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The influence of the shape of the reciprocal-space potential on the relative stability of long-period
superlattice (LPS) phases in binary alloys is discussed in a Gorsky-Bragg-Williams approximation.
First, for a certain class of LPS phases, the set of pair interaction parameters is reduced to a smaller
set of parameters which characterize only the essential aspects of the reciprocal-space potential.
Minimization of the free energy for different LPS phases is then used to extract some general ten-
dencies, such as the change of wave vector towards the potential minimum (with increasing temper-
ature) and the increasing stability of complex phases with deepening of the potential minimum.

I. INTRODUCTION

The past years have seen a rekindling of interest in
long-period superstructures (LPS) in binary alloys due to
the suggestion that Ising models with competing interac-
tions, such as the axial next-nearest-neighbor Ising
(ANNNI) model, could serve as useful theoretical para-
digms in elucidating the thermodynamics of these sys-
tems."? The original qualitative explanation concerning
the origin of these modulated structures was based on the
interaction between the Fermi surface and the new
Brillouin-zone boundaries resulting from the long-period
modulation—a kind of ordering analog of the Peierls in-
stability.> This explanation, although incomplete, is un-
doubtedly correct and has been placed on a more solid
footing by recent work.* What is lacking from this argu-
ment, however, is a thermodynamic treatment of the
long-range-ordered state, including the change of modu-
lation wavelength with temperature and the tendency of
many systems to lock in to commensurate phases, partic-
ularly at low temperatures. This behavior has been ob-
served in a number of systems; examples include Ti3A1,5
Ag;Mg,%7 Au,Zn,® Cu;AL% 1% and CuyPd.'"!? It is in this
regard that Ising models become useful in illuminating
the order-disorder behavior of these systems.

The ANNNI model is one model—a particularly sim-
ple one—which exhibits a rich variety of modulated
phases.13 There is, in fact, a striking resemblance be-
tween the so-called (2™1) and {(2™3) phases (and their
generalizations) predicted by the model and certain ex-
perimentally observed LPS phases in Ag;Mg and Au;Zn,
respectively.’’?> Consequently, there have been recent at-
tempts to generalize the scheme of competing interac-
tions employed in the ANNNI model to one more suit-
able for describing modulated ordered phases on close-
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packed lattices.®!>'* A phase diagram within the

Gorsky-Bragg-Williams approximation has been calculat-
ed for one such generalization.'*

The purpose of this paper is to consider further some
generalizations of the ANNNI model to the fcc lattice.
Specifically, for a certain class of modulated structures in
alloys, the effect of a large set of competing pair interac-
tions can be parametrized by a much smaller set of pa-
rameters {J,} analogous to the three parameters J,, J,,
and J, used in the ANNNI model. The effect of these
parameters on the relative phase stability will then be il-
lustrated using the Gorsky-Bragg-Williams (GBW) ap-
proach.

II. THEORY

Since most alloys mentioned above can be regarded as
LPS phases based on the L1, unit cell, only this cell will
be considered in the following. Extension to other basic
cells is straightforward.

The main point in this approach is that it is not neces-
sary to know the complete reciprocal-space potential in
order to describe the phase stability of a certain one-
dimensional long-period superlattice phase; effectively,
only the wave vectors for which the structure factor is
different from zero are needed for a full description of the
structure. This was also an assumption of the concentra-
tion wave method;!® a particular ordered phase is de-
scribed by a limited number of wave vectors. Hence, it is
important to know the set of wave vectors that describes
the complete structure.

Let the x axis coincide with the direction of modula-
tion. We shall restrict our attention to LPS phases
characterized by a one-dimensional modulation consist-
ing of regularly spaced conservative antiphase boundaries

381 ©1989 The American Physical Society



382 CEDER, DE GRAEF, DELAEY, KULIK, AND de FONTAINE 39

(APB) normal to the x axis. Furthermore, we shall
neglect the contribution to the free energy of wave vec-
tors of the form (g,0,0) since these are often very weak.
From structure-factor calculations,'® it then follows that,
apart from the superlattice wave vector (1,0,0), the only
contributing wave vectors are of the type:

(+ng,1,0) and (+ng,0,1) where n is odd , (1)

g =1/2M is the fundamental wave vector of the struc-
ture. For commensurate superlattices the average APB
period M can be written as the ratio of two integers
M =P/Q, P and Q being relative primes.!”!® The total
number of independent vectors is limited because only
vectors belonging to the first Brillouin zone should be
considered. The finite set of wave vectors in the first Bril-
louin zone can readily be deduced to be

ngZ%, i=0,1,...,(P—1)/2 for Q even,
ng=—l‘

2P’ i=1,3,5,...,P for Q odd .

According to Ref. 16 the internal energy per atom with
respect to the disordered phase can be written as

E=13 V(k)|[(k)?. 2)
k

Here I'(k) is the amplitude of a concentration wave with
wave vector k. The summation is carried out over the
forementioned vectors and the superlattice vector (1,0,0).
I'(k) are the Fourier transforms of the concentration de-
viation variables y, = (c; ) —c, where ¢, is the site concen-
tration on site / (0 or 1) and c is the bulk concentration:

F(k)=%27/,4 exp(—i2nkr;) . (3)

The total Helmholtz free energy in the Gorsky-Bragg-
Williams approximation can be written as'*

Fzgg V(k)|T(k)|?

kT X

+—N— > [c;Inc; +(1—¢;)In(1—¢;)] . 4)

i=1
Using (3) this equation can be written in terms of the con-
centration wave amplitudes I'(k); the I'(k)’s can then be
used as variables in a minimization routine to obtain the
free energy for a certain phase.

The limited number of wave vectors and the fourfold
crystal symmetry reduce the region of reciprocal space
where the potential coefficients have to be computed to a
line between (0,1,0) and (1/2,1,0) inside the first Brillouin
zone. Along this line (k,1,0) the potential is parametrized
as follows:

V(k)=Jy+23 J, cos(2mnk) . (5)

The connection between the set of parameters {J,} and
the pair interactions V' (r) is made as follows. The poten-
tial in reciprocal space V' (k) can be written

V(K)=3 V(r)exp(—i2rk-1)=3 V.o, , ©

where the function ¢ (k) is called the shell function for
the sth coordination shell. The form of these functions
has been given elsewhere.® The quantity V, is the pair in-
teraction parameter for shell s. Substituting the value
(k,1,0) for k one obtains the form given in Eq. (5) with
the J, expressed as linear combinations of the V,.!'>1°
Explicitly, for interaction parameters up to and including

the 32nd shell, J,, for n =0-3 are given by
Jo=—4V,+4V,+4V,—8V+4V,—4V,

+8V =8V 44V, —8V 3 +4Vy

+8V,y =8V —4V3g+8VyH+ -0,
J1 =V, =4V +4V,+4V =8V, +4V | —4V,

+8V 3 —8V s — 8V, —8V,;+4V,, +8V o+ - - -
Jy=Vg—4Vy+4V, +4V 3 —8V s +4V , —4V,

+8Vy =8V s +4V s —8V 3 +4V3+ - -
J3=Vyy—4V,, +4V,, +4V,—8V,, +4V ., + - -

The analysis is simplified considerably, then, since one
need only parametrize the problem using the {J,} rather
than the full set of { ¥, }. The higher-order J, terms be-
come important only for increasingly larger interaction
distances. Keeping only terms involving J,, J;, and J,,
one obtains the fcc analog of the ANNNI model but with
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FIG. 1. (a) Reciprocal-space potential V(k)/V, along

(k,1,0); in the inset the fundamental wave vectors of four
phases are indicated. (b) Stability domains of the (2), (21),
(2°1), and (2°1221) phases as a function of reduced tempera-
ture. (Jo=—10.5653,J,=0.3345,J,=1.0326, J,= —0.3345.)
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interactions retaining the full symmetry of the lattice (i.e.,
no anisotropy direction). It must be emphasized that im-
plicit in this discussion is the assumption that the pair in-
teractions {V,} are such that the extremum in V (k)
which occurs along the line from (0,1,0) to (1/2,1,0) is
truly a minimum and not just a saddle point.

As in the ANNNI model, the ratio of the different J,
parameters will determine which phases are stable at
different temperatures. In the following section results of
a GBW computation of the free energy will be presented
for different shapes of the potential function in reciprocal
space; the effect of potential depth and position of the
minimum on the relative stability of different LPS phases
will be illustrated.

III. RESULTS

The shape of the potential curve V (k) along the
(k,1,0) line strongly determines the stability domains of
the different LPS phases and also the diffuseness of the
antiphase boundaries. That this is so has already been
suggested in previous work.'>!* In this section the effect
of a change of the potential depth and position of the
minimum will be systematically analyzed, using an exam-
ple potential. The composition will always be taken as
A3B.

A. Effect of the potential minimum

In Fig. 1(a) a potential curve is shown which is con-
structed in such a way that its minimum is at the funda-
mental wave vector (¢ =1/2M) of the {(231221) phase:
g =0.2917. The total free energy (4) was then minimized
at different temperatures for this potential and the stabili-
ty domains of the (2), (2*1), (2°1), and (2°12%1)
phases are shown in Fig. 1(b). The latter phase is only
stable at higher temperatures, despite the fact that the
potential is minimal for the corresponding wave vector.
At the lowest temperatures the (2) phase is the most
stable with ¢ =0.25.

The stability of the (2) phase with respect to the more
complicated modulations can be explained from the fact
that this phase is determined by only one wave vector;
the absence of harmonics apparently influences the rela-
tive stability of the different phases. This can quite easily
be deduced from the order parameters at different tem-
peratures. The order parameters are defined as the nor-
malized concentration wave amplitudes (the normaliza-
tion factor being the concentration wave amplitude at
zero temperature). In the following a graphical method
will be employed to represent the order parameters for all
harmonics: the order parameter is plotted as a hatched
rectangle centered on the corresponding wave vector.
The width of the rectangle is proportional to the concen-
tration wave amplitude at zero temperature whereas the
height represents the value of the normalized order pa-
rameter. Therefore, the area of each rectangle is propor-
tional to I'(k); the square of the area is proportional to
the contribution of each harmonic to the internal energy.
This graphical method will now be used to illustrate the
influence of temperature on the contributions of harmon-
ics to the total stability of LPS phases.

In Fig. 2, the order parameters for the (2) and (231)
phases are drawn for three different temperatures: 7 =0,
T =0.950T,, and T =0.986T.. At T =0 [Fig. 2(a)] all
order parameters are equal to unity. Despite the fact that
the fundamental wave vector of the (2°1) structure is
closer to the potential minimum than that of the (2)
structure, the former one is less stable because of the
large energy contributions of the different harmonics; i.e.,
the total “ordering-amplitude” is distributed over the
fundamental and harmonic wave vectors. At higher tem-
peratures [Fig. 2(b)] the entropy contribution to the free
energy becomes increasingly important; the entropy will
balance the large internal energy contributions of the har-
monics which will hence decrease in amplitude. In Fig.
2(c) the situation close to the critical temperature 7, is
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FIG. 2. Order parameters for the {(2) and (2°1) phases at (a)
T =0, (b) T=0.950T,, and (c) T =0.986T. for the potential of
Fig. 1(a). See text for more explanation.
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shown: now the contributions of the different harmonics
have decreased sufficiently to render the {2°1) structure
more stable than the simpler (2) structure. The com-
plete structure is now described by one sinusoidal concen-
tration wave with fundamental wave vector g = %.

The vertical arrows in the inset of Fig. 1(a) indicate the
positions of the fundamental wave vectors for the four
computed structures in Fig. 1(b); as a function of temper-
ature g =1/2M increases from ¢=0.25 at T =0 to
g =0.2917 which corresponds to the minimum of the po-
tential curve. Hence, ¢ changes towards the potential
minimum at higher temperatures. In Fig. 3 the results of
an analogous computation are represented for a potential
for which the minimum lies at ¢ =0.218 75 (correspond-
ing to the (223233) structure). In this case ¢ decreases
with increasing temperature. The general tendency de-
rived from these computations suggests that with increas-
ing temperature the most stable structure will come
closer to the one corresponding with the minimum in the
potential curve. This change of g does not have to be
monotonous: it is possible that g first jumps over the po-
tential minimum and then approaches it from the other
side. This is illustrated in Fig. 4 where a potential is
shown, constructed only with J,, J,, and J, with
J,/J,=0.55. (Notice that in the ANNNI model this
would correspond to a region close to the multiphase
point k=0.5.) The minimum of this potential occurs at
Gmin—0.325. At low temperatures the wave vector
g =0.25; upon increasing the temperature, g first jumps
to the other side of g,,;, ({21) phase) and then returns to
the complex (221(21)?) phase with ¢ =0.3214.
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FIG. 3. (a) Reciprocal-space potential for J,= —11.5227,
J,=—0.3329, J,=1.5113, and J;=0.3329; potential minimum
at ¢ =0.21875. (b) Stability domains of the (2), (2*3), (2°3),
and (2°3223) phases.
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FIG. 4. (a) Reciprocal-space potential for J,= —4.0,
J,=1.0, and J,=0.55. (b) Stability domains of a set of comput-
ed phases. Note that the wave vector jumps from one side of
the minimum to the other.
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FIG. 5. Reciprocal-space potential with the same minimum
position as in Fig. 1(a) (indicated with a dashed line) but with a
deeper minimum. (Jo=—11.4832, J,=0.4832, J,=1.4916,
J;=—0.4832.) (b) Stability domains are wider for the more
complex phases when compared with the stability diagram in
Fig. 1(b).
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FIG. 6. Order parameters for the potential of Fig. 5(a) at
T =0.9507.. Compared with Fig. 2(b) the (231) phase is now
more stable with respect to the {2) phase.

B. Effect of potential depth

Increasing the potential depth of, e.g., the potential in
Fig. 1(a) and keeping the minimum at a constant position,
one obtains the potential in Fig. 5(a). The minimum is
15% deeper than the previous potential (which is indicat-
ed with a dashed line). From the stability diagram in Fig.
5(b) it can be seen that a lowering of the potential well in-
creases the stability domain of the more complex phases;
the (2°12%1) structure now is stable at a lower relative
temperature. This suggests that in the limit of infinite
potential depth this phase will be stable from 7'=0 on.
In Fig. 6 the order parameters are drawn for the (2) and
(231) phases at T =0.950T; this is to be compared with
Fig. 2(b). The internal energy contribution of the har-
monics of the (2°1) phase are smaller for the lowest po-
tential and this phase is also becoming more stable with
respect to the (2) phase.

IV. CONCLUSIONS

In this paper the influence of the potential shape along
the (k, 1,0) line in reciprocal space is analyzed; all minim-
izations were carried out using a Gorsky-Bragg-Williams
approach for the free-energy computations. It should be
emphasized that this approach will overestimate, in gen-

eral, the critical transformation temperature T.; howev-
er, it may give important qualitative information about
the relative stability of different phases. The following
conclusions can be made.

(1) Complex structures cannot be stable at low temper-
atures because of the contributions of the harmonic con-
centration waves.

(2) At high temperatures the structure with the wave
vector at the potential minimum is the most stable struc-
ture; it is described by a single concentration wave which
implies a sinusoidal modulation. This explains why the
original Sato and Toth model,?® derived at T =0 K, is ac-
tually valid at high temperatures only.

(3) Increasing the potential depth at the minimum posi-
tion increases the stability domain of the more complex
structures with ¢ =1/2M close to the minimum.

The harmonics of the concentration profile start disap-
pearing already at low temperatures. Therefore, it is very
likely that real alloy systems which show almost
sinusoidal modulations at high temperatures (such as
Cu,;Pd) probably have a rather deep minimum in the po-
tential curve. For Cu-Pd alloys this potential curve has
recently been derived from first-principles calculations*
and it indeed shows a rather deep minimum. For the
Ag-Mg system on the other hand, APB’s are very sharply
defined and therefore even at high temperatures the har-
monic contributions to the concentration profile will still
be substantial. An important parameter in this respect is
the ratio [V (k;,)—V(0)]/V (k;,) which characterizes
the relative depth of the potential; the smaller this pa-
rameter the more important harmonic contributions will
be at high temperatures.
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