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Finite-size effects in two-dimensional continuum percolation
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We have investigated the finite-size effects of anisotropic continuum percolation in two dimen-
sions. The elements that percolate are widthless sticks. We have developed a simple theory to ex-

plain the dependence of longitudinal and transverse critical lengths on anisotropy and the finite
number of sticks in the sample. By comparing the theory to simulations, we find good agreement.

I. INTRODUCTION II. SIMULATIONS

In recent years there has been interest in the electrical
properties of composite materials consisting of conduct-
ing fibers or sticks, embedded in an insulating polymer
matrix. Typically, the composites are prepared by mix-
ing the fibers and polymer in a liquid state and letting the
result cool while being poured. This leads to an angular
distribution of the fibers in the solid state, about the flow
direction. Experimentally, such composites are found to
have a threshold dependence of the electrical conductivi-
ty on the fiber length. ' Various models have been tried to
explain such behavior. These include the effective medi-
um theory. This has not been very successful as there is
a large difference between the conductivities of the fibers
and the insulating polymer.

More promising are percolation simulations. The first
was done by Pike and Seager. They considered widthless
(one-dimensional) sticks of constant length, in a two-
dimensional medium, isotropic on a macroscopic scale.
Their work was considerably extended by Balberg and
Binenbaum to the case of anisotropic systems where, as
mentioned above, the fibers have an average preferred
orientation. They also considered various distributions of
stick length. From their simulations, the critical stick
lengths for percolation along the average stick orienta-
tion and transverse to this were found as functions of an-
isotropy (defined in Sec. II) and the number of sticks in
the sample. However, due to computing constraints, they
only considered a few random configurations of sticks.
They showed that in the limit of an infinite ensemble of
sticks, the longitudinal and transverse percolation thresh-
olds converge to a common function. In this paper we
wish to extend their work by considering more thorough-
ly the finite-size effects on the percolation thresholds of
ensembles with small numbers of sticks. In Ref. 5 and
other papers ' on continuum percolation this appears to
have been a neglected point of interest. We will derive a
simple model for the dependences of the thresholds on
anisotropy and numbers of sticks and compare this to the
results of extensive simulations.

Our paper is arranged as follows. Section II describes
the simulations. Section III contains the model of the
percolation thresholds. Section IV compares the model
with the simulations. Finally, we give a conclusion in
Sec. V.

In this section we outline a method of performing
simulations to find the critical lengths. (This is based on
the procedure by Balberg and Binenbaum. ) First, we
define the basic terms. Then, we give the procedure for
obtaining the critical lengths.

To start, let us define some quantities. Consider a set
of N widthless sticks. We place the centers of the sticks
uniformly in the unit square, [0,1]X[0,1]. The sticks
have some angular probability distribution f (9) about
the y axis, where 0 is the angle between a stick and the y
direction. The angular distributions we consider all have
the feature that

N

L; I cosO, I

cV,
(2a)

and

(2b)

These are the average longitudinal and transverse stick
components with respect to the y direction, respectively.
From these we define the macroscopic anisotropy as

Pt

P,
(2c)

For an isotropic sample, we have P =1. The larger P is,
the more oriented the sticks are along the y direction. A
given sample of sticks is considered to be percolating
along the y direction if a continuous path can be traced
between intersecting sticks from y =0 to y =1. Similarly
for the x direction. The longitudinal critical length, L,i

is the lowest average length that gives the onset of y per-
colation. The transverse critical length, L„ is likewise
defined for x percolation.

We wish to investigate the dependences of I „and L„

f (&)=f (
—&), &&(0,~/2)

and that the average angle is E [0]=0. The sticks'
lengths are given by another probability distribution,
g(L). We assume 0 and L to be independent. Given a
random configuration of N sticks with lengths and angles
[(L;,0; ) I, the following quantities may be defined:
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on the anisotropy, P, and on the number of sticks in the
system, N. First, consider systems with a given N. To
vary the anisotropy, we change the variance off (0). For
example, for a normal distribution of angles f is N(0, 0d ),
where 0d is the standard deviation. By progressively re-
ducing 0d from some initial value, we can corresponding-
ly increase the anisotropy. Consider now that we have
selected a variance of f (0). We start with some small
average value of L, E [L]. With the parameters of f and
g chosen, 20 random configurations of sticks are generat-
ed, each with N sticks. We look for any percolation.
Twenty random configurations at each value of anisotro-
py and E [L] were made to increase the statistical relia-
bility of finding accurate critical lengths. This is an im-
provement over Balberg and Binenbaum who presented
critical lengths found from three to five configurations
per value of anisotropy. Note that for sufficiently small
E [L], few of the sticks will overlap. Systematically,
E[L] is incremented until percolation is found. Often
this is longitudinal percolation. This should be expected,
as it is easier to percolate along a preferred direction than
normal to it. (Occasionally, at low anisotropy, P ~ 1.4,
we may first encounter transverse percolation. ) By fur-
ther incrementing E [L], we eventually come upon trans-
verse percolation. During the varying of E [L] we record
P for each random configuration. It is found that to good
approximation, P is independent of E[L]. Our results
and a comparison with the theory of Sec. III will be
presented in Sec. IV.
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FIG. 1. A stick AC of length L is at an angle 0' with respect
to the y axis, where 0' is defined in Eq. (3). Sticks at an angle
—0', with centers inside the parallelogram HFIG will intersect
AC.

III. THEORY

Here we present a simple model that attempts to ex-
plain the dependence of the longitudinal and transverse
critical lengths on the anisotropy and the number of
sticks in the ensemble. As before, let there be N sticks in
the ensemble, with an angular distribution f (0) and a
stick length distribution g (L). Our first approximation is
to replace all the stick lengths L, with the average length
Lo—= g, L, /X. Next, let us replace the angular distribu-
tion f (0) by one in which half the sticks are oriented at
0' and the other half at —0' with respect to the y axis,
where 0' is defined by

( sin0~ ) Pr

cos0i ) P,

For definitiveness, we now look at longitudinal percola-
tion. That is, we wish to find a set of overlapping sticks
that goes from y =0 to y =1. Consider a stick at an
angle 0', labeled AC in Fig. 1, where B is the center of
the stick. The only sticks which can intersect AC with
nonzero probability are oriented at —O'. Furthermore,
the centers of these sticks must lie in the parallelogram
shown in Fig. 1. (Balberg et at. define this as the exclud-
ed area of the two sticks. ) Suppose, in tracing out a pos-
sible cluster, that we started at y =0 and that AC is the
highest stick in the cluster, thus far. Let AC be the jth
stick in the cluster. To make progress towards y =1 we
ask for the probability that a stick has a center in hHFG
and is oriented at —O'. Remembering that the sticks are
distributed uniformly, the probability is given by the

product of the probability of one stick intersecting AC
with a higher y center times the number of such sticks.
Thus we have

P —= A (AHFG)
i N i

j/2 =

where A is the area. [Since P &2 is a probability, if the
right-hand side of Eq. (4) is greater than 1, we set
P &2=1.] Furthermore, if such an intersection occurs we
see that the average y coordinate of the intersecting stick
will be at a distance PI /3 higher than the y coordinate of
AC's center. Thus, the average number of intersections
for y percolation is

pl
cluster

n/2

j=1
(6)

where from Eq. (4), P is defined as

a, a ~1
j —

1 a. m

and

The probability of finding one percolating cluster in the y
direction is given by the product of n terms of the form of
Eq. (4), which we can write as
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a, =P,P,

Note that in Eq. (6) we have assumed that n is even. If n

is odd, Eq. (6) is multiplied by P„&&+,.
Equation (6) gives the probability of forming one clus-

ter. However, it may be possible for several clusters to
form, especially for longitudinal percolation in highly an-
isotropic samples. As mentioned above, the y coordinate
of the intersecting stick in the cluster is at an average dis-
tance of PI/3 higher. For the x coordinate of the inter-
secting stick, averaging over AHFG gives 0. This comes
from

P,
v, —=&n

3

Since we are bounded by 0 and 1 in the x direction, let

vp, vp 1

(10)E

1, vp)1

Then v is the fractional transverse distance covered when
we are looking at longitudinal percolation. Therefore,
the total probability for a longitudinal percolating cluster
is given by dividing Eq. (6) by U to give

1P tot P cluster
v

To find transverse percolation, we merely interchange PI
and P, in the above equations. Given values for ( ~

sinO~ )
and ( ~

cosO~ ), we can use the above equations to find the
critical lengths and the anisotropy.

One further matter needs to be addressed. Given a
(

~
cosO~ ), which is defined by a particular f (8) and a

choice of variance of f, there corresponds a unique
(

~
sinO~ ). But for the set of arbitrary probability distri-

butions f, subject to the constraints of Eq. (1), there will
be no unique relation between (

~
cosO~ ) and (

~
sinO~ ).

How can we find an anisotropy that is in some sense in-
dependent of a particular f? To answer this, note that we
have the following inequalities:

0 ((cosO)), ([sinO() & I (12a)

and

1(d(2, (12b)

where

d —= (
~ cosO~ )+(

~
sinO~ ), (12c)

P(x & x~ ) =P(x )xs ) = —,
'

where P is the probability function. But, we see that the
average x coordinate of the interesting stick is P, /3, as-
suming that x )xz, and it is —P, /3 if x (xz. Hence,
for longitudinal percolation we have a random walk in
the x direction, of average step size P, /3 and equal prob-
ability of stepping positive or negative. From Eq. (5), it
takes n steps to percolate in the y direction. During these
steps, the cluster will span an approximate distance in
the x direction of

and the triangle inequality was used to get the lower
bound of Eq. (12b). We do the following. A value of d is
chosen to satisfy Eq. (12b). We then vary (

~
sinO~ ) in

steps, starting from d/2 and decrementing to 0 (though
not going all the way). Then (

~
cosO~ ) is given by

d —(
~

sinO~ ), d —(
~

sinO~ ) (1
Oi) ) I (13)

With these values, we can find the anisotropy and use Eq.
(11) to obtain the critical lengths. We choose 1.5, the
midpoint of Eq. (12b), as the most reasonable value of d.
It should be realized that the procedure of using Eqs.
(12c) and (13) is an approximation. In general, a given f
will not yield (

~
cosO~ ) and (

~
sinO~ ) satisfying the linear

relationship of Eq. (12c) over a range of values of the
variance.

A program was written to find the lowest lengths that
set P„,) in Eq. (11) as a function of anisotropy, for both
longitudinal and transverse percolation. These are the
critical lengths. The number of sticks in the sample was
a parameter in this calculation.

IV. RESULTS

Here we present and compare the results of Sec. II and
III. First, let us consider the predictions of the model of
the preceding section. The values of critical lengths from
Eq. (11) are displayed in Figs. 2 and 3 for 100 and 500
sticks, respectively. In each figure, the solid line is for
longitudinal percolation while the dashed line is for
transverse percolation. Following Balberg and Binen-
baum, we have normalized the critical lengths in units of
the average interstick separation, r, where

1r:—
&nN

(14)

From the simulations we have found the critical
lengths L„,L„as functions of anisotropy, for ensembles
of 100 and 500 sticks. These are displayed in Figs. 2 and
3, respectively. For Fig. 2, we have found the critical
lengths for three types of ensembles: Those with normal
distributions for f and g; with a uniform f and a normal
g; and with constant absolute angle and a 6 function for g
(i.e. , all the sticks in an ensemble are the same length).
This last pair of distributions corresponds to the
simplified choices of distributions made in Sec. III. Simi-
lar remarks hold for Fig. 3. The solid objects in the
figures are the critical longitudinal lengths. The hollow
objects are the critical transverse lengths.

We see from Figs. 2 and 3 that for both the simulations
and the theory the transverse critical lengths lie distinctly
above the longitudinal critical lengths. Considering sepa-
rately the transverse and longitudinal results, we see that
the simulations with constant length and absolute angle
tend to yield larger critical lengths than the other simula-
tions. This is expected, as a distribution of lengths will
cause the sticks with lengths greater than the mean
length to contribute preferentially to the percolation.
Hence percolation will start sooner than if all the lengths
in a sample are constant. Nonetheless, the simulation re-
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FIG. 2. The critical lengths as a function of anisotropy for
samples of 100 sticks. The anisotropy is defined in Eq. (2). The
solid and open symbols are from simulations for longitudinal
and transverse percolation, respectively. The lines are from Eq.
(11j.

FICx. 3. The critical lengths as a function of anisotropy for
samples of 500 sticks. The anisotropy is defined in Eq. (2). The
solid and open symbols are from simulations for longitudinal
and transverse percolation, respectively. The lines are from Eq.
(11).

suits for transverse percolation are clustered close
enough, and likewise for longitudinal percolation, that we
find a universal behavior of the critical lengths on the an-
isotropy that is largely independent of the choice of dis-
tributions. Comparing the theory with the simulations,
we see good agreement for both 100 and 500 sticks. The
largest disagreement is for the longitudinal percolation of
100 sticks, with the theory lying above the simulations.
But even here, the theoretical curve exhibits the same
trends as the simulations and the disagreement is only
semiquantitati ve.

Note that in comparing Figs. 2 and 3, the longitudinal
and transverse results tend to converge together as we go
from 100 sticks to 500 sticks. This is in accordance with
Balberg and Binenbaum who showed by a topological
argument that in the limit of infinite N, the two types of
critical lengths coincide.

Let us add a comment about the midrange choice of
d = l. 5 made in Eqs. (12) and (13) in the preceding sec-
tion. This was done to give a definite prescription for the
anisotropy. If we set d equal to the lower limit, 1, we get
curves that start at a critical length around 5 at isotropy,
and remain above the displayed curves as we increase the
anisotropy. This was found for both longitudinal and

transverse percolation. The agreement between the (un-
displayed) d= 1 curves and the simulations is not as good
as for the d = 1.5 curves shown here in Figs. 2 and 3. Al-
ternatively, choosing d equal to the upper limit of 2 gives
curves that start and remain slightly lower than the
displayed curves. Hence, we believe our choice of d =1.5
to be a reasonable one.

Therefore, we suggest that our theory of Sec. III gives
good predictions of critical length. The theory also has
the computational advantage of being much faster to run.
The curves in Figs. 2 and 3 took less than a minute of
CPU (central-processing-unit) time each to find, on a
VAX 11/785. By contrast, the CPU time for the simula-
tions is measured in hours. This is especially true for the
simulations of 500 sticks. The CPU time required scales
roughly as the square of the number of sticks, as the most
intensive task is to find the possible intersections amongst
X sticks.

V. CONCLUSION

We have investigated the finite-size efI'ects of anisotrop-
ic continuum percolation in two dimensions. The ele-
ments that percolate are widthless sticks. We have
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developed a simple theory to explain the dependence of
longitudinal and transverse critical lengths on anisotropy
and the finite number of sticks in the sample. By com-
paring the theory to simulations, we find good agreement.
It also aAords significant computational advantages over
performing simulations. We believe that our theory is
the first to explain the finite-size simulation results for an-
isotropic continuum percolation in two dimensions.

Thus, we suggest that the theory overs a useful comple-
ment to the running of simulations.
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