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We study transport in a quasi-one-dimensional system consisting of two or more parallel linear
chains with finite interchain transition rates s. The transition rates r along the chains are sto-
chastically distributed according to p(r) —r' '. In all cases we have nonuniversal behavior and
crossover eA'ects. For fixed s we find that at times t«s ' transport is dominated by a, whereas
for t))s transport is dominated by na, n being the number of parallel chains. If s is also ran-
domly distributed according to p(s) —sP, transport is governed by a+min(a, P) for all times.

The eff'ects of disorder in one-dimensional systems have
been investigated extensively during the last years. '

There are several parameters that may be aA'ected by dis-
order: intersite distances, energy levels, barrier heights,
transition rates, or combinations of all these.

In recent works ' we studied transient transport on a
linear chain with diA'erent distributions of trap energies
(or transition rates), utilizing the continuous-time ran-
dom-walk model (CTRW) formalism. The basic in-
gredient of this theory is the waiting-time distribution
tlr(t), which is the probability per time unit of leaving a
site at time t after occupying this site at 1=0. For a
power-law distribution of transition rates of the form

p(r) =ar ' (0&r &1, a&0),
where r is given in units of the attempt-to-escape frequen-
cy vo, one has

y(t) —t

and we recover for a well inside the region [0,1] the
findings of Scher and Montroll:

I(t )-t' ' (0 & a & 1), (3)
where I(t) is the current before the transit time (or, say
for an infinite chain) and —stands for the asymptotic
limit for t~ ~.

Experimental data from recent transient photoconduc-
tivity measurements show a temporal transition from
dispersive to nondispersive behavior. ' The new feature of
these experiments is the possibility of monitoring the
current over eight or nine decades in time and intensity.
A way to explain the transition from dispersive to non-

dispersive behavior is to invoke crossover eAects. Indeed,
for a near its critical value a, =1, the asymptotic behavior
of I(t) is very different from Eq. (3) and rather follows
the form I(t )—I/int (see Ref. 8). A detailed analysis of
the situation around a, =1 is given in Refs. 4 and 5.

To extend this analysis to more realistic situations than
one-dimensional chains we study in this paper how the
transient transport properties are altered in the case of a
set of quasi-one-dimensional systems consisting of two or
more connected parallel linear chains. The situation for
two chains is depicted in Fig. 1(a). The transition rates r;
and w; are assumed to be random variables, both distri-
buted according to Eq. (1) with the same parameter a,
whereas the s; are discrete (s; =s for all i) for the present.
Later we will also discuss the case that the s; are stochast-
ically distributed following Eq. (1). We expect this model
to be of interest in the analysis of the electric conductivity
through strands of rigid polymers, where the interchain
and the intrachain site couplings may be widely different.

Let us first start with the geometry of Fig. 1(a) and
center on the transport in the direction of the chains. We
now project the quasi-one-dimensional system of Fig. 1(a)
on a single line by reinterpreting pairs of sites on the two
chains as one site of the new line [Fig. 1(b)]. Following
the CTRW idea, for the new chain we define a waiting-
time distribution y(t) as being the probability per time
unit of performing a step in chain direction at time t after
the last step in this direction; the distribution y(t ) obtains
as an average over the random variables r, w and, if neces-
sary, s. Since this averaging process is site independent, it
follows that also y(t) is site independent. Therefore, once
we have calculated y(t), we can follow the standard pro-
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FIG. l. (a) Quasi-one-dimensional system consisting of two
parallel linear chains. A particle can move from site i of any
chain to site i + 1 of the same chain with the transition rate r; or
w;, or it can move to site i of the neighboring chain with transi-
tion rate s;. The r;, w;, and s; are random variables. (b) The
system of two parallel chains is reduced to one chain by replac-
ing the sites in the same column with a single site and calculat-
ing a waiting-time distribution lr(t) (averaged over r, w, and s).

which is the negative time derivative of +(t), " averaged
over r, w, and, if necessary, s. For the Laplace transforms
one then gets

))v(u) =(1 —ue(u))„, (,,)

u (pr +qw ) +s (r +w ) +rw

~ ~ ~

~

~

(u+s+ r) (u+s+ w) —s '
As r and w are identically distributed, Eq. (7) simplifies to

r(u+2s)+rw
(u+s+ r) (u+s+ w ) —s'

Thus y(u ) is independent of the initial probabilities p and

q and also of the site number, since the distribution of
transition rates is the same for all columns. Equation (8)
is the basis for our further discussion.

First, consider the two extreme cases s =0 (decoupled
chains) and s~ ~ (perfect coupling). In the first case
Eq. (8) reduces to

y(u) =( "
), ,

which was already discussed in Ref. 4, yielding y(t)—t ' ' and I(t) —t' ' (0 & a & 1). In the second case
one gets from Eq. (8) in the limit s

cedure (see our previous discussion ) and calculate the
resulting current I(t) by numerical Laplace inversion of

r(u)- (4)
1 —y(u)

To obtain Eq. (4) we assume the particle to start at site 1,
the chain length being infinite. Here and in the following
we denote by f(u) the Laplace transform of f(t), i.e.,
f(u) X[f(t)l.

Let us now focus on the calculation of )tr(u). Consider
the basic element of the quasi-one-dimensional system
[Fig. 1(b)], which element consists of one pair of sites,
i.e., one column. Let the particle arrive at t 0 on this
column, p and q being the probabilities that it first reaches
the upper or lower site, respectively. Evidently, p+q 1

holds. Furthermore, let +„(t)and %(t) be th'e probabil-
ities that the particle occupies the upper or lower site at
time t after the arrival on this column. Then one can es-
tablish the following difFerential equations:

t)+, (t ) -—(r+s)+„(t)+s+(t),
(5)8+„(t) - —(w+s)e (t)+se„(t).

These are easily solved via Laplace transformation, using
the initial conditions +„(0) p and 0"„(0)=q. This
yields for the Laplace transform of the total occupation
probability of the considered column, which is given by
+(t) =+„(t)++(t):

2s+u+qr+pw (6)(u+s+r)(u+s+w) —s' '

Now we can deduce the waiting-time distribution y(t ),

This can be easily Laplace inverted and averaged over r
and w:

(t) (
—(r+w)t/2) (

—rt/2) (
—wt/2)

=a'y(a+1, —,
' t)y(a, —,

' t)( —,
' t)

where y(a, t) is the incomplete gamma function. ' As
lim, y(a, t) =I (a), we obtain y(t) —t ' ' for the
asymptotic behavior of y(t). Therefore, in this case the
motion is no longer governed by the parameter a but by
2a. This result can be generalized to a system of n con-
nected parallel chains, where motion is then governed by
na For th.e current this results for t ~ in I(t) —t"'
for 0 & a & n ' and I(t )—const for a ) n '. Hence, the
critical value for a, below which transport gets anomalous,
decreases from 1 to n ' when one considers n parallel
chains.

A similar result has recently been derived by Havlin,
Bunde, Weissman, and Aharony' for the transport ex-
ponents g (resistivity exponent) and d„(diIFusion ex-
ponent). They also found that a has to be replaced by na,
when a system of n parallel, perfectly connected linear
chains is considered. (When comparing, note that in the
notation of Ref. 13, 1 —a corresponds to our a. ) Hence,
the critical value a„separating the regimes of normal and
anomalous transport is a, =n ' (in our notation).

For finite values of s there occurs a crossover. At times
t that are much smaller than s ' (the mean time for mov-

ing from one chain to the other) the particle acts as if it
moves on a single chain, whereas for times t much greater
than s ' it behaves as if the chains were perfectly con-
nected; This is demonstrated in Figs. 2 and 3. By Laplace
inverting and averaging Eqs. (8) and (4) we calculated
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FIG. 2. Double-logarithmic plot of y(t) for s =10 and
a=0.1, 0.3, or 0.5, respectively. For clarity of presentation we
have set all three y(t ) equal at t = l.
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FIG. 3. Double-logarithmic plot of I(t) for s =10 ~ and
a =0.1, 0.3, or 0.5, respectively.

numerically both y(t) and I(t). In double-logarithmic
presentation y(t) exhibits a crossover from slope —I —a
for t(&s ' to a slope —1 —2a for t»s ', as predicted
above, and, similarly, the slope of the current changes
from a —I to 2a —1 (0&a& —,') or 0(2 ~a&1) in
double-logarithmic presentation. Similar results are ex-
pected, if the number of parallel chains exceeds 2.

Let us now turn our attention to the case where not only
r and w but also s is a random variable, obeying the
power-law distribution

p(s) =Ps~ ' (0&s & I, P &0). (12)

Calculating y(t ) for different values of a and p we obtain
for the geometry in Fig. I the following results. (i) For
a ~ p the time dependence of y(t) follows y(t)-t
(ii) For a & p the time dependence of y(t ) follows
y(t)-t ' ' ~. These results can be understood as fol-
lows. The smaller the parameter a or P of the power-law
distribution of transition rates is, the more the transport in
this direction is hindered. A particle sitting on any site of
the quasi-one-dimensional system has two possibilities to
move to the next column; it may jump directly to the next
column with transition rate r or w (the distribution of both
governed by a) or it may intermediately move to the other
site in the same column with transition rate s, whose dis-
tribution is governed by p, and then jump to the next
column (with w or r, respectively). The first way of mov-

ing in chain direction is always governed by the distribu-
tion of r and w, i.e., by the parameter a, whereas the
second way is governed by the most dificult step, which is
the step with the smaller power in the distribution of tran-
sition rates. Therefore, one may expect the exponent of t
in the asymptotic behavior of y(r ) to be —1 —a
—min(a, p), a result which is in full agreement with our
numerical computations.

Hence, in order to describe motion along two connected
parallel chains with a power-law distribution of interchain
and intrachain transitions rates one has to replace the pa-
rameter a in Eqs. (2) and (3) by a+min(a, p).

So far, we have shown interesting new aspects of tran-
sient transport in quasi-one-dimensional systems with
power-law distributions of transition rates. Although the
mechanism studied here has a simple structure, it may
well play an important part in the understanding of trans-
port through Aberlike complex systems. Thus we expect
the mechanism to show up in the photoconductivity of
doped quasilinear polymers such as polydiacetylene,
where carriers move on and between parallel, one-
dimensional polymer chains with'defects.
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