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Fermi-Dirac statistics have been applied to semiconducting diamond layers doped with boron by
means of ion implantation. Suitable limiting equations could be derived to describe the resistance-
temperature behavior which relates to acceptor activation and also to hole creation in the valence
band by means of compensating-donor neutralization. When applying these equations to the experi-
mental data, it is found that the donor centers have a very large degeneracy weighting factor gD and
that this parameter depends on the annealing cycle used after ion implantation. This result can be
explained by assuming that the donors consist of small aggregates of vacancies which constitute
vacancy-lattice "crystallites. " In this paper, we shall call these particular vacancy aggregates,
which have a stable electronic structure, vacloids. The presence of vacloids may also be invoked to
explain some of the optical properties previously observed in diamonds.

I. INTRODUCTION

It was recently demonstrated that semiconducting lay-
ers with electrical and optical properties which correlate
with those of natural p-type diamonds (type-IIb) could be
manufactured in high-purity insulating (type-IIa) dia-
monds by means of ion implantation. ' For this process,
implantation needs to occur at a target temperature
which is low enough to severely impede the diffusional
motion of the implanted boron atoms as well as the va-
cancies and interstitials created in the collision cascades.
Subsequent annealing then enhances the probability of
boron-atom activation and interstitial-vacancy recom-
bination owing to their high density and proximity to
each other. The activation ratio R could be defined' as
the fraction of the initial (as implanted) vacancy number
density N, o which recombined with interstitials during
the annealing stage, given by

NU resR=1-
N, o

where N„„is the residual density of vacancies which did
not recombine with interstitials. R only describes the
"activation, " or rather recombination, of vacancies with
self-interstitials. However, it may be applied to the ac-
tivation of the implanted boron atoms if it is assumed
that a boron interstitial and a self-interstitial have an
equal chance to jump into a vacancy.

An expression for N„„can be derived if the probabili-
ty I' for vacancy-interstitial recombination during the an-
nealing stage is known. When implanting diamond at a
temperature where interstitials can diffuse but not the va-
cancies, a reasonable description of the process was ob-
tained by assuming that the probability for recombina-
tion is given by

N,
P =Pco

N„o
N„oexp —Pco

NU res
= for Pto(N, o/N) ~ I,

N (13toe) ' for 13co(N„OIN ) ) I .
(3)

The initial experiments, designed to test the ideas out-
lined above, were performed using a two-stage annealing
cycle. After implantation at liquid-nitrogen temperature,
the diamonds were heated directly to 500'C by dropping
them onto a preheated platform. It is believed that at
this temperature all the interstitials can diffuse but not
the vacancies. ' This was followed by a further annea1 at
1200 C in order to reduce the residual vacancies. These
implanted layers displayed impurity conduction and, un-
der suitable implantation conditions, resistance-
temperature behavior which correlated with the activa-
tion of holes from boron acceptors to the valence band at
the expected activation energy of —0.37 eV (Ref. 4). At
high temperatures, an even larger activation energy
(-0.8 eV) could be measured for the electrical conduc-
tion, and this was associated with electrons being activat-
ed to charged deep-level donors, in this way creating

where N, is the average vacancy density in the ion-
damaged width co, N is the density of atoms in a perfect
diamond crystal, and P a temperature-dependent parame-
ter. The doping process described above may require a
more elaborate probability function than that given in

Eq. (2). However, using this equation, an expression for
N„„cou1d be derived' which seems to describe the dop-
ing process, at least in principle, when annealing occurs
at a temperature where interstitial diffusion dominates,
1.e.,
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II. THEORETICAL CONSIDERATIONS

As already mentioned, the semiconducting diamond
layers obtained by boron-ion implantation show the pres-
ence of N~ boron acceptors at an activation energy of
E„=0.37 eV, which are heavily compensated by ND
deep-level donors lying at an energy E~ above the
valence band. ' At a temperature T, there will be p holes
in the valence band, and Nz and ND ionized acceptors
and donors, respectively, so that for charge neutrality

ND +p =Nq (4)

From the standard equilibrium statistics applicable to
an electron gas, expressions for Nz and ND follow as

1+g~ exp kT

ND

1+gDexp kT

where EF is the Fermi energy, k is Boltzmann's constant,
and g~ and gD are the degeneracy weighting factors for
the acceptors and donors, respectively. For the boron ac-
ceptor in diamond, the value of g~ is usually assumed to
be 2." If the energy at the top of the valence band is tak-
en as zero, the standard expression for a nondegenerate
distribution of holes in the valence band follows as

more holes in the valence band. From the magnitude of
the latter eft'ect it was evident that the acceptor compen-
sation ratio must be very large.

The presence of the deep donor centers also correlates
with increased optical absorption towards shorter wave-
lengths. ' Similar absorption features are usually present
in natural type-IIa diamonds, giving them a brownish
hue. Clark, Ditchburn, and Dyer thought that this ab-
sorption could be caused by small graphitic regions in the
diamond. Alternatively, the suggestion was made that
these small regions may not be graphitic but only contain
a high density of vacancies caused by the clustering of
these defects.

The latter idea ties in very well with the nature of the
donors expected to remain after doping diamond by
means of ion implantation. As outlined above, the mech-
anism by which doping is achieved causes the residual ra-
diation damage after annealing to be in the form of va-
cancies or more complex defects caused by their interac-
tion.

In this study, Fermi-Dirac statistics combined with the
doping theory developed previously' are applied to the
semiconducting diamond layers which were obtained by
means of ion implantation. ' More information about
the electrical and probable physical properties of the re-
sulting donor centers is obtained, as well as a deeper in-
sight into the validity of Eqs. (1)—(3).

p =N exp kT

where
3/2

2am kT
h

(7)

As usual, h is Planck's constant and m* an averaged
effective mass for the holes. Combining Eqs. (4)—(7), and
making the following substitutions,

P„=exp
E~
kr (8)

PD =exp
ED

kT

and

Z P (10)

lead to a standard cubic equation

Z + AZ —BZ —C=O,

where

A lND+gA NV(0A +gdgDPD))

8 =g„'N„NVQ„[(N~ ND ) gDN—~JD]—,

C=gw 'gDNa NvkaND

(12)

(14)

Z—
2 1/2

+ B
2A

B
2A

At low temperatures PD is very small and for gDN„QD
((N„ND the terms co—ntaining PD in Eqs. (12)—(14)
may be neglected. In this case C=0 in Eq. (15) and the
solution for the density of holes p, in the valence band
becomes

B
pi =N~

A
=g~ 'N~ —1 exp

D kT

As the temperature increases, PD and Nv also increase,
causing the coefficient C to become non-negligible. In

because ED is larger than E„(in this case FD
&E„+0.8 eV), the exponential factor PD is very small
and the terms containing it can usually be neglected.
When this is done, Eq. (11) leads to the standard expres-
sion for a compensated p-type semiconductor, which is
normally applied to type-IIb diamonds. However, for a
highly doped semiconductor (N„ large) with a very high
compensation ratio (ND also large with N~ —Nn small by
comparison) two different limiting forms of Eq. (11) be-
come evident. This may be seen by writing down the gen-
eral solution for this equation. In the temperature range
of interest, p &&N~, allowing Z to be neglected. Equa-
tion (11) then becomes quadratic with the solution ex-
pressed as
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concert, the value of B decreases, finally making the
above approximation invalid. When B becomes negligi-
ble and C dominates, the hole density p2 follows approxi-
mately as

TABLE I. Energy and ion-dose distribution used for a 100%
boron-ion implantation. The number of vacancies created per
impinging ion (0.') as predicted by TRIM86 (Ref. 9), for a displace-
ment energy of 55 eV, is also displayed.

B C
2~+

gDNA=
—,'p I +Ny

gA D

1/2

I /2
EA +ED

2k' (17)

Energy
(keV)

120
70
45

Ion dose
(cm )

2.8 X 10'
2.0X 10'
1.OX 10"

Vacancies
per ion o."

89
75
59

'Average number of vacancies per ion, a =79.

III. APPLICATION TO EXPERIMENTAL
RESULTS
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FIG. 1. Resistance-temperature curves of three diamond lay-
ers which were doped by means of ion implantation using
diff'erent boron-ion fractions. The 70%%uo and 80% curves were
obtained by a two-stage annealing process, first annealing at
500'C and then 1200'C (Ref. 1). More efficient annealing was
obtained for the 3% curve by fast and direct heating to
.—1200'C (Ref. 2).

Resistance-temperature curves which display low- and
high-temperature limiting forms commensurate with Eqs.
(16) and (17) are shown in Fig. 1. These curves were
selected from previously published results. ' According
to the implantation scheme used to obtain these data,
different ratios of boron to carbon ions were implanted to
ensure, in each case, that the same average initial density
of vacancies N, & distributed in the same manner over the
ion-damaged width co was obtained, even though the
number of boron ions implanted varied. In this way,
different numbers of boron atoms could be activated dur-
ing annealing while ending up with the same density of
unrecombined vacancies for the same annealing cycle

used. If a boron-ion dose of Scm is needed to cause
the coN, 0 vacancies, then

(18)

Nii (X)=
100m

(19)

The boron dose, S =5.8X 10' cm, was spread over
the three energies shown in Table I, which also shows the
average number of vacancies o. per ion according to
TRIM86 (Ref. 9), assuming a displacement energy of 55
eV.

Figure 1 shows the results obtained for 70% and 80%
boron-ion fractions subjected to a two-stage anneal (first
heating to 500'C and then finally annealing at 1200 C). '

and a 3 % boron-ion fraction which was directly heated
to ) 1200'C. Obviously the activation ratio R was much
larger in the latter case. At low temperatures, each curve
displays conduction at smaller activation energies. This
is probably a result of the high compensation ratio, which
could cause hopping conduction between charged and
neutral acceptors. ' As the temperature increases, a re-
gion is reached with an activation energy of 0.37 eV
which may, accordingly, be approximated by Eq. (16).
At high temperature, another inAexion point is reached
where the slope changes to a larger value of -0.8 eV. If
Eq. (17) is now valid, it would mean that ED+E„=1.6
eV, and thus ED=1.23 eV. From Eq. (15) the latter
infiexion point occurs when (B/A) =4C/3, which with
the aid of Eqs. (12)—(14), renders

—1 2
NA ED —EA

g'g 4 N N
1 p kT

(20)

Basically, this equation contains only two unknowns,
i.e., gAgD and NA/ND. A boron-activation ratio RA,
such that

N~ =8 „Nii(X), (21)

where u is the average number of vacancies created per
impinging ion. For an X% boron-ion fraction implant-
ed, (100—X)% of the vacancies was first introduced using
an equivalent carbon-ion dose, followed by X % of the
boron dose S.' Before annealing„ the average density of
implanted boron atoms would thus be Nii(X), where
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in conjunction with Eqs. (18) and (19), gives

where

=Xy,
D

(22)

RqN, O

100mND
(23)

When Eq. (22) is substituted into Eq. (20), the latter equa-
tion is determined by the unknown factors g~gD and y
(because X is known).

For the 70% and 80% curves in Fig. 1, which went
through the same annealing sequence, the unknown fac-
tors gzgD and y should be the same. Thus, applying Eq.
(20) to these curves at their inflexion temperatures (shown
by the arrows), assuming E~ =0.37 eV and ED = 1.23 eV,
renders the following values for y and g ~ gD:

and the ratio of the sheet resistance Rs(70%) for the 70%
curve to the resistance Rs (80%) for the 80% curve comes
to 10' . The corresponding number of holes p(80%) and
p(70%) can be calculated in terms of y using Eqs. (16) and
(22). Assuming that the mobilities for the holes in the
two cases, are the same, the following relationship should
be valid:

Rs(70%%uo ) p (80% ) 80y —1

Rs(80%) p (70%) 70y —1
(24)

From this equation, the magnitude of y follows as
y = 1.439 X 10, showing a remarkable correspondence
(within 1%) to the value obtained in Table II. Taking the
average of the two values, gives y = 1.444 X 10
+5X10 . Similarly, for temperatures below 215 and
above 156'C, the 3% and 70% segments with activation
energies of 0.37 eV overlap, giving a resistance ratio of
10 . Again in this case

y =1.45X10 Rs(70%%uo) p (3%) 3y' —1100.22

R&(3% ) p (70% ) 70y —1
(25)

g~g~ =3.85X10

Setting g„=2, as is normally done for diamond, still
leaves a value of 1.9 X 10 for the donor-degeneracy
weighting factor gz, which is enormous. Even in the un-
likely event that the slope at high temperatures was inac-
curately determined by an amount of 0.1 eV, a recalcula-
tion of the results using a value of 0.7 eV (for which
ED=1.03 eV) still gives a very large value for gD, i.e.,
gD=1. 16X10 .

The 3% curve (Fig. 1) was obtained using a different
annealing cycle, which obviously changed R ~, ND, and
thus the value of y. An estimate of this new value of
y =y' can be determined from Eq. (20) if it is assumed
that the donor centers active in the latter case have the
same value for gD as previously determined. The solu-
tions obtained at the infiexion temperatures are summa-
rized in Table II.

Even though the resistances shown in Fig. 1 were not
obtained using a four-point probe, and the carrier mobili-
ties are not known, it is an interesting exercise to com-
pare the parameters displayed in Table II with the
equivalent ones found using the actual resistances mea-
sured, remembering that the resistance should be inverse-
ly proportional to the number of holes in the valence
band, as described by either Eq. (16) or (17).

At a temperature of 200'C [(1000 K)/T=2. 12], the
0.37 eV sections for the 80%%uo and 70% curves overlap,

Thus, using the average value obtained for y above, one
may calculate y' which results in y'=3. 393X10
+1.9X10, compared to y'=3. 6305 X 10 ' obtained
previously (see Table II). At first glance the correspon-
dence looks fair, but Eq. (20) is very sensitive to small
changes in the parameter y. For example, accepting the
new value y =y'=3. 393X10 ', and recalculating g~ga
for the 3% curve using this equation renders
g~gD=1. 66X10, which is an order of magnitude less
than that obtained from the 70% and 80% curves (Table
II). It may be reasoned that Eq. (25) should be altered by
the ratio of the hole mobilities applicable to the 3% and
70%%uo curves, respectively. However, to remove the
discrepancy in this way would require the hole mobility
to be less for the 3% curve (by a factor of -4). Physical-
ly, this is highly unlikely in view of the better activation
achieved, which should have diminished the residual ra-
diation damage compared to that of the 70% curve. The
only alternative is to accept that ga is in fact smaller for
the 3% curve.

Further support for the latter conclusion is found when
the ratios of the resistances measured for the 0.8 eV sec-
tions (Fig. 1) are compared with the hole ratios as calcu-
lated using Eq. (17) in conjunction with Eq. (22). As a
suitable overlapping temperature at which to calculate
the hole ratios for comparison with the corresponding
resistance ratios, 360 C was selected. Using the value of
y (=1.444X10 +5X10 ) described above, together

TABLE II. The values of the parameter y and the degeneracy-weighting factor gD as determined
from the 70% and 80%%uo curves in Fig. 1. Assuming g&gD to be the same for the 3% curve, the corre-
sponding factor y' was also calculated.

Boron-ion fraction used 80% 70% 3%

InAexion temperature from Fig. 1 { C)
exp[(ED —F.„}lkr] at infiexion temperature
y [see Eq. (23}]
g&gD (as determined from 70% and 80% curves)

360
7.05 X 10

1.449 X 10
—'

215 320
7.68 X10' 2. 11X10'

1.449X 10 y'=3. 631 X 10
3 ~ 85 X 10"
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with the value of y'=3. 631X10 ' in Table II, where it
was assumed that gD is the same for each curve, the
correspondence between the resistance and hole ratios is
reasonable only when comparing the 70% and the 80%
curves, but not when comparisons are made using the 3%
curve (see columns 2 and 3 of Table III). However, when
using the average value of y = 1.444 X 10 together
with y'= 3.393 X 10 '+1.9 X 10, reasonable corres-
pondence is found when taking ratios with the 3% curve
(see columns 2 and 4 of Table III). This again indicates
that ga is the determining factor, and that this parameter
is totally different for the 3% curve.

As a first approximation, it seems reasonable to assume
that the hole mobilities are approximately the same for
the three curves, which requires gD=1.93X10" for the
70% and 80%%uo curves but a lower value gD =830 for the
3% curve. Small differences, if any, between the hole
mobilities are not unexpected for highly compensated
semiconductors. In fact it is possible to determine the
approximate magnitude of the average mobility p. By us-
ing the appropriate equation [either (16) or (17)], the
number of holes at a chosen temperature may be calculat-
ed and compared to the corresponding resistivity mea-
sured. If it is assumed that the width of the layer is
co=0.2 pm, ' the mobility comes to p=2. 5 cm V ' s

IV. DISCUSSION

The two limiting expressions in Eqs. (16) and (17) are
plausible descriptions of the resistance-temperature be-
havior shown by the segments with slopes of 0.37 and 0.8
eV, respectively (see Fig. 1). However, when applying
these expressions to the measured data, the degeneracy
weighting factor gD obtained for the donors is very large
and inconsistent, in that it seems to be dependent on the
annealing cycle employed. It is unlikely that this situa-
tion resulted from the approximations made when expres-
sions (16) and (17) were derived and equated. In fact, if
charged compensating donors are responsible for the
creation of holes in the valence band at these tempera-
tures subject to an activation energy of 0.8 eV, it can only
happen for ga large. This situation could logically relate
to that of each donor being an aggregate of many vacan-

cies, as was proposed above.
Intuitively, one may reason that small stable regions of

high vacancy density should form in a diamond when a
supersaturated "soup" of vacancies "segregates" out dur-
ing diffusion. When vacancies diffuse together, they
lower the density of the material in that region. Owing to
the metastability of diamond, a lowering in the material
density will provide a strong driving force to form graph-
ite. It is possible that once a certain critical vacancy den-
sity has been reached, the region containing these vacan-
cies will prefer to become totally graphitic. If the materi-
al density in that volume is not yet that of graphite, a fur-
ther volume expansion will be needed to effect the phase
transformation. However, the region is surrounded by a
very rigid diamond matrix which prevents this expansion
and thus supplies the necessary pressure to stabilize the
structure. In this way, the vacancy structure could be
"immobilized. *' Newly arriving vacancies can now only
add on to the surface of this region to enlarge it. The in-
terface between this vacancy-rich region and the matrix
should have a surface energy associated with it which
may finally stabilize the size to which this defective
volume can grow.

Alternatively, if the vacancies are considered as
"atoms" diffusing together to form a "vacancy-type
solid, " or vacancy-carbon-atom "superlattice, " it is con-
ceivable that this small "crystal" may contain its elec-
trons in a very narrow (because of its small size) energy
band. Effectively, this will mean that the ground state of
this donor-type defect may be considered as highly de-
generate which can, in this way, account for the large
values found for ga. It is also conceivable that the aver-
age number of vacancies which aggregate to form such a
defect will depend on the annealing cycle employed,
which explains the variation observed in gD when apply-
ing Eq. (17) directly to the different curves in Fig. 1. It is
proposed that such "vacancy-lattice" regions should be
termed "vacloids. "

To obtain an estimate of the number of vacancies h

which diffused together to form a vacloid, one may note
that four covalent bonds are broken when a vacancy is
created, which indicates that each vacancy may add eight
units to the degeneracy weighting factor gD. Using the

TABLE III. Comparison of the resistance ratios at 360'C for the different curves in Fig. 1 with the hole ratios calculated at this

temperature from Eq. (17). In column 3 the hole ratios were calculated on the assumption that the degeneracy-weighting factor gD is

the same for all three curves. Column 4 shows the ratios obtained when using the corrected but different value of ga for the 3%
curve.

Curves
compared

70% and 80%

3% and 70%%uo

3% and 80%

Resistance
ratios

Rs(70% ) = 10 =2.24
R,(80%)

R,{3%)
100.55 —3 5 5

Rs(70%%uo )

Rs(3% ) =10"=7.94
Rs( 80%

Hole ratios from Eq. (17)
assuming gD to be the same,

using y = 1.444 X 10 +5 X 10
and y'=3. 631 X 10

P(80%) 2 5+, »
P(70%)

P (70'Fo ) 0 042+0, 3

P(3%)

P ( 80%% )
1 27+p. O4

P(3%)

Hole ratios from Eq. (17)
assuming ga to be different

for the 3% curve, using y =1.444X10
and y'=3. 393X 10 '+1.9X 10

P(70%) +~ 19

P (3%)

P(80%) 6 35+2 97

P(3%)
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values obtained for g~ in the preceding paragraph and di-

viding them by 8 renders an average of h =2410 vacan-
cies per vacloid for the 70% and 80% curves, and
h'=104 vacancies for the 3% curve. It is expected that
the material density of a vacloid should be larger than
that of graphite or else relaxation to a graphitic phase
will occur. However, an order of magnitude value for the
size of a vacloid may be obtained if it is assumed that the
vacancies became stabilized to form this region at the
material density of graphite. Assuming a spherical
geometry, the diameters for the two sizes of vacloids
come to -42 A (for the 70% and 80% curves) and —15
A (for the 3% curve). Dechanneling measurements by
Derry et al. ' on diamond which had been annealed after
light ion damage, correlate with the presence of defects
having diameters in the range 10—50 A. Vandersande"
studied the thermal conductivity of electron-irradiated
diamonds and carne to the conclusion that the point de-
fects created by the electrons cluster during annealing at
1100'C to form aggregates with an average diameter of
-55 A. At low temperatures, after irradiation and be-

0
fore annealing, he observed larger aggregates (-200 A)
which could not have been formed by vacancy diffusion,
it if is assumed that vacancies only become mobile well
above SOO'C. He concluded that these large aggregates
consisted of interstitials and reasoned accordingly that
the S5 A aggregates found after annealing are the same.
In view of the doping theory developed' and the present
results derived from it, it seems reasonable to propose
that the latter aggregates were vacloids.

Pereira and Jorge' concluded from their optical stud-
ies on brown diamonds that the presence of sharp low-
energy vibronic progressions in several of the lurnines-
cence bands analyzed may be due to a nearly localized vi-
brational mode, showing a weak coupling to resonant lat-
tice phonons. Although they suggested that this mode
was probably caused by impurity atoms, they did not rule
out a softening of the force constant within a localized re-
gion as an explanation for their results. A vacloid, as
proposed here, will be a region where a localized soften-
ing of the force constant between the atoms should occur.
The correspondence between the optical absorption
displayed by "brown" diamonds and the absorption re-
sulting from the radiation damage remaining after elec-
tron irradiation or ion implantation, indicate that va-
cloids may already be present in natural diamonds.

More information about vacloids and the doping
achieved would have been possible if it was known how
ND and N„o related to each other. According to the in-
terpretation of the initial doping experiments, the density
of donor centers ND which remains after annealing is

determined by the fate of the unrecombined vacancies
of donor centers Nz which remains after annealing is
determined by the fate of the unrecombined vacancies

During the annealing cycle, at which these vacan-
cies can diffuse, some may escape from the ion-damaged
layer, while the rest are assumed to be responsible for the
formation of the above-mentioned donors. Thus, the
smaller N„„,becomes, the lower the density of the donors
XD should be. According to Eq. (3) this would require a
large X„o, co, and P, which in turn requires an optimiza-
tion of the implantation parameters and the subsequent
annealing cycle. If N& is primarily a function of N„„,
Eq. (1) implies a simple relationship between XD, the ini-
tial vacancy density N, o, and the activation ratio R. For
example, if it is assumed that all the residual vacancies
N„„aggregated to form vacloids, the average number of
vacancies (h) per vacloid will be

ures (26)
N

A combination of Eqs. (1) and (26) then gives the need-
ed relationship between ND and N, o, i.e.,

XD=h 'X„o(1—R) . (27)

Substituting this expression into Eq. (23) and using the
values h =2410 and y =1.444X10 for the 70% and
80% curves, and h'=104 and y'=3. 3393X10 ' for the
3% curve, allows some insight into the magnitudes for
the activation ratios which were obtained. For +=79
and R„=R the activation ratio for the 70% and 80%
curves is found to be R

&
=0.05 and that for the 3% curve

R2=0.96. The improvement could thus be 19 times and
not —. 7 times, as was roughly deduced before.

Using Eq. (3) together with Eqs. (1) and (18) allows the
corresponding value of 13 to be calculated when
R =R, =0.05, and it is found to be P-2 pm '. Al-
though of the correct order of magnitude, it is a bit srnall-
er than could have been expected from previous data.
Measurements of the volume expansion and saturation of
this expansion with ion dose when implanting a diamond
above room temperature led to the conclusion that f3-8
pm ' at an implantation temperature (caused by beam
heating) of about 100'C. Various reasons may be ad-
vanced for this apparent discrepancy. For example, h

may have been overestimated when assuming that each
vacancy contributes only 8 units to gD, or cx underes-
tirnated by assuming a displacement energy of 55 eV in
the TRIMs6 (Ref. 9) computer program. Furthermore, the
value of P=8 p,m

' (Ref. 3) was determined when an-
nealing occurred during the implantation process. In

TABLE IV. Donor and acceptor densities calculated for the three different boron-doped diamond
layers used in this study.

Boron-ion
fraction (%)

3
70
80

Donors ND
(cm ')

8.205 X 10'
1.004X10"
1.004 X 10'

Acceptors N&
(cm )

8.352 X 10"
1.015 X 10"
1.160X 10'

Uncompensated
acceptors

N, —N~ (cm ')

1.47 X 10"
1.10X10"
1.56 X 10'
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that case, the interstitial concentration remained low
compared to the vacancy concentration. For the situa-
tion presently considered, the annealing stage initiates
when the vacancies and interstitials have nearly equal
concentrations. It is then possible that more interstitials
can escape, which would mean a lower effective P. Alter-
natively, it could also mean that the probability function
[Eq. (2)] needs to be adjusted which, in turn, will change
Eq. (3). Even so, when applying the latter equation to the
results obtained for rapid high-temperature annealing
(3% curve), the value of P corresponding to
R =Rz=0.96 comes to P=355 pm ', indicating a very
marked increase in interstitial-vacancy recombination.

If it is further assumed that the quantities R, =0.05
and R2=0.96 are indeed valid, then the average values
for y and y' derived above can be used to obtain a mea-
sure of the number of acceptors Nz and donors ND for
each of the curves displayed in Fig. 1. Using again
to=0. 2 pm in conjunction with Eqs. (19)—(21) renders
the values for N~, ND, and N~ —ND shown in Table IV.
These numbers compare favorably to the values of
N~ —ND which were determined for natural semicon-
ducting diamonds. This is a gratifying result, especially
in view of the approximations which have been made.

V. CONCLUSION

When applying Fermi-Dirac statistics to the electrical
properties of diamond layers doped by boron-ion implan-
tation, the compensating donors are found to have very
large values for the degeneracy weighting factor gD as-
cribed to them. It is also found that the value of gD de-
pends on the annealing cycle employed after ion implan-
tation. These results may be explained by assuming that
these donor centers consist of small aggregates of vacan-
cies, called vacloids, which can be considered as
vacancy-lattice-type "crystallites. " Using this assump-
tion, reasonable estimates could also be made for the ac-
tivation ratios and densities of acceptors and donors
achieved when doping diamond layers by means of ion
implantation.
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