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The m-electron structure of amorphous carbon has been studied within the framework of a tight-
binding approximation. Graph theory is used to estimate the density of states near the Fermi level.

Amorphous carbon (a-C) has been studied by means of
a quantum-chemical cluster calculation in order to deter-
mine the density of states (DOS) around the Fermi level
E.. Different methods' ~° suggest an optical gap of
0.4-0.7 eV in a-C and 1.6-2.7 eV of a-C:H; furthermore,
the weakly bonded 7 electrons form both the valence-
and conduction-band states in a-C and in a-C:H. Based
on topological disorder a theoretical prediction will be re-
ported concerning the m-electron states. Graph theory®’
is applied to study the topological structures.

Structural investigations®® show different percentages
of fourfold- and threefold-coordinated atoms in a-C. The
neighbors of diamondlike atoms are tetrahedrally coordi-
nated, allowing the construction of four sp* hybrid orbit-
als on each of them. Graphitelike atoms form three lo-
calized o states (sp? hybrid) plus a delocalized 7 state
near Ep. To analyze the DOS of the m-electron network
we applied the Hiickel theory. For the Hiickel Hamil-
tonian H we have

a ifi=j
H;;= B if j is the first neighbor of i/ (1
0 otherwise ,

where a and 3 are the interaction parameters. The subset
(the cluster) of graphitelike atoms in a-C structure can be
described by a graph where each atom is a vertex of
graph and each bond represents an edge. In this case one
can rewrite the above Hamiltonian in the following form:

H=al+BA , (2)

where I is the unit matrix and A4 is the adjacency matrix
of graph G due to the topological structure. The matrix
A is defined in the following way:

1 if the vertices i and j are adjacent

A;= 0 otherwise . 3)

Thus the secular equation det|H —eI| =0 can be written
as

det|xI — A|=0, 4)

where the relation between eigenvalues of H and A4 is the
following:

e=a+xf. (5)
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If Pg(x) is the characteristic polynomial of matrix A4,
then

N
Pg(x)=det|xI—A|= 3 a,x" 7", (6)
n=0

where N is the number of vertices in graph G. According
to the theory of Sachs®’ the a, coefficients are

S (—1)¢S2S if0<n <N and S,#£D

ses,
a,= |0 if0<n=N and §,=9 (7
1 ifn=0.

Here each S (a Sachs graph) is such a subgraph of graph
G which has only edge- and/or ring-type isolated com-
ponents. S, is the set of all Sachs graphs with n vertices.
C(S) and r(S) denote the number of all components and
of ring components in S, respectively. As an example let
us apply Eq. (7) for a simple cluster (see Fig. 1): ay=1,
a, =0, a,=(—1)1204+(—1)204+(—1)1204(—1)2°
=—4, a;=0, a,=(—1)2°+(—1)2°+(—1)"2'=0, and
thus Pg(x)=x*—4x2

By setting P;(x) to zero one can get the x eigenvalue
spectra. If

ay=ay_;=ay_,= ' =ay_,+1=0, (@)

then x =0 is a v-fold-degenerate eigenvalue. There are
two different ways to get a, =0: S, is not an empty set
and the sum in Eq. (7) equals zero or S, is an empty set.
In the present work we have used the more trivial second
case to find a connection between topology and DOS near
Ey. Figure 2 shows a graph G of a-C model containing
64 sp? type atoms. The geometry was taken from a com-
pletely three-coordinated model of Beeman et al.* Look-
ing for S, set of Sachs graphs there are four critical ver-
tices of topology preventing us from constructing Sachs
graphs with n =64, 63, 62, and 61 vertices. It leads to
the equations S¢, =S¢ =S¢, =S¢ =9 and from Eq. (7) it
follows that ag, =ag; =ag =ae =0. The characteristic
polynomial has four x =0 roots. If we ignore the pres-
ence of these topological degeneracies we are able to con-
struct Sachs graph S €S, and thus a¢, is probably not
equal to zero.
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FIG. 1. Sachs graph construction.

According to the Coulson-Rushbrooke theorem!® in an

alternating hydrocarbon the molecular orbital energy lev-
els are symmetrically paired about an appropriate zero
(e=a for x =0) such that if e, =a+xp is a root of the
secular equations then € _, =a—xf3 is also a root. Since
a,B<0 and in the ground state only the lowest one-
electron states are occupied, the x =0 eigenvalues (e=a)
are at the Fermi level in the case of the alternate hydro-
carbon. For the majority of nonalternate clusters the
x =0 eigenvalues are also near to the Ej.!!

Two different types of calculations were carried out on
C356 model of Beeman et al.* This a-C structure con-
tains 356 atoms, of which about 50% are three coordinat-
ed. The = DOS curve, as obtained by smoothing the
Hiickel one-electron energies with Gaussian line broaden-
ing that corresponds to a full width of 0.2 eV at half max-
imum, is presented in Fig. 3. Saturating the topological
degeneracies by hydrogen, the huge thin peak disappears.
In the second case the 7-orbital axis vector analysis!? was
applied to define the  states and the orbital orthogonali-
ty relationship was used to define the 7-orbital hybridiza-
tions and directions. In this more realistic calculation a

FIG. 2. Part of a model made by Beeman er al. (Ref. 4).
Constructing S, set of Sachs graphs (one of them represented by
thick solid lines) there are four critical vertices of topology
(marked by arrows). It leads to a fourfold degenerated x =0 ei-
genvalue. Usually the topology determines only the number of
critical vertices without uniquely fixing their positions.
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FIG. 3. m-band DOS of the C356 model (Ref. 4) (containing
40% sp? atoms) calculated by Hiickel theory. There are some
zero eigenvalues of the adjacency matrix causing a high sharp
peak (solid line). The topological degeneracies are saturated by
hydrogen (thick solid line). Two lines differ from each other
only in the range of Fermi level.

similar large peak appears around the Fermi level and the
previous saturational process eliminates this peak as well
(see Fig. 4).

In conclusion we can say that as the Fermi level is
nearly at the x =0 values, the metallic behavior of amor-
phous carbon clusters can be explained by the x =0 ei-
genvalues of the adjacency matrix of the structure defined
by the three-coordinated carbon atoms. It means, based
on topology, that one can estimate the 7-band DOS at
the Fermi level without any quantum-mechanical calcula-
tion and topological degeneracies play a more important
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FIG. 4. m-band DOS of the C356 model (Ref. 4) using the 7
orbital axis vector analysis. Solid line displays the DOS of clus-
ter containing some x =0 eigenvalues of the adjacency matrix.
The zero eigenvalues of the adjacency matrix are saturated by
hydrogen (thick solid line). Two lines differ from each other
only around E.
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role than angle distortion in amorphous systems contain-
ing m-electron islands. One can see in Fig. 2 that the po-
sition of critical vertices is not fixed in the structure. Al-
most every three-coordinated carbon atom can be critical
vertex. As the hydrogen-carbon bond is o bond we sup-
pose that in a process of saturation the hydrogen atoms
can transform three-coordinated carbons into four-
coordinated carbons. In such a process the number of
critical vertices decreases and states disappear around the
Fermi level. This is in agreement to experimental results,
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where it was found that the hydrogen increased the opti-
cal gap.! ™
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