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Phenomenological piezoelectricity of polymer insulators
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We present expressions for the tensile and bending piezoelectric response as a function of the free
charge density and initial polarization present in a dielectric. We pay attention to giving a clear
definition of the piezoelectric coefficients. We use our results to analyze some literature data, inter-
preting the decay in poly(vinyl Auoride) during annealing as being wholly dipolar, but in
poly(vinylidene Auoride) there is a mixed space charge and dipolar regime with some results remain-
ing unexplained.

I. INTRODUCTION

Plastic insulating materials can exhibit strong
piezoelectric properties. The theory of piezoelectricity is
well established for inorganic crystalline substances, '
but the organic polymers differ from the traditional ma-
terials in several respects. While the standard theory un-
doubtedly applies to individual polymer crystallites, the
materials themselves have widely different morphologies,
varying from wholly amorphous, through the partially
crystalline to the almost wholly crystalline, though single
crystals are not normally obtained and the crystallites
may, in addition, show a domain structure. A second
point of difference is that the polymers are frequently di-
polar. Again, there is a wide gradation from nonpolar
(polytetratluoroethylene, PTFE), through adventitious di-
poles (low-density polyethylene, LDPE) and dipolar main
chains [poly(ethylene terephthalate), PETP] to wholly
oriented crystal phases [P-phase poly(vinylidene Auoride),
PVDF]. Lastly, the piezoelectric activity is frequently as-
sociated with space charge within the material, or surface
charges. On inspecting the review literature, it has be-
come clear that the basic theory of piezoelectricity in
these materials is in some disarray, while the exten-
sion to the composite morphologies found in practice is
in a much weaker state.

We are interested in using gross piezoelectric measure-
ments as an adjunct to the detailed spatial information
provided by pressure-pulse techniques. ' In this case, we

need to be able to interpret the piezoelectric signals in-
duced across the thickness of a planar sample in terms of
the distribution of polarization, charge, and intrinsic
piezoelectricity as a function of depth within the sample.
For this purpose, the details of the behavior at the crys-
tallite level are not apposite, and some form of mean-field
averaging on this scale is called for. While there are
some approaches to evaluating the response in this
form, ' ' ' we have found them to be somewhat incom-
plete and in places rather confusing. In the present pa-
per, we give a consolidated account of the various effects,
first taken one at a time and then all together, and we
take care to distinguish the local (but mean-field-
averaged) piezoelectric coefficients from the observed
effects at the electrodes. This separation has not been too
clear in the past. While some effects can be evaluated
directly, others depend upon knowing the corresponding
microscopic response functions, and we make no attempt
to obtain numerical values for the latter quantities in the
present work.

II. CALCULATION OF THE TENSILE
PIEZOELECTRIC EFFECTS

We begin by calculating the measured response in the
thickness direction to a simple stretching of a film. The
distortion is illustrated on a much exaggerated scale in
Fig. 1. We assume for the sake of simplicity that the ma-
terial is homogeneous, at least for length scales compara-
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FIG. 1. Distortion of a sample under tensile stress.
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ble to the thickness, and isotropic. If this were not the
case, then the full apparatus of tensor notation would be
required. This is straightforward though cumbersome, "
and the complication is unnecessary in the present con-
text. Also for the sake of simplicity, we assume that the
material is clamped in the third orthogonal or y direc-
tion, so that the width w remains fixed. We adopt this re-
striction in order to make the calculation simple and lift
it further on in the paper. In this geometry we are deal-
ing with what is usually labeled as the d3& piezoelectric
strain coeScient, and its close allies. We start by com-
puting the observed effects due to the geometrical distor-
tion of the charge density and the polarization, then we
deal with the strain dependence of the dielectric constant
and the polarization, and finally we handle cases in which
the dielectric constant is coupled to the other source of
piezoelectricity. We restrict ourselves to the case of a
short-circuited sample, which is the normal experimental
situation for highly resistive materials.

D =@pe E+P,

P=n&p&,

BD/Bz =0, (8)

E dz=O,

distortion, the number of dipoles is preserved, their indi-
vidual dipole moments stay the same, and their directions
remain unaltered. While the first two assumptions are
quite sensible, it will be clear that the last one is merely
an approximation, because the shearing of the sample im-
plies a local rotation of the material for all but the princi-
pal axis directions. In the interest of clarity, we choose to
throw the consequences of this rotation into the extrinsic
e, coeKcient discussed later. This usage has been adopt-
ed previously. ' Alternative assumptions can be made,
such as the conservation of the quantity ( BP /—r)z ).

We now have the equations

A. Space charge

S=hl/Io,
S=X/Y . (2)

At the same time, there is a contraction in the thickness
direction:

dz =
dzo ( 1 —o.S),

A slice of the material, originally of thickness dzp and
length lp, is extended by the tensile force to a length
lp+ Al. The strain S is given by the Young modulus Y
and the tensile stress X:

n =no/[(1 —oS)(1+S)] . (10)

Now if we integrate across the sample thickness, we ob-
tain

where e is the high-frequency dielectric constant, E is
the electric field, P the polarization due to the dipoles, n
the dipole concentration, &p & the local mean dipole mo-
ment in the z direction, and the sample contains no
charge and is short circuited. Our third assumption is
equivalent to holding &p & fixed at its undisturbed value

&po & during the distortion. The number density obeys a
relation identical to (4):

where o. is the Poisson ratio. Both Y and o. are the values
appropriate to clamping in the y direction, so we expect
that o. ~ 1, where the equality applies if the volume of the
material'stays constant. Since the space charge is con-
served, so its density changes

Dt= fPdz,

where

f —zp —z]

The charge Q on the lower plate is given by

(12)

p =pa/[(1 —o S)(1+S)], (4)

where pp is the initial density. The electrode area in-
creases by the factor (1+S). It is evident that since the
distortion in the thickness direction is uniform, then the
space charge induces charges on the upper and lower
electrodes in precisely the same ratios as before. There is
consequently no piezoelectric effect and we can write

b, g =0 (space charge),

lo(1+S)m no&pa &

dzo (1—oS)
to( I —oS) (1 crS)(1+S)—
lpw f no &po &dzo

p
(13)

where b, g is the change in induced charge on the lower
electrode. This result holds whatever voltage may be ap-
plied to the electrodes, so long as it remains fixed, and it
is valid for any spatial dependence po(zo) of the charge
density.

Expanding this to first order, and recalling that we mea-
sure only the change b, g of the induced charge, we obtain

Ipw
b,g= oSf no&po&dzo

tp

B. Polarization =lotto Sf dzo Po/to . (14)

In assessing the effects of polarization, one must be
quite careful about defining what is being taken into con-
sideration. Here, we make the assumption that under

Here, Pp is the polarization in the undistorted sample.
This particular contribution to the piezoelectric response
is thus proportional to the average initial polarization.
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C. Intrinsic and extrinsic strain coe%cients

If the material has an appropriate crystal structure,
then it will automatically show a piezoelectric effect un-
der strain, given by'

D =ape E+e;S, (15)

D =ape E+e,S,
and to a working hypothesis

e, =cPp,

(17)

(18)

where c is a dimensionless constant that can be found
only by detailed microscopic modeling. Given these two
equations, one can essentially repeat the calculations of
the previous section, obtaining the result (correct to first
order)

Ipw
b.Q= CS f n (0p)odz 0

= iowcS f dzo Pp /to (19)

This signal simply enhances the polarization signal given
by Eq. (14).

D. Strain gradient coe%cients
and dielectric-constant changes

In principle, there can be further contributions to the
piezoelectric response arising from the gradient of the

where e, is the intrinsic piezoelectric strain coefficient. In
the stretching mode, S is constant over the volume of the
sample. Under short-circuit, space-charge-free condi-
tions, this equation integrates to give

bQ=Dlw=lwe, S=lowe, S .

This contribution will arise on1y in anisotropic materials,
and even then will vanish if the material is composed of
randomly oriented crystallites.

We new reach the awkward question of extrinsic
piezoelectricity. Under tensile stress, any direction Axed
in the material will tend to rotate away from the z axis.
This mechanical distortion would cause a corresponding
rotation of any dipoles within the sample. Evidently,
when the dipoles are initially randomly distributed then
(po)=0. Under strain, dipoles partially aligned in the
+z direction and dipoles partially aligned in the —z
direction will produce offsetting changes so the mean mo-
ment remains unchanged, (p ) =0. In the general case,
neither of these quantities need be zero. While it might
be possible to construct pathological cases where
(po ) =0 but (p )&0, it seems more likely that a high lo-
cal moment (po) in the relaxed state would lead to a
high moment (p ) in the strained state, and conversely.
Since the free volume may change under strain, other mi-
croscopic effects are possible. ' To a first approximation,
one would expect these to also give sample contributions
that go up as the local polarization goes up. Hence, we
are led to the definition of an extrinsic piezoelectric
coefficient e,

strain, leading to an equation of the form. '

g~ =C Pp (21)

In the case of purely tensile strain, the strain gradient is
zero and so there are no contributions to the induced
charge from these terms.

The die1ectric constant is also a function of density and
hence of strain, and we write it in the form

e„=e„o(1+tzP), (22)

where e p is the unstrained value and a, is the strain
coefficient. Microscopic models for this coefficient have
been conveniently summarized elsewhere. While impos-
ing uniform strain could give rise to an anisotropic
dielectric constant, there is no confusion in the present
case because only the z-directed response comes into
play. In the absence of space charge and polarization we
have merely that

roe E (23)

while Eq. (8) remains valid. Using the short-circuit con-
dition, Eq. (9), we see directly that D =0 irrespective of
the strain, so AQ =0 for tensile strain. We note that this
is not true if a voltage is applied to the sample.

E. Interaction with the dielectric constant

So far, the possible effects have been considered singly.
However, there is an important interaction between
changes of the dielectric constant and any space charge
or polarization present. This arises because
(D P)/eoe give—s the electric field E, but it is E that is
subject to the boundary condition imposed by the applied
voltage. Thus the combinations (D/e ) and (P/e ) are
the quantities of physical importance. Indeed, in the case
of nonpolar dielectrics, the only contribution to pressure
pulse signals comes from the (p, e ) interaction.

Under static tension several of the combined terms are
inactive. The strain is uniform so the dielectric constant
is also uniform. In this case, the space charge behaves
exactly as in Sec. II A above, and there is no change in
the induced charge on either electrode. The strain gra-
dient terms are self-evidently zero.

In the absence of space charge, and with a uniform
dielectric constant, the calculations of Secs. II 8 and II C
can be repeated, giving the same results as before. Even
with space charge present, it is easy to see that by in-
tegrating the expression

D =eoe„E+P+(e;+e, )S (24)

over the thickness of the sample, the electric field term
vanishes and we obtain for the Aux density D

&
at z =z, a

D =@pe +g dS/dz,

where g is the piezoelectric strain gradient coefficient.
This, in turn, might have both intrinsic and extrinsic
parts g; and g„respectively. Again, we anticipate that
the extrinsic coefficient will be linear in the polarization,
and write
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linear sum of the contributions evaluated earlier. Hence
we get from Eqs. (5), (14), (16), and (19) that

lpw
S e;to+(a+c) fPodzo

tp
(25)

We recall that the parameters e; and c have to be es-
timated from microscopic models, while o. can be ob-
tained from the mechanical deformation. The most not-
able feature of this result is that the charge density does
not appear at all.

z,

III. CALCULATION OF THE BENDING
PIEZOELECTRIC EFFECTS

When a sample is slightly bent under end loading, it
deforms into a circular arc of radius of curvature R, mea-
sured to the neutral plane, as shown in Fig. 2. The tensile
strain in a layer located at radius r is

S=(r —R )/R, (26)

and there is a corresponding radial compression (for
r )R ) or radial expansion (for r (R ) which varies with
position. The calculation of the change in the induced
charge on the lower electrode is straightforward and fol-
lows the same lines as before. However, it is algebraically
tedious, so the details are given in the Appendix. If we
ignore the strain dependence of the dielectric constant,
we obtain

Ipw
b, Q = (1+o )fpo(zz —zo)(z, —zo)dzo

2Rtp

Ipw+ fPo(z —zo)dzo
Rtp

lpw+ f e, (zo —z )dzo+g;to+ fg, dzo, (27)
Rtp

where

z = (z, +z~)/2 .

There are three features of note in this result. The in-
duced charge varies as (1/R) as expected, ' while the in-
trinsic piezoelectric term vanishes because one half of the
sample is in compression and the other half in extension.
The weight in factors in the integrals for po and Pp are
symmetric with respect to inversion of the z axis, so the
signal amplitude does not depend on the sign of R (this
symmetry is implicit in the strain gradient term' ).

FIG. 2. Distortion of a sample under bending.

The strain dependence of the dielectric constant gives
rise to two additional terms

EQ ' = a, —fpo(z &

—zo )(zz —zo )dzo /2
Rto

—fPo(zo —z )dzo (28)

IV. THE UNCLAMPED CASE

Real experimental data is usually obtained by using an
unconstrained sample, in which case the width w also
changes during the stressing of the sample. The calcula-
tions given above can be readily modified to take this
geometry into account. Under tension, it is simple to
show that Eq. (25) still holds, though now cr refers to the
familiar unclamped Poisson ratio. The bending case is
somewhat more awkward because two curvatures are in-
volved. The details are given in the Appendix, and the
result is

This induced charge depends upon the first moment of
the polarization but in a more complicated way on the
charge distribution.

lowo lowoEQ= (cr —1)fPo(zo —z )dzo — (1—o') fpo(zz —zo)(z& —zo)dzo
0 0

lpwp lpwp+ g;to+ g, dzo+ e, (zo —z )dzo + a~ —fPo(zo z )dzo —fPo(z&
—zo)(zp zo)dzo/2

Rtp Rtp

(29)

While there are now different coefficients for the polar-
ization and space-charge terms, and a different weighting
factor for the polarization, the same general pattern

I

holds: a first moment of the polarization and a second
moment of the charge density are the leading quantities.
All other terms remain unchanged.
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V. DISCUSSION AND APPLICATION

1
(d3] ) = (tensile),

alp YS
(30a)

(P, ) = R (bending) .
wplp

(30b)

We have used the notation ( ) to emphasize the fact that
the observed quantities are weighted averages of the

The chief results of this work are given in Eqs. (25) and
(27)—(29). While the derivation of Eq. (25) is straightfor-
ward, the equations for the bending case require some
care because of the coordinate distortion which takes
place. It is clear that the chief contribution in the tensile
case comes from the polarization, whereas in the bending
case both the polarization and the charge density are in-
volved. In carrying out the calculation, one must take
care to include the change of electrode area as well as the
variation of the terms in the line integral.

One possible effect that we have not taken into account
is that the charge density might give rise to an extrinsic
piezoelectric coefficient, due to the replacement of the in-
itially isotropic surroundings by anisotropic surroundings
under shear. In a nonpolar material, this could be taken
care of by an adjustment in the value of a„ though this
would not be appropriate in a case where dipolar and
charge effects were of comparable size. The other feature
that we have not specifically included is any detailed
effect of the composite structure of many plastic materi-
als. Other workers have addressed this probem' ' ' but
have been forced to introduce simple mixing relations,
with or without an arbitrary parameter describing a com-
pensation charge. We feel that the assessment of local
fields (on the scale of crystallite dimensions) is important
for establishing the strength of the polarization in the
material, but that these details are not appropriate for
evaluating the observed signals. Our procedure amounts
to taking the actual charge and polarization for a given z
coordinate, and averaging over the area of the sample.
Since the charge induced on each electrode depends on
these average values, properly weighted with respect to
the z coordinate, it seems to us that our results are suit-
able for interpreting the experimental data.

We wish to draw attention to the question of the ex-
trinsic piezoelectric coefficient. We have chosen to define
the change of polarization under strain in a very specific
way that seems to us to make good physical sense: the
number of dipoles is conserved, the molecular dipole mo-
ments are unperturbed in both magnitude and direction,
and the polarization P varies proportional to the density
of the material. All additional effects such as rotation of
the dipoles under strain, alteration of the libration ampli-
tude, ' or other secondary effects are taken into the
coefficient e, . Other choices are possible, such as con-
servation of BP /Bz or conservation of P, and the
definition of e, has to be adjusted accordingly.

The experimental results are often expressed in terms
of an apparent tensile coefficient (d» ) and an apparent
bending coefficient (p3] ), which in the present notation
are
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FIG. 3. Data of Kawai (Ref. 15}for poly(vinyl fluoride}. The
annealing temperature (Celsius} is indicated against the experi-
mental points.

internal distributions. The precise form of the averaging
was not clear in earlier work, ' but it is now explicitly
given in the equations derived in this paper.

We are now able to offer an interpretation of some of
the earlier experimental work. We first consider the data
for PVF [poly(vinyl fiuoride)] obtained by Kawai. '3 We
replot his results in Fig. 3, and we see that the (]33» ) and
(d» ) coefficients fall together as the sample is annealed.
It is unlikely that space charge and polarization anneal
out at the same rate, ' so we infer that there was never
any space charge in the sample. The same argument ap-
plies to the e, and g; terms in Eqs. (25) and (29), respec-
tively, and the almost negligible intercept supports this.
If the polarization were uniform, then the only term left
in Eq. (29) would be the term in g, . However, since the
quantity (p3] ) -200 nC/m is quite comparable to values
found for PVDF, ' it seems more realistic to suppose
that the sample was nonuniformly polarized. The value
of (d3] ) -O. l pC/N is low, and this may merely refiect
an accidental near-cancellation of o. and c. Thus, while
we are unable to determine the details of the behavior, we
are able to deduce that the response is entirely due to di-
poles in this material.

The annealing of PVDF reported by Kawai' presents
interesting features. Again, the tensile coefficient is low
compared with later work, although the bending
coefficient is comparable. While the original plots of
(p3] ) and ( d3] ) against temperature suggest that ( d3] )
begins to anneal at 50'C while the reduction in ( f33] ) is
delayed until about 75 'C, the plot of one against the oth-
er shown in Fig. 4 is more informative. At the lower
temperatures, (d3] ) anneals steadily while (133]) stays
nearly fixed, suggesting that polarization is beginning to
collapse but that the space charge which exists as a coun-
tercharge in this material' stays trapped and accounts
for the intercept on the (p3]) axis. At approximately
90'C, this charge detraps and discharges more rapidly
than the polarization, so there is a break in the plot and
the (p3]) coefficient now drops more rapidly than the
(d3, ) coefficient. The intercept which now appears on
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the (d» ) axis suggests that the polarization is nearly
uniform, leading to finite contributions to the tensile
response but only small contributions to the bending
response. Clearly, these arguments need to be supported
by comparison with results obtained by other experimen-
tal techniques.

Finally, we consider the work of Fukada et al. Their
PVDF samples were irradiated by an electron beam
which had a stopping distance of 13 pm in samples of
thickness 25 pm. Consequently, they expected to have a
thin charge layer in the middle of the sample and one half
of the sample polarized. As they point out, conduction
should force the residual charge density to conform to
the residual polarization. To a good approximation, we
can represent the sample as shown in Fig. 5, and we have
a charge per unit area o.

d =Pp. With some experimental
. scatter, these authors obtained a proportionality between
the bending and tensile piezoelectric responses:

(P3, )/(d» ) =2.7X10 N/m (experimental) . (31)

They postulated a uniform stress coefficient d3, and a
uniform stress gradient coefficient f3] (analogous to the

D=O, P=O, E=O
~yY

CJd

D Po E=0
1P

JE Yy
D P0 E=O

CZd

D =O, Po-O, E =O

FIG. 5. Electrical state of the samples used by Fukada et al.
(Ref. 7). The remaining charge is located approximately at the
middle of the sample.

d (esu)

FICx. 4. Data of Kawai (Ref. 15) for poly(vinylidene Auoride).
Annealing temperatures are given in degrees Celsius.

(P„)/(d„)= (33)

Substituting the values Y=1.6X 10 N/m and tp =25
]Mm, the right-hand side of Eq. (33) comes to 1 X 10 N/m,
and so is a factor of 2.7 too low. The original authors
reached the same result, though they used only a very
general description of the piezoelectric response. We
agree with them that it seems necessary to invoke other
terms to account for the discrepancy. Fukada et al. sug-
gested that the strain gradient terms in g; and g, were in-
volved. While it seems surprising that these terms
should account for the major part of the response, one
theoretical attack' gives a similar result, though all such
calculations must be treated with caution. The ratio
would be increased if there were a negative e; term, but
the original data (Fig. 6 of Ref. 7) show that there is no
constant offset in the (d3, ) measurements. It follows
that the experimental data remains unexplained.

In conclusion, we have shown that while the theory of
the tensile piezoelectric coefficient due to permanent di-
poles and to space charge is straightforward, the theory
of the bending coefficient contains some subtleties, and
the mechanical constraints on the sample must be ac-
counted for in some detail. We have stressed that the
definition of the extrinsic coefficient e, depends on what
basic assumption has been made with regard to the be-
havior of the polarization during distortion of the materi-
al. By analyzing examples drawn from the experimental
literature, we have shown that qualitative and sometimes
quantitative deductions can be made about the relaxation
processes taking place in poled polymer dielectrics. Fi-
nally, we caution that the strong correlations noted be-
tween the piezoelectric response and dielectric constant
are invalid when space charge is involved, while spatially
inhomogeneous dielectrics can exhibit additional
effects. '

strain gradient coefficient) over the piezoelectrically ac-
tive half of the sample in order to account for their result,
without relating these quantities directly to the polariza-
tion and the charge density. By referring to Eqs. (25),
(29), and (30), we see that the observed proportionality
will now occur if the intrinsic terms in g; and e; are unim-
portant. The material is known to have an extrinsic
strain term in e„because this is what gives rise to their
laser-induced pressure pulse (LIPP) signals. ' We expect
the dielectric constant term to be unimportant. With
these sirnplifications we obtain

1
(P3] ) —(cr —1 ) JPp(zp —z )dzp

tp

(1 cr)—
Pp(z2 —z )(z] —z )

2tp

+ f cPp(zp z )dzp/tp
(32)

(u+c) JPpdzp
1

0

and carrying out the integrations using the geometry of
Fig. 5 yields the ratio
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1 1 aeS
r D1 1 dT

r r e

r2= —f (1—aP) f "p(r')r'dr'
r r)

+ f dr[P(1 —aP)+ eS+g/R] .
r]

(A7)

1
(rD) =p,

r Bv

which integrates to give

(Al)

APPENDIX: BENDING PEIZOELECTRIC
RESPONSE.

1. Constrained sample

We first consider the clamped case, so that the width w

is held fixed. The sample is bent as shown in Fig. 2. The
Poisson equation for this geometry is

We now need to refer the integrals to the undistorted
coordinate zp. We have

dr =dzp(1 crS) .—

This can be integrated exactly, and the result involves
logarithmic functions of r which eventually must be ex-
panded. We have verified that the same final results are
obtained, to first order in (1/R), by using the approxi-
mate form

dr =dzp[1 —o (zp —z )/R ] .
rrD=r, D, + p(r')r'dr' .

r)

The equation for the displacement is

D =epe„E+P +eS +g (dS /dr ),
where

(A2)

(A3)

In particular, this yields

r2 —r 1
= tp+second-order terms .

The term in a, on the left-hand side of Eq. (A7) vanishes
to first order, leaving

e=e, +e, ,

g=g;+g,
S=(r —R )/R

We impose the short-circuit condition

f Edr =0, (A4)

Ditp(1 ,'tp/R )+—s—econd order t-erms .

The quantity of interest is the charge Q „given by

Qi =Diliw

=D, lpw(1+Si )

lpw(1+S, ) ~~ 1 1 ap
r D dl'

tp( 1 tp /R )—1 1 r r e

(A9)

and this yields

f dr = f (P+eS+g/R )
1

(AS)

Now we substitute for D from the Poisson equation, and
introduce the strain dependence of e

e„=e„p(i+a+) . (A6)

On expanding to first order in the strain, i.e., in (1/R ),
and using the binomial theorem where appropriate, we
get

(A10)

where I1 and S1 are, respectively, the length and the
strain at the bottom electrode. The quantity Q, is found
by substituting the right-hand side (rhs) of Eq. (A7). The
terms in the rhs which involve S and (1/R) are already
O(1/R) and can be replaced by the corresponding in-
tegrals over the undeformed zp variable, giving

Qi =Qis+Qip+Qi,
where

lpW z2 IpW pW z

Qiz = f (e, +e, )(zp —. z )dzp+ f (g'+g )dzp a Pp(zp z )dzp
Rtp Rtp z&

' Rtp z&

1p

+ a,f ' " dr f "p(r')r' dr',
Rtp r

l
P' r&

lpw(1+S, ) p(r')r' dr',
tp(1 —

—,'tp/R ) ~i r
(A 1 1)

lpw(1+Si )
1P t, (1 ,'t, /R )——Pp dI'

The fourth term in Q,s is handled by integrating by parts, then doing a series expansion of the logarithmic term so
obtained. The result is



39 PHENOMENOLOGICAL PIEZOELECTRICITY OF POLYMER. . . 3869

IpW p p~ Z

a, p(r)(r2 r—)[—,'r —
—,'r, +O(1/R)]dr = a, pp(zz —zp)(zp z, )dzp/2 .

Rto Rtp

The term in the polarization becomes

low(1+S, ) ~, Pp

to(l —,'to—/R) fzl (1+S)
lpw(1+S, ) f (Pp PoS—)dzo+ second-order terms

tp 1 —
—,'to/R

Ip l8 Ip LUfPo dzo+ fPo(S, —S+ ' to/R —)dzo

Ip l8 lpN
Pp dzp+ fPo[z~ z~ zp+z + 2(zp z~ )]dzo

to Rto

IoM IpWfPp dzp f Pp(zp z )dzp
tp Rto

(A12)

The term in the charge density is first integrated by parts,
giving

low(1+S, )
Q& =+, f ln(r/r2)p(r)r dr

to 1 ,'to/R——
low (1+S& ) ~2 po(zo)f dzo ln(r2/r) .
tp 1 —,'to/R i|—1+S

In order to obtain the result correct to first order in
(1/R), the leading term in the square brackets must be
replaced using the equivalent of Eq. (3) in bending
geometry:

dr =dzo(1 —o S)

(A13)
We expand the logarithm as a power series in the small
quantity (rz r) lr, w—hich leads to

low 1+S&

to 1 —,
' tp/R—

X po zo 1 +S 'r
Z j

=dzp[1 cr(z ——z )/R ],

whence

r —R =(z —z ) —o(z —z ) /2R

(A15)

r2 —r
X

1 (r, —r)'
+ 1 ~ ~

2 2 0
+second-order terms . (A16)

(A14)
I

Substituting in, we find

p
Q, = — fpp(zo)(z2 —zo)dzo — fpp(zp)(z2 —zo)[S, + ,'to/R —S—

——,'(z2 —zp)/R —cr(zp —z, )/2R ]dzo

IpM Ip l8
pp(zo )(z2 —zp )dzp — fpo(zo )(zz —zp )(z

&

—zp )(1+a')dzo .
to 2Rto

The signal obtained upon bending, b, Q „is due to the change in induced charge, and it amounts to

low
Q(= —f Po(zo —z )dzo —

—,
' fpo(zo)(z2 —zo)(z, —zo)(1+a)dzp+ f e, (zp —z )dzo

Rtp

+ f (g, +go)dzo ,a,fp
—(z—,o—z, )(z, —zo)dzo a,fPo(zo ——z~ )dzo

(A17)

(A18)

We note that the integral involving e; vanishes. This is
the final result for the constrained case.

2. Unconstrained sample

I

Fortunately, we can choose a local set of coordinates as
illustrated in Fig. 6. The (r, B,Q) set is orthogonal, and a
srna11 shift in position from any given point is associated
with a distance ds, where

When there are no sideways constraints, we have to be
more careful because of the double curvature that occurs. ds =dr +(rdB) +(r*dP) (A19)
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Here, R* is the radius of curvature of the neutral plane
measured in the transverse or w direction, and r is the
radial position of a general point measured from the same
axial position.

We will not repeat the calculation in detail for this
case, but simply indicate the changes that have to be
made. From expression (A19) we can find the metric
coefBcients for this set of coordinates, and hence write
down the proper form for the Poisson equation:

1 a (rr*D)=p .
rr* ~~

(A20)

The equation corresponding to Eq. (4) is

p=po/[( I —cr&)'( I+&)], (A21)

w; =wc(1 —a S, ) . (A22)

and Eq. (10) has to be similarly modified. In computing
the induced charge, we note that the width m& of the
lower electrode is now different from the undistorted
width:

FIG. 6. The local coordinates in the unconstrained case are
radius R measured from the center of longitudinal curvature,
angle 0 measured about an axis through this center, and angle P
measured about an axis parallel to the beam and passing
through the center of transverse curvature.

With these modifications incorporated, the final result in
the unconstrained case turns out to be Eq. (29) to first or-
der in the curvature.
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