurities in our samples, but since the
total impurity concentration (from gas analysis) is about
3% (and the impurities have a T spin of 1), their contri-
bution to the signal is of order 1%. Thus, for oT, con-
centrations above 50%, we can regard S, as linearly pro-
portional to x,, the oT, concentration. Thus, in the same
fit of the FID we obtain the concentration x; (from the
signal height) and M, (from the time decay). The oT,-
pT, conversion rate is found from the time dependence
(at fixed T) of S,.

The data for all temperatures and all samples, even
mixtures of DT, T,, and D, follow the general behavior
indicated by Eq. (3) for at least a limited range of x,
values (the higher ones). This is shown in Fig. 1, where
the data points for samples of “pure” T,, at low concen-
trations, are omitted. This enables us to fit the experi-
mental values of M, versus x; to a straight line and ex-
tract the slope and intercept. The values of the quantities
M,, and M,,; are plotted in Fig. 2 as a function of tem-
perature.

Several trends in the data are worthy of comment: (i)
the straight line fit is very good at large values of x; (ii)
the agreement of the experimental value of M,, and the
calculated value is not too bad at high temperatures; but
(iii) the agreement becomes poorer at lower temperatures
where the impurity contribution appears to grow. It
should be noted that the impurity contribution is much
too large for the known nuclear-spin impurities in our
samples (HT and DT being the most important ones).
This suggests that there must be another line broadening
mechanism that is independent of x ;.

2. Mixtures of Dt, T,, and D,(nDT)

If DT is made from D, and T, with final concentra-
tions given by the high-temperature equilibrium ratios,
we will have 50 at. % DT, 25 at. % D,, and 25 at. % T,.
We have done NMR experiments on such samples (which
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X,

FIG. 1. The second moment M, in pure T, is plotted as a
function of the oT, concentration at five temperatures. The
temperatures are: 6.4 K (A); 8.0K (0);9.5K (M); 126 K (0O );
and 14.9 K (). The lines are drawn as a guide only.

we will designate as nDT) although the actual concentra-
tions are not always exactly the same as these nominal
ones. The predicted value of the second moment for a
DT mixture such as we described can be obtained by a
suitable scaling of the values calculated for pure T,. For
instance, the decomposition of Egs. (3) will still hold
where x, is the oT, concentration, but the value of M,,
must be changed to account for the differences in molar
volume between - nDT and T,. We do not know the molar
volume of nDT with great precision so we used the
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.
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FIG. 2. The coefficients determined from the data of Fig. 1
by fitting to Eq. (3) in the text. The dashed line represents the
theoretical M, for pure oT,. The symbol () represents M,,
while the symbol (A ) represents M,;.
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weighted averaged volumes of its constituents leading to
Mo(DT)=My(T,)(Vr, /Vpr)
=6.23X10° (rads™!)? . (6)

The term that is independent of x, is expected to be con-
siderably larger in “DT” than in T, since 50% of the
molecules are DT. This contribution can also be predict-
ed from the scaled value of M,, by taking into account
the differences in the factor I (I +1) for the various nu-
clei. Additionally, there is a contribution to M, for the T
resonance from the D nuclei on DT molecules and nuclei
on D, moleules that is slightly uncertainty due to the ex-
act oD, and pD, concentrations, but since this overall
contribution from D spins is smaller than our probable
error in measuring M,, it should not affect any but the
most detailed results. If the J=1 concentration in the
sample is zero, the predicted value of M, is

1.24X10° (rads™1)?,

whereas the infinite temperature values of the J=1 con-
centrations would lead to

M,=2.4X10° (rads™!)? .

Extracting x; from the signal height measurement is
less precise because of the large ‘“background” signal
from the T spins on the DT molecules than it is in pure
T,, but it still can be done. Observed M,’s for such “gar-
den variety” DT samples are given in Fig. 3, and the pa-
rameters M,; and M,, taken from the straight line fits are
plotted in Fig. 4. The same general trends observed in T,
are seen here along with one very interesting new feature.

The interesting new feature is seen in Fig. 5 where the
M, data at our lowest temperature are shown. Here, the
second moment actually increases between the first and
second data points. One possible interpretation of this
effect is that the atom poulation has not reached its equi-
librium value at the time the first data point was taken
but has by the time the second data point was taken.
Everything is regular after the second point. This inter-

M,(10%rad2s2)

o__l
o
o
n

0.3
XI

FIG. 3. The second moment M, in nDT at four temperatures
is plotted as a function of the oT, concentration x,. The four
temperatures are: 6.8 K (A); 10.8 K (0); 12.6 K (<>); and 14.5
K (#). ;
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FIG. 4. The coefficients determined from the data of Fig. 3
by fitting to Eq. (3) in the text. The dashed line represents the
theoretical value of M,, while the dot-dashed line represents the
M, for the DT background. The symbol (¢) represents Mo,
while the symbol (A ) represents M,i.

pretation permits us to crudely estimate the time con-
stant for the atom distribution to reach its equilibrium
value at this lower temperature. The 10%-90% rise time
is about 24 min so that the estimated atom recombination
coefficient (a) is

a=1.66X10"2 cm3s™!.

While such an estimate based on such scant data cannot
be very accurate, it at least should provide the correct or-
der of magnitude of the atom recombination coefficient at
4.7 K.

M,(10%rad?s2)
[
|

20 | |
0 o.l 0.2 03

Xy

FIG. 5. The second moment at 4.7 K for nDT is shown as a
function of the oT, concentration. At the highest concentra-
tion, M, is reduced, possibly due to the atom concentration be-
ing smaller than its equilibrium value.
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III. THE SPIN LATTICE RELAXATION TIME (T,)

The relaxation times reported here include measure-
ments on pure T, where the ortho to para ratio is varied
as well as measurements of 7'; in the isotopic mixture,
nDT. In both cases, at fixed temperature, the oT, con-
centration changes with time so the T';’s can be obtained
for various oT, concentrations. For relaxation in DT, the
pD, concentration is important and it varies in time also.
Unfortunately, while the total D, concentration is
known, the pD, concentration is not directly measured in
our experiments nor easily inferred.

A. Spin lattice relaxation in pure H, and T,

All of the earlier theories of the longitudinal or spin
lattice relaxation time in solid H, were extended and
summarized in the extensive work of Harris.!® The in-
tramolecular interaction in oH, couples the molecule’s
nuclear spin (/=1) with its rotational spin (J=1) so that
changes in the orientation of an oH, molecule (J,) pro-
vide a nuclear-spin relaxation mechanism. Para-H, mole-
cules have no nuclear spin (I=0) and at low temperatures
only the J=0 rotational state is occupied, so they have no
direct influence on the relaxation process. For a less ob-
vious reason, a molecule with J=0 but I nonzero (such as
HD) still has no appreciable longitudinal relaxation
mechanism. This results from the fact that the direct
coupling between nuclear spins and phonons is extremely
weak because the density of phonon states at the nuclear
Larmor frequency is very small. Thus, the rotational de-
grees of freedom of the J=1 molecules in solid hydrogen
samples have a catalytic effect on the spin lattice relaxa-
tion; they couple nuclear spins to the lattice phonons
effectively because the spectrum of rotational transitions
(at constant J) is broad and overlaps the spectrum of
nuclear-spin transitions. This makes the coupling of the
phonons to the rotational degrees of freedom much
stronger than their coupling to the nuclear spins. The
strength of this coupling is such that no experiments to
date have seen a “breakdown” that would produce a
“bottleneck” in the relaxation process. Thus, the “real”
relaxation problem is that between nuclear spins and the
rotational spins: The rotational spins are always in
thermal equilibrium at the lattice temperature.

The preceding general ideas lead to a few simple rules
for spin-lattice relaxation in the molecular hydrogen iso-
topes containing no free-electron spins: (i) at low temper-
atures all the molecules either have J=0 or 1, but none of
the molecules have a direct spin-lattice coupling of any
consequence; (ii) molecules with nuclear spin but J=1,
have a link to the lattice governed by their quadrupole-
quadrupole (EQQ) coupling to other molecules having
J=1 so that their T, is a function of the concentration of
J=1 molecules (x;) of any origin (H,, D,, or T,); (iii)
molecules with nuclear spin but J=0, have no measur-
able direct link to the lattice nor any coupling to other
rotating molecules and hence have an intrinsic 7'} of
infinity; and (iv) nuclei with the same magnetic moment
(such as HD and H, for the proton resonance) can
“cross-relax” allowing nuclei with J=0 to equilibrate
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with the lattice through like nuclear spins on moleules
with J=1. :

To avoid confusion with the usage of the symbol T'; to
denote the measured relaxation time, we will use the sym-
bol T';; to denote the spin-lattice relaxation time of I=1
nuclear spins in an alloy of J=0 and J=1 molecules of
the same species. This quantity 7}, can, in principle, be
calculated with no adjustable parameters as it depends on
the EQQ coupling constant and the concentration. The
agreement between the calculated and measured values of
T, at high concentrations is truly impressive. Although
there is no closed form theoretical expression for Ty,
valid for all concentrations, there does appear to be a
universal behavior for all the solid hydrogens. This is
shown in Fig. 6 where the data on H, and T, are different
only because of molar volume differences, and the data on
oH, relaxation in D, indicate that any hydrogen quadru-
pole moment is effective at spin relaxation.

B. Spin lattice relaxation in isotopic mixtures

The spins on a molecule with J=0 can be brought into
equilibrium with the lattice through mutual spin flips
(cross relaxation) that eventually reach a molecule with
J=1 (spin diffusion) that has a shorter relaxation time la-
beled T'y;.

By using the spin temperature approximation, the fol-
lowing expression for the total relaxation time T'; for all
the spins of a given gyromagnetic moment can be ob-
tained:

C,+C,
1= c, Ty (xy), (7
where C, and C; are the spin specific-heat capacities
[proportional to the number of spins, N, or N, and
I(I +1) where I is the nuclear spin]. This expression has
been derived independently by Nakamura and Fujio®® for
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FIG. 6. The quantity 7', used in Eq. (7) is plotted as a func-
tion of the total J=1 concentration, x (J=1), for oH, in pH,
(A) at 4.2 K; oT, in pT, (#) at 6.4 K; and 1% nH, in D, (O)
with various J=1 concentrations at 4.2 K.
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relaxation of HD molecules with H, impurities present.
Moreover, measurements by Hardy and Gaines® on H,
and HD containing controlled amounts of H, have
verified the correctness of this simple picture.

The previous equation forms the basis for producing
very long relaxation times in DT. If solid DT is pro-
duced with a few percent of T, and D, impurities, then
Cy>>C; and

T1:(C0/C1 )Tll =(3/8x1 )T“(xl) .

As the metastable J=1 concentration decays, T;; goes
through a minimum for x; below a percent and increases
slightly at lower x,’s. Thus, below the minimum in T,
the quantity 7'; can increase significantly due to the fac-
tor (1/x,). In HD, T;’s of 1000 s have been produced by
Hardy and Gaines and Honig and co-workers?! for small
values of x,. The relaxation time in DT as a function of
time is shown in Fig. 7. Increasing time leads to reduced
J=1 concentration and T; does change after there is no
detectable change in M, indicating that decreasing J=1
D, concentration changes T',.

At very low concentrations, we see slight increases in
T, with time. One possible explanation is that D, is con-
verting very slowly producing this change. More likely is
that the D, is also in a dynamic equilibrium just as the T,
is, so another explanation is needed. Possibly the slight
increase comes from the breakdown of the spin-flip term
in the dipolar Hamiltonian seen in the M, data. If the
nuclear spins are not on ‘“‘speaking terms,” 7T'; can in-
crease as spin diffusion takes longer.

C. The effects of free-electron spins on T,

Since most of the features of our observed relaxation
times are adequately predicted by Eq. (7), it appears that
the unpaired electron spins that noticeably effect M, have
little to no effect on T;. Considering the large densities
of unpaired electron spins in the solids inferred from the
o-p conversion rates, it is quite remarkable that there is so
little effect of these spins on 7T;. The simple hopping
model we used to interpret the o-p conversion rate data is
also useful here in estimating the effect on T'; of the
mobile electron spins. If we denote their contribution to
the overall spin lattice relaxation rate as R,, then

300F2

2004

T, (ms)

A
PN
loo_AA N MNA AL A

(¢] 2000 4000 6000 8000
TIME (min)

FIG. 7. The relaxation time T, measured in #DT is plotted
as a function of time at 7=6.8 K. The changing oT, concentra-
tion produces the minimum seen.
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Re=cotr

where I is the electron-spin hopping frequency (deter-
mined from the o-p conversion rates), ¢ is the electron-
spin concentration, and Q7! is the relaxation time of a
nuclear spin caused by a nearby electron spin. We could
imagine that the nuclear spin and the electron spin are
“in contact” and use the hyperfine interaction to calcu-
late Q.

In the preceding picture of relaxation of nuclei by
free-electron spins, the electron spin hops to a site occu-
pied by a nucleus and interacts with the nucleus through
the hyperfine interaction, characterized by the splitting in
an atom of H by the field of 509 G (and 544 G for T).
The T, due to this interaction has been worked out in
Abragam and is given by

(8)

—=L_ T _=q, ©)

where A is the hyperfine coupling constant, 7 is the
electron-spin correlation time, and w is the difference fre-
quency between the electron spins and the nuclear spins
(essentially the electron-spin resonance frequency). The
minimum relaxation time corresponds to wr=1 and has
the value 4w/ A2 By taking 7 to be the inverse of T, the
hopping frequency that has been deduced from the
analysis in Sater et al. and found to be less than I'= at
19 K, we see that w7 >>1 for our experiments so that the
observed relaxation rate due to the hopping electron
spins is given by

R,=cQ=2c(A4%/20)T , (10)

since 4 /w<<1 at the fields we use. Because of the in-
equality 4 /o <<1, we have ) <<T" except near the max-
imum in the rate. At 6 K, the quantity I is approximate-
ly 3X 1072571 s0 if Q /T <<1, the relaxation rate in gen-
eral equals cI'. Taking ¢ =4.6X 1073, we estimate a T,
at 10% s. Even at the maximum of Eq. (8), the relaxation
time is still 30 min (the o-p conversion time). Thus, for
our short relaxation times resulting from the EQQ in-
teraction, we are justified in ignoring the contribution
from the free-electron spins, even though they are in
motion.

IV. THE SELF-DIFFUSION COEFFICIENT

There are not very many experimental techniques that
can measure a diffusion coefficient. Radioactive tracers
can be used if the element in question has a radioactive
isotope. NMR can be used for self-diffusion measure-
ments because ‘“‘spatial motion” can destroy spin phase
memory and hence produce a measurable decay of a spin
echo. We have used appropriate spin-echo techniques to
measure the spin-diffusion coefficient, D(T), for HD,
nDT, and T,. These measurements are quite important
to the interpretation of the data on second moments and
even the ortho to para conversion time data because they
yield quantities such as the motional correlation time as a
function of the temperature.

To measure D(T), we used a Carr-Purcell, Meiboom-
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Gill®? pulse sequence to obtain a spin-spin relaxation
time, Tgg. This quantity was related to the correlation
time for diffusion (7.) by a motional narrowing expres-
sion

L piper (11)

. .

Tss
In turn, the diffusion coefficient was related to the “hop-
ping frequency” (I") or the correlation time (7,) by

D ={(r)T/12=(r2) /(12r,) ,

where the nearest-neighbor separation is used for r.
All of the measurements of the diffusion coefficient
have been fitted to the “thermally activated” form

D(T)=Dyexp(—E, /kT) , (12)

where E, /k is the activation energy in degrees Kelvin.
The quantities Dy and E, obtained in this work and by
others are summarized in Table I.

Examination of these results reveals that the two mea-
surements of D(T) for HD are in disagreement. If we
drop the earlier determination of D(T) in favor of our
more recent one, the activation energies become a mono-
tonic function of the isotope mass. This is shown in Fig.
8. An interesting addition to the preceding data comes
from the measurement of D(T) for HD impurities in pH,
(Ref. 25) where

Dy=5.7X10"3 cm?s ™!

and E,/k=196.8 K were obtained. For the measure-
ments on the nonradioactive hydrogen isotopes, D is
subject to considerable scatter and both different models
and different relationships are used to extract D, from a
relaxation time measurement so it it now possible to gen-
eralize. Nevertheless, the values we obtain for DT and
T, appear to be anomalously large. The value of E,/k
obtained for H, and D, agree well with the calculation of
Ebner and Sung, and the trend of values for E, /k, seen
for the isotopes where no calculations exist, appears
reasonable, but we will elaborate on diffusion results in a
subsequent paper.
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FIG. 8. The activation energy, E,, is plotted for the various
hydrogen isotopes as a function of the isotope mass. The
straight line is drawn as a guide.

V. DISCUSSION AND CONCLUSIONS

The data on D(T) is interesting in its own right, but the
main reason for introducing it into this discussion is to
quantify the molecular motion as a function of tempera-
ture so that the temperature below which the second mo-
ment attains its rigid lattice value can be predicted. We
will call this temperature the ‘“freezing temperature”
(Ty). Even in H,, which solidifies at 14 K, the NMR
linewidth does not reach the value predicted by the rigid
lattice M, until T<10 K. For solid Hy, T, =10 K.

A. The “freezing temperature” for T,

The experimental values of M, in HD as a function of
temperature are shown in Fig. 9. Below 10 K, the experi-
mental M, agrees perfectly with the calculated “rigid lat-
tice” value for a powdered sample. Above 10 K, it can be
seen that the apparent M, is reduced. If we interpret this
effect as a motional effect, the “freezing” temperature for
HD is about 12 K. Using our measurement of D(T) for
HD, we find that I‘/\/Mz =1 at 12.4 K, consistent with
the M, data. _Using D(T) for T, to find the temperature
where T=1/ M,, it is found that the second moment of
T, should attain its rigid lattice value below 16 K. This
estimate cannot be taken too seriously but it is not bad.
For instance, if we use the law of corresponding states

TABLE I. Values of the diffusion coefficient.

Isotope E,(K) Dy (cm?s™V Comment

H, 191 1.4X1073 experiment (Ref. 3)
200 3.0x1073 experiment (Ref. 6)
198 2.0X1073 experiment (Ref. 23)
197 0.6x1073 theory (Ref. 24)

HD 302 0.17 experiment (Ref. 3)
250 2.6X1073 experiment (this work)

D, 276 04X1073 experiment (Ref. 4)
290 0.7X1073 theory (Ref. 24)

nDT 368 0.138 experiment (this work)

T, 411 0.392 experiment (this work)
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FIG. 9. The second moment of HD is plotted as a function of
temperature. The straight line represents the calculated rigid
lattice value.

(and the triple point and critical point temperatures) to
extrapolate behavior from HD to T,, we find that a tem-
perature at 12.4 K for HD corresponds ot a temperature
of 15.4 K for T,, in reasonable agreement with our
diffusion-motional narrowing argument. Thus, we take
T,=15K for T,.

From the T, data, it can be seen that M,, has not
reached its rigid lattice value by estimated freezing tem-
perature of 15 K, although the triple point is near 19 K.
The apparent reduction in the second moment could be
due to motion; most likely the motion of atoms since that
of molecules should be frozen out at these temperatures.

B. Second moments

Several trends are evident from Fig. 2. It should be
noted that M,, appears to be increasing from 20 K to 12
K, but peaks there and decreases again at lower tempera-
tures. We interpret the temperature dependence above
12 K as a motional effect. The apparent value of M,,
reflecting the oT,-0T, dipolar interaction, depends on the
temperature, peaking near 12 K. There is still significant
molecular motion above 15 K so it is not surprising that
M, falls below its “‘rigid lattice value” at the higher tem-
peratures. It is surprising to note the decrease in M,, at
the lower temperatures. The temperature dependence
below 12 K cannot be due to molecular motion which
should be frozen out.

In addition to the question raised by the earlier discus-
sion, namely below what temperature should we observe
“rigid lattice” behavior, there is another point to be ad-
dressed, namely the magnitude of the “impurity” contri-
bution to M, and its origin. The increase in M,; that
occurs at lower temperatures is suggestive of an atom
buildup. Such a buildup has been indicated from mea-
surements of the oT,-pT, conversion rate. The value of
M,; obtained from the data is higher than that calculated
for the impurities known to be in the sample and also
higher, for the three low-temperature points, than the ac-
tual M, obtained at the lowest concentration.

To explain why the value of M,; is larger than the ac-
tual M, obtained for the lowest concentration at the
three low-temperature points, we note that the oT, con-
centration at the end of a run is not zero. At the higher
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temperatures, the equilibrium concentration, as measured
from the signal heights, is found to be as large as 18%,
decreasing to 1.8% at 8 K before rising to 2.3% at 6.4 K.
These latter concentrations are in excess of the
Boltzmann values calculated from the known spacing of
the molecular rotational levels and have been interpreted
as arising from a “pumping” of the J=1 level due to
atomic recombination. Therefore the “ending” M, is
predictably larger than that expected from just the im-
purities. We will examine the possible contribution to
M, from atoms trapped in the solid using just the three
points at the lowest temperatures.

C. The local field of atoms

The effects of atoms, with their unpaired electron spin,
on the second moment of the nuclear spins is an issue of
central importance to this study. Unfortunately, there is
no existing framework for us to use in quantifying the
effect of electron spins located on atoms on the observed
M, of the nuclear spins in our sample.

The portion of the second moment that is independent
of J=1 concentration increases as the temperature is re-
duced. This is seen in both the T, data and the nDT
data. Such an increase could be due to quenching the ro-
tation of the J=1 molecules so that the intramolecular
interaction produces a contribution to M, but this contri-
bution would not be independent of x,. In our data, the
increase in M, at low temperatures, while less pro-
nounced in #DT than it is in T,, indicates that quenched
rotation is not the cause of the increase. Thus, the atoms
may be producing this additional contribution to M,.
We will try to estimate the order of magnitude of their
contribution.

The initial assumption that we make is that the atom
concentration is 1% or below, so that we are considering
a ‘“dilute” magnetic system. The second moment calcu-
lated for a rigid lattice of T, molecules can be scaled to
estimate the electron-spin contribution. This scaling in-
volves some obvious numerical factors such as: a reduc-
tion by ¢ since spin flips are not energy conserving; a
reduction by 2 to correct for the spin differences; an in-
crease by (y,/y,)?* where y, is the electron-spin
gyromagnetic moment and ¥; is the nuclear-spin
gyromagnetic moment; and finally, a “lattice scaling” by
the factor (a,/a,)® where a, is the near neighbor dis-
tance in T, and a, is the average distance between elec-
tron spins. This last factor introduces the square of the
electron-spin concentration (c¢). This gives for the atom
contribution to the second moment,

(M) om=4.1X10" (rads™')%c? .
Converting this (rough estimate) second moment contri-
bution to a spread in frequency, 8§, we obtain

8=(2X10" rads e .

From the data, we must remove the contributions from
the known DT and HT impurities in the T, and then sub-
tract the contribution from the remaining oT,. After
these two corrections, our ‘“‘excess’” second moment, con-
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verted to an angular frequency, does appear to be linear
in the atom density inferred from the ortho to para con-
version experiments in T, (c,) and the model we used,
but the experimental result, §=(0.8X 10’ rads !)c,,
gives a coefficient three time smaller than the estimated
one. This could be reconciled if the actual atom concen-
tration, c, is a factor of 3 smaller than that inferred from
the oT,-pT, conversion experiments.

D. The spin-lattice relaxation time

Since one of our original goals was to produce long
T,’s suitable for dynamic polarization experiments, much
of our analysis has focused on this problem. There are
two apparent methods of producing such long T',’s in an
isotopic mixture: (i) distill the sample until almost no
J=1 molecules remain; and (ii) let the J=1 to J=0 con-
version in the solid remove the J=1 impurities. The
former technique, used by Hardy and Gaines, could be
applied to DT but it would be very costly. Even if the
distillation was successful, there might still be problems
because of some unique features of the radioactive hydro-
gen isotopes. The latter technique, used by the Honig
group, has been tried in this work but it still does not
produce long T';’s.

The problem in producing long T'’s in the radioactive
hydrogen isotopes based on Eq. (7) does not come from
the rate of o-p conversion but from the fact that rapid
recombination of atoms produced by the 3 decay repopu-
lates the J=1 state leading to a dynamic equilibrium
where, below 8 K, x, is much larger than the value pre-
dicted from the Boltzmann distribution applied to the ro-
tational levels. This dynamic equilibrium value of x, ap-
pears to be about 1.5%, leading to a value of T';; of about
1 ms and hence a value of T of order 100 ms. Unfor-
tunately, the rapid recombination combined with an o-p
rate that decreases below 10 K in the solid, seems to
doom even the distillation approach unless a way is found
to inhibit the recombination.

There is a less apparent way to increase 7', that does
work to a limited extent. The specific-heat factors appear

in Eq. (7) because of cross relaxation. If nDT is aged at a
given temperature until the oT, concentration has
reached its lowest value, the factor Cy,/C, is approxi-
mately 12.5. If this sample is suddenly mixed with an
equal amount of nH, (because of the different nuclear
spin there is additional cross relaxation and no change in
the specific-heat ratio), where 75% of the molecules are
in the J=1 state, the new effective J=1 concentration is
38% and T}, is driven to a value above 100 ms producing
a T, inexcessof 1s.

One final method, as yet untried, for obtaining long
T,’s in a 50-50 mixture of D and T molecules would be to
start with equal amounts of pD, and »nT, (an effective
J=1 concentration of 87%) and cool the sample below
the quadrupole-quadrupole ordering temperature (7 )
where a dramatic increase in T’ is observed in H, or D,.
For such a mixture, T, should be of order 3 K and a tem-
perature of 2 K would probably be low enough to see a
large increase in T;. Working at high magnetic fields
would also be advantageous as T, in H,, according to
Sullivan and Pound, increases significantly as the field in-
creases.
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