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Resonant quasiconfined optical phonons in semiconductor superlattices
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We point out that resonant phonon modes with quasiconfined behavior may arise in semicon-

ductor superlattices in the continuum frequency range, i.e., where both constituents have allowed

bulk frequencies with real wave vector. With reference to the cases of Si/Ge and InAs/GaSb
(001) superlattices, we show that such modes appear close to the edge of overlapping optical fre-

quencies, with displacement patterns and Raman strengths comparable to those of true confined

modes. However, their degree of confinement and their actual number and frequency location are
found to be more sensitive to the adjacent layer and to the details of the interfaces. Their study

can therefore yield additional structural information on the interface region with respect to the

study of true confined modes.

Folding and confinement in the phonon spectra of semi-
conductor superlattices' (SL's) are usually understood in
terms of matching of (complex) bulk solutions at the in-
terfaces. Dispersive folded modes result in the frequency
range where the bulk dispersions of the two constituents
overlap [as in the longitudinal acoustical region of
GaAs/AIAs (001) SL's, where both bulk GaAs and A1As
have Bloch oscillatory solutions with real wave vectors],
while flat branches —corresponding to modes confined in
one layer and evanescent in the other —result ~here the
allowed bulk ranges do not overlap (as in the optical re-
gion of GaAs and A1As).

GaAs/A1As SL's are, however, representative of a lim-
ited class of materials in which only the acoustical
branches overlap and the optical branches of the two con-
stituents fall in separate energy ranges. Already the case
of GaAs/Al„Ga~ „As presents a different situation.
There, below the top of the longitudinal-optical (LO)
GaAs-like band of the alloy [which is lower than the
LO(I ) frequency of bulk GaAs], the two optical frequen-
cy ranges overlap. By a naive application of the above
reasoning, confined modes would be expected only be-
tween the top of the LO continua of the two materials,
and folded dispersive modes would be expected in the
overlap region below. The observed disappearance of the
Raman peaks associated to GaAs-like confined modes
when passing below the edge of overlap has been taken as
a confirmation of this picture. Overlap of the optical
branches of the SL constituents is a quite common
feature, which is encountered for instance also in
InAs/GaSb and Si/Ge SL's, the vibrational properties of
which are recently receiving increasing attention. "

In the following we will discuss the behavior of SL pho-
nons in cases where the bulk dispersions of the two con-
stituents overlap. In particular, we will show that, as in
the electronic case, " strong resonances can appear just

below the edge of overlapping frequencies with behavior
(thickness dependence, Raman activity) similar to that of
true confined modes. These resonant quasiconfined modes
result from the matching of two bulk solutions with
diAerent real wave vectors. However, the amplitude is
mostly localized in one layer and matched to an oscillato-
ry, nonevanescent wave of smaller amplitude in the other
layer. The detailed properties of these modes —like their
degree of confinement, their actual number and frequency
location —depend strongly on the underlying bulk disper-
sions and are obviously more sensitive to the adjacent lay-
er and to the details of the interfaces than those of true
confined modes. This fact may be of relevance for inter-
face characterization.

In order to illustrate these points we will focus, in par-
ticular, on the Si/Ge and InAs/GaSb systems, which
clearly show a different behavior than GaAs/A1As. To
study this type of mode realistically, we need a detailed
description of the superlattice lattice dynamics, capable of
accurately treating at the same time the relative frequen-
cy position of the bulk continua and the bonds near the in-
terface in the superlattice. In the case of InAs/GaSb
SL's, these two requirements are of particular importance
because the LO(I ) of InAs falls only a few wave numbers
above the LO(I ) of GaSb, and because different types of
bonds (between In and Sb or between Ga and As atomic
planes) may occur at the interface. In the following, we
will present results calculated with a one-dimensional ap-
proach [exact for wave vectors parallel to the (001)
growth direction] we will use the same interplanar force
constants for the two materials and different masses and
effective charges to describe the differences between InAs
and GaSb, and only different masses to describe the
diA'erences between Si and Ge. ' Indeed the bulk experi-
mental results are well reproduced, particularly for
InAs/GaSb, with the same set of force constants: This
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gives confidence in the reliability of the method in describ-
ing the main features of the bond also at the interfaces. '

In Fig. 1 we show the displacement and frequency posi-
tion of longitudinal Si-like confined modes and of resonant
quasiconfined Ge-like modes. This figure illustrates the
analogy of phonon displacements with the wave functions
of a particle in a finite well. ' In this context the upper
(lower) edge of the phonon barriers is given by the edge of
the Si (Ge) bulk continuum. The modes shown are the
I -point phonons of a Si6/Ge6 SL. Note that below the
edge of Ge, which represents the edge of the continuum,
the displacements in the Ge layer are quite similar to the
ones of true confined modes (such as the topmost Si-like
modes), but matched to an oscillatory nonevanescent
wave in the Si layer. For some of these modes (for exam-
ple for the highest one) the displacement amplitude in Si
is much smaller than in Ge. This is why we call these
modes resonant, quasiconfined Ge-like modes. Further-
more, as the displacement is similar to that of true
confined modes, the corresponding Ram an intensity
should be comparable. Indeed, well-defined Ge-like peaks
have been observed in light scattering experiments on
Si/Ge SL's. Moreover, we find that their frequency
approximately coincides with that of the modes actually
confined in an isolated Ge slab. Notice also that reso-
nances in the layer representing the well (Si in the present
case) may occur; we will see later on that this aspect is
even more evident in the case of InAs/GaSb. The full
dispersion of the Sis/Ges SL is shown in the central part
of Fig. 2. By comparison with Si6/Ge ~ o (left) and
Si~o/Ge6 (right) it is clear that the dispersion and energy
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position of resonant modes are indeed somewhat affected
by the thickness variation of the adjacent layer, contrary
to what happens for the proper Si-like confined modes.

Resonant modes are also sensitive to the details of the
interface. To illustrate this point we now consider
InAs/GaSb superlattices, which may have either light (Ga
and As) layers or heavy (In and Sb) layers at the inter-
face, ' as sketched in Fig. 3. In Fig. 4 we show the disper-
sions of InAs»/GaSb&3 SL's with "heavy" (left) and
"light" (right) interfaces, together with the bulk InAs
(solid line) and GaSb (dashed line) longitudinal phonon
spectra. ' Besides the modes localized at the interface
(denoted by IF in Fig. 4), which fall at very different fre-
quencies depending on the interface composition, ' also

k ( units of vr/dl

FIG. 2. Dispersion of longitudinal modes along (001) for the
Si6Ge~0, Si6Ge6, and Si~oGe6 superlattices. The dashed lines rep-
resent the edges of the longitudinal continua of bulk Si and Ge.
d is the superlattice period.
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FIG. 1. Confined and resonant longitudinal modes in a Si6Ge6
superlattice. Right-hand side: phonon dispersion along (001) in
the superlattice Brillouin zone. Left-hand side: amplitude of
the I point longitudinal displacements vs position of the atomic
layers along (001). The upper and lower edges of the barriers
are given by the edges of the Si and Ge bulk continua, respec-
tively, as marked by the arrows.

FIG. 3. Possible geometries of ideal InAs/GaSb (001) super-
lattices. Filled symbols correspond to "heavy" atomic planes (In
and Sb), while open symbols correspond to "light" atomic
planes (Ga and As). The arrows indicate the atomic planes in-

volved in the interface bonds. Top: odd number of atoms per
layer; two light interfaces per unit cell. Center: odd number of
atoms per layer; two heavy interfaces per unit cell. Bottom:
even number of atoms per layer; alternated heavy and light in-
terfaces.
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