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A prescription is developed which incorporates the tight-binding total energy for silicon into the
molecular-dynamics scheme of dynamical simulated annealing first proposed by Car and Parrinello
[Phys. Rev. Lett. 55, 2471 (1985)]. The total-energy expression of Tomanek and Schluter [Phys.
Rev. Lett. 56, 1055 (1986); Phys. Rev. B 36, 1208 (1987)] with appropriate cutoff functions to permit
molecular-dynamics simulations is used to calculate the forces on the ions and the electronic de-

grees of freedom. A self-contained description of the total energy expression and the simulation
method is presented. The scheme permits eScient quenching to zero-temperature and finite-
temperature simulations of silicon clusters and surfaces. This method can perform realistic simula-
tions on large systems of the order of hundreds of atoms with time requirements of the order of tens
of Cray XMP/24 central-processing-unit hours. The prescription is tested and benchmarked on
ground-state geometries of the Si3 cluster and the reconstruction of the Si(100) surface.

I. INTRODUCTION

The heart of a molecular-dynamics simulation is the
potential from which the forces on the atoms or mole-
cules are calculated. Traditionally, simple two-body po-
tentials such as the Lennard-Jones potential have been
used to perform molecular-dynamics simulations. Unfor-
tunately it is not possible to get a stable silicon diamond
structure from a two-body potential with a single
minimum. As an improvement, computer simulations
have been performed on silicon using sums of two-body
and three-body potentials. ' Recently, Stillinger and
Weber have proposed a three-body potential for solid
and liquid silicon which has been constructed to give a
stable bulk silicon diamond structure and to produce
reasonable agreement with the experimental liquid struc-
ture. This model potential was designed to study the
solid-liquid transition in bulk silicon, where the local
atomic structure is always very close to being tetrahedral
and is not suitable for structures with geometries far from
tetrahedral symmetry such as clusters and surfaces. As
an example, when applied to the Si3 cluster it predicts a
ground-state geometry with a 60' bond angle and a meta-
stable state with a tetrahedral angle, in contradiction
with more accurate theoretical treatments, ' which pre-
dict an angle of around 80 .

In a quantum-mechanical treatment using the Born-
Oppenheimer approximation, the ground-state energy of
a system of silicon atoms depends on the positions of the
ions and the quantum states of the electrons and cannot
be simply broken into two-body and three-body pieces for
any general configuration of the ions. Recently Car and
Parrinello have introduced an efBcient method to per-
form molecular dynamics where the forces on the ions

are calculated directly from the total energy of the ionic
and electronic system without needing a parametrized
few-body interatomic potential. For the electronic con-
tribution to the total energy, the method actually solves
the Schrodinger equation via the local-density-functional
approximation with a plane-wave basis set. However, a
full-Aedged local-density approach increases the compu-
tational burden so much that simulations of the order of
a few hundred atoms are not possible at present using
state-of-the-art supercomputers.

In this paper we follow Car and Parrinello's scheme,
but instead of the local-density-functional approach we
use a parametrized tight-binding total-energy expression
for silicon. We use the total-energy expression due to
Tomanek and Schluter which we have modified ap-
propriately by smooth cutoff functions to permit
molecular-dynamics simulations. This expression per-
mits large deviations of the atoms from bulk equilibrium
bond lengths and contains a Hubbard-like term for
charging effects. This energy expression and the similar
total energy used by Alerhand and Mele, which also con-
tains the Hubbard term, are both derived from the origi-
nal parametrization scheme of Chadi. ' This tight-
binding Hamiltonian is much simpler and computational-
ly faster to solve than the more accurate density-
functional approximation, and for the structural proper-
ties we are interested in, has been shown to give results
almost as good as the density-functional approach for sil-
icon clusters. As a comparison of time scales involved,
we estimate that our code with tight binding runs about a
factor of 20 faster than the corresponding density-
functional version. We feel that this scheme is a satisfac-
tory compromise between computational speed and accu-
racy for present-day simulations of semiconductors. We
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show that zero- and finite-temperature simulations for
several hundred silicon atoms can be performed in times
of the order of tens of Cray XMP/24 central-processing-
unit (CPU) hours.

In this paper we give a detailed description of the
method of incorporating semiempirical tight binding into
the scheme of molecular dynamics, including all the
relevant parameters and results of the benchmark tests.
It should be pointed out that the method is suitable for
both zero-temperature and finite-temperature simulations
of bulk silicon as well as clusters and surfaces. We apply
the method to ground-state structural properties of the
Si3 cluster and the Si(100) surface to demonstrate the
feasibility and accuracy of the method and to obtain
benchmark results. The material in this paper is ar-
ranged in the following order: In Sec. II the total-energy
expression for silicon clusters is outlined, with technical
details left for the Appendix. This total-energy expres-
sion is applied to the ground state of the Si3 cluster and it
is shown that, unlike the Stillinger-Weber potential,
which predicts a 60' angle, the bond angle is predicted to
be 82. The shape of the total-energy curve of Si3 versus
bond angle is also shown to be in good agreement with
Raghavachari's results. Section III contains a detailed
description of the total-energy expression for the Si(100)
slab used in our surface simulations. The slab consists of
128 silicon atoms arranged in four layers with 64 "hydro-
gen" atoms tied to the bottom layer to satisfy the unsa-
turated bonds. Section IV contains a description of the
molecular-dynamics method proposed by Car and Par-
rinello. Technical details about the choice of the "ficti-
tious" mass of the electrons, algorithms to integrate the
equations of motion, and methods to satisfy the orthonor-
mality constraints of the electronic wave functions are
outlined. The aspects which give this procedure speed
advantage are also pointed out. The results of the zero-
temperature simulations of the Si(100) slab are given in
Sec. V, ~here various reconstructions of the surface with
different arrangements of tilted and asymmetric dimers
are treated. The magnitude of the tilting and charging of
the atoms in the dimers is similar to the results obtained
by Alerhand and Mele and Chadi. " Finally, Sec. VI
gives the results of our benchmark tests. We find that the
average time taken for a single time step of the simulation
of 128 silicon atoms with 64 fixed hydrogen atoms is
about 4 CPU seconds of a Cray XMP/24. This implies
that zero- and finite-temperature simulations of systems
involving hundreds of atoms can be performed in time
scales of the order of tens of hours on state-of-the-art
supercomputers.

E' '=E +E —E +E (2)

where

and

E =2+ (4;~H~V;) NEs;, —

l —1

E, = g & E„(IR(—R(I),
1=2 l'=1

'2
nb nb

+4~ N +03
N (N

N
E„=U g (q( —

q( )
/=1

(3)

(6)

E is the tight-binding band-structure energy con-
structed from Chadi's' parametrized nearest-neighbor
tight-binding scheme. The matrix elements (P& ~H ~P~ )
for orbitals on different atoms l and l' a distance
R =

~R&
—R& ~

apart are assumed to decay with a factor

f,(R)RO/R; RO=2. 35 A is the nearest-neighbor dis-

tance in diamond-structure silicon, and f, is a smooth
cutoff function introduced to allow molecular-dynamics
simulations:

binding method the 2N independent wave functions are
expanded in terms of a basis [P~ J consisting of four or-
bitals s, p„, p~, and p, located on each of' the N atoms;
here, l runs over the N atoms and o. runs over the four or-
bitals s, p, p, and p, :

N 4
4',.(r)= g g c/ P& (r), i=1,2, . . . , 2N . (1)

i=la=1

Thus there are a total number of 2N X4N =8N electron-
ic coordinates [c/~ ) for an N-atom problem. These num-

bers give 32, 72, and 131072 electronic degrees of free-
dom for a 2-, 3-, and 128-atom system, respectively. The
full problem involves 3N+8N ionic and electronic de-
grees of freedom.

The total energy of the ionic and electronic system
E' '[[R&{,[c/ J] is a function of the ionic coordinates

[R&] and the electronic coordinates [c/ ). This energy is

constructed by using the total-energy expression of
Tomanek and Schliiter, which we have modified for
molecular dynamics by including appropriate cutoff func-
tions. This expression is described in detail in the Appen-
dix. Here we give a brief description of the various terms
of the total energy:

II. TOTAL ENERGY FOR SILICON CLUSTERS f (R)= — 1 —tanh
1

C

Consider N silicon atoms with coordinates [R&],
l = 1,2, . . . , N, giving 3N degrees of freedom for the
atomic coordinates. There are four valence electrons per
atom, making it a 4N electron problem. Therefore there
are 4N occupied single-particle states. Our problem is
nonmagnetic, and thus of these states are spin up and half
are spin down, and the total number of independent
states [4,. j, i = 1,2, . . . , 2N, is equal to 2N. In the tight-

Here, Rb is the "bond length" and 5 is the scale on
which the cutoff function decays. Since Chadi's' scheme
is a nearest-neighbor fitting scheme, Rb should have a
value which lies between the nearest-neighbor (Ro) and
the second-nearest-neighbor distance (1.63RD) in dia-
mond silicon and 6 should be small enough so that f, (R )

is negligibly sma11 when R becomes equal to the second-
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nearest distance. For molecular dynamics, on the other
hand, we want 6 to be reasonably large, otherwise a
sharp cutoff will introduce large forces. We get good re-
sults by choosing Rb=1.4R0 and 6=0.1 A. E2 is the
repulsive energy needed to neutralize the effect of double
counting of the Coulomb interactions in the band-
structure term E, and also contains the contribution
from the exchange correlation energies and the ion-ion
interaction. Es; is the energy of an isolated silicon atom
given by 2(E, +E~ ), where E, —= (P&, lH i/I, ) and
E = ( P&, , lHl Pl„,). The function E„appearing in E2
1S

E„(R)=-Es", (R)f,(R)—Es; (R),

2N 4

qI=2+ g (c/ ), q(=40.
i =1 a=i

(l0)

where Esj is the total and Egj is the band-structure ener-

gy of diatomic silicon. For Es' we use the total energy of
the diatomic molecule as calculated by Raghavachari
the full expression for this energy is given in the Appen-
dix. f, causes this term to acquire a smooth cutoff; no-

tice that the interatomic matrix elements in Es; also con-

tain this cutoff function. This term permits the atoms to
move arbitrarily far from each other and is suitable for
molecular-dynamics simulations. In the original scheme
introduced by Chadi' and in Alerhand and Mele's
scheme, the corresponding term in the total energy is a
parametrization obtained by an expansion around the
equilibrium positions of the ions in a perfect crystal, and
large excursions from equilibrium bond lengths are not
permitted. The third term E3 is needed so that the sys-

tem will not always favor metallic close-packed coordina-
tion. nb is the number of bonds,

N I —1

~b= g & f, (IRI —R&I),
1=21'=1

and the parameters P„Pz, and P3 are chosen to have the
values 0.225, 1.945, and —1.03 eV, respectively; these pa-
rameters were chosen by Tomanek and Schluter to
reproduce the absolute cohesive energies of both diamond
and bcc silicon. Note that with this choice, the term E3
vanishes for diatomic silicon. The last term E& prevents
the system from having large charge transfer among the
atoms and vanishes for neutral systems. Here,

Tomanek and Schluter have used this total-energy ex-
pression to calculate cohesive energies and equilibrium

geometries of isolated silicon clusters by performing a
global search for the minimum of (2). They treat clusters
of up to a size of 14 atoms and compare the results of this
tight-binding calculation with the results of a local-
density-functional formalism; they find that the results of
the tight-binding calculations are surprisingly similar to
the local-density-functional results. Tomanek and
Schliiter's total-energy expression does not contain a
cutoff function; instead, the number of bonds and the
nearest neighbors for bonding are judged on a case-by-
case basis for each cluster. The introduction of f, in (2)
automates this process and makes this total-energy func-
tion suitable for molecular dynamics.

Recently careful calculations of the ground-state ener-

gy of the Si3 cluster have appeared in the literature; '

therefore, in order to test the total-energy expression (2)
further we have calculated the ground-state energy sur-
face of Si3 using this expression. The results of our calcu-
lations are compared with the results. of a fourth-order
Hartree-Fock method (including electron correlation
effects via the Mdller-Plesset perturbation theory) ob-
tained by Raghavaehari in Fig. 1. The solid lines are our
results, while the dashed line shows Raghavachari's cal-
culation. The three atoms of the cluster lie on the ver-
tices of an isosceles triangle characterized by an angle 0
and length y shown in the inset in Fig. 1. For a given
value of 0 and y, E"' is minimized with respect to the
electronic degrees of freedom to obtain the total energy
of Si3. Each point on the plots in the figure is obtained by
fixing the angle 0 and varying the bond length y to obtain
the minimum of E' '. The effect of changing Rb and 6 in

1.4
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0.6
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0.2

This term is identical to the charging term of Alerhand
and Mele. U is chosen to be around 1 eV. In agreement
with Alerhand and Mele, and Tomanek and Schluter,
the results of our calculations are not very sensitive to
this choice.

Note that the expression for E"' is constructed in such
a way that for diatomic silicon (N =2 and nb = 1 ) we get
the exact total energy by definition, i.e., E"'=Es' . Also

'2

note that if one follows the scheme of minimizing E"'
with respect to the electronic coordinates Ic/ I via a ma-
trix diagonalization, then the presence of the last term,
E4, makes the problem nonlinear and thus requires an
iterative self-consistent diagonalization.

0.0

-0.2
40 60

Total Energy of the Si&Cluster
I I I I

80 100 120 140 160 180

g (Degrees)

FIG. 1. Ground-state total-energy surface of the Si3 cluster
obtained by using the total-energy expression (2). The solid
lines are our results and the dashed line shows Raghavachari's
calculation. The three atoms of the cluster lie at the vertices of
an isosceles triangle as shown in the inset. Each point on the
solid curves represents the minimum tota1 energy obtained by
Axing 0 and varying y. 6 and Rb are the width and bond length
of the cutoff function (7), respectively.
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TABLE I. Ground-state bond length y and angle 8 for the
Si3 cluster (see inset in Fig. 1 for definitions of y and 0).

Raghavachari'
Jones
Present work

Ground-state y
(A)

2.165
2.230
2.264

Ground-state 0
(deg}

77.8
85
82

'Reference 6.
"Reference 5.

the cutoff function f, are also shown in the figure.
Changing 6 from 0.1 to 0.001 A does not cause a big
change in the total-energy curve, whereas the efFect of
changing Rb from 1.4Rp to 2.0Rp is quite Pronounced.
The sharp slope discontinuity in our results for 0 greater
than about 95 occurs roughly where the long leg
(2y sin8/2) of the isosceles triangle exceeds the cutoff
distance Rb, but these tend to occur well away from the

0
ground-state geometry (8=82' and @=2.264 A). Our
calculation with Rb =2.0Rp shows good agreement with
Raghavachari's results. From the figure we see that our
results come closer to Raghavachari's over a wider range
of angles as Rb is made larger; however, as mentioned
above, Rb is restricted to remain smaller than the
second-nearest-neighbor distance (1.63RO) in diamond sil-
icon because of the nearest-neighbor fitting scheme impli-
cit in the total-energy expression. This suggests that a
second-nearest-neighbor fitting scheme (where the restric-
tion on Rb is less severe) would do a much better job at
reproducing the total-energy surfaces of clusters over
longer bond lengths. In this light, we are currently work-
ing on nonorthogonal full-range tight-binding parame-
trization schemes. In all the calculations in the rest of
this paper we have used a value of Rb=1.4Rp and

06=0. 1 A. The calculations of Jones are based on local-
density formalism and are qualitatively similar to the re-
sults of Raghavachari. The main features of these calcu-
lations along with our results for the Si3 cluster are sum-
marized in Table I, which shows that all these calcula-
tions are essentially in good agreement among each other.
Figure 1 is drawn with the zero of the energy scale set at
the minimum of the total-energy curve. In absolute
terms using (2) we get E"'=—7. 165 eV at 8=82, which
gives a cohesive energy of 2.39 eV per atom, in good
agreement with the tight-binding and local-density-
functional calculations of Tomanek and Schluter.

III. TOTAL ENERGY FOR THE Si(100) SLAB

In order to simulate the Si(100) surface we take a slab
of four layers of silicon atoms with N/4 atoms per layer.
The top layer, in the positive z direction, forms a surface
for which we wish to study possible reconstructions.
Periodic boundary conditions are applied in the plane of
the surface to simulate a surface extending to infinity in
the x and y directions. The two unsaturated bonds per
atom on the bottom layer, in the negative z direction, are
quenched by tying two hydrogen-like atoms (i.e. s orbit-
als) with coordinates Rlq+Ro&2/3x —Rov'1/3z to each

E"'=E +E —E +E (12)

where

2N+NH l2
s 2 g (qI III+ ) NEs; NE„, — —(13)

N l —1

E = g g E„( l R, —Ri l )+ g ( U, X, + U,X,'), (14)
l=2 l'=1

2
nb fib

+0z
N

+A (15)

and

N

E4= U g (qi —
qi ) + UH g (qP —

qi H)
l=1 l=1

The various terms in (12) contributed by the silicon
atoms have been described in the preceding section; here

silicon atom I on the bottom layer, where R' is the equi-
librium position of the Ith silicon atom in diamond sil-
icon. Thus the total number of hydrogen atoms NH at-
tached to the bottom layer equals N/2. These "hydro-
gen" atoms are meant to mimic silicon atoms in the fifth
layer and their parameters in the total-energy expression
for the slab are chosen to simulate silicon atoms, as ex-
plained below.

In our simulations the ionic coordinates of the N sil-
icon atoms in the top four layers are allowed to take part
in the reconstruction, but the ionic coordinates IR& I,
l =1,2, . . . , NH, of the hydrogen atoms in the fifth layer
are kept fixed. Thus the number of ionic degrees of free-
dom in the problem remain equal to 3N; on the other
hand, the electronic degrees of freedom are increased
over the N-atom silicon problem. Each silicon and hy-
drogen atom contributes four and one electrons, respec-
tively, giving a total of 4N+NH electrons. Of the total
4N+NH occupied single-particle states half are spin up
and half are spin down, giving us 2N+NH/2 indepen-
dent states I 4; I. These states are expanded in terms of a
basis set I/I, P& I consisting of (4N+NH) elements,
where P& is a silicon orbital introduced in the preceding
section and P~ is a "hydrogen" s orbital located on the
hydrogen atom with coordinates Rl .

N 4 NH

4, (r)= g g ci P, (r)+ g ci 'P( (r),
1=1 a=1

i =1,2, . . . , 2N+NH /2 .

Thus for our (100) surface problem with NI4 silicon
atoms in each of the first four layers and NH =N/2 hy-
drogen atom in the fifth layer, the total number of elec-
tronic degrees of freedom, I c&', cP'I, is equal to
(2N+ NH /2) X (4N+ NH ) = 162(N/4) .

For the total energy E"' of this slab, which is a func-
tion of the silicon ionic coordinates {R&J and the elec-
tronic coordinates Ic&',cP'I, we modify expression (2) for
silicon clusters to include the contribution of the hydro-
gen atoms:
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l Rl(bottom) ~

(17)1
Ro

for the Ith hydrogen atom which is tied to the single sil-
icon atom Rl[b,«, ] in the fourth layer. Because we do
not expect the number of hydrogen-silicon bonds to
change, there is no contribution to the third term E3
from the hydrogen layer; the number of bonds nb is given
by (9). Finally, in the fourth term E~ we use UH = U; the
charges on the silicon and hydrogen atoms qI and ql are
given by

2N+ÃH /2 4

ql =2 g g (ct ), ql =4.0
a=1

ql 2
2N+NH /2

( Hi)2 qOH —
1 0 (19)

IV. MOLECULAR DYNAMICS FOR THE IONIC
AND ELECTRONIC COORDINATES

Now that the total-energy expression has been deter-
mined the next step is to simulate the dynamics of the sil-

we give a brief description of the additional terms due to
the hydrogen atoms. For these slab calculations we want
the "hydrogen atoms" to behave like silicon atoms; thus,
the tight-binding hydrogen-silicon matrix element param-
eters used in this paper are different from the parameters
derived by Allan and Mele, ' who treat true hydrogen on
silicon surfaces. The hydrogen-silicon equilibrium bond
length is also different and is set equal to the silicon-
silicon bond length. In the band-structure term E the
tight-binding matrix element parameters for the
hydrogen-silicon interaction are chosen to be
E, = —0. 117 eV, V„=—2.45 eV, and V, =3.68 eV.
These parameters were chosen to (a) minimize charge
transfer from the bottom silicon layer to the "hydro-
gens, " (b) maintain the Mulliken p-charge on the fourth-
layer silicons at the bulk silicon value, and (c) keep the
third- to fourth-layer Mulliken ss and pp overlap popula-
tions at the bulk nearest-neighbor values. The matrix ele-
ments (P, .~H~P, . ) decay with a factor f, (R)RO/R,
where R = ~Ri —Rl.

~
is the interatomic distance, and f,

is the cutoff function (7). A hydrogen atom is allowed to
interact with only the single silicon atom in the fourth
layer to which it is attached, and the rest of the silicon-
hydrogen matrix elements are set equal to zero; also the
interatomic hydrogen-hydrogen matrix elements are as-
sumed to be zero. EH=E, is the ener'gy of an isolated
hydrogen atom.

Since we do not expect the silicon atoms of the fourth
layer to deviate far from the fifth layer of the hydrogen
atoms, we follow the scheme proposed by Chadi' (in
which large excursions from equilibrium bond lengths are
not permitted) for the contribution of the hydrogen
atoms to the second term E2 in (12). For U& and U2 we
use the values —16.31 and 49.26 eV, respectively, were
are the values used by Alerhand and Mele for silicon
atoms. XI is the fractional change in the hydrogen-
silicon bond length from its equilibrium bulk value Ro,

icon atoms both at zero and at finite temperatures. For
ground-state properties we need to minimize the total en-
ergy (12) with respect to the ionic and the electronic
coordinates. For finite temperatures the electrons can
still be kept in their ground state by invoking the Born-
Oppenheimer theorem. This means that at all times, for
a given instantaneous position of the ions, the total-
energy expression should be kept at a minimum with
respect to the electronic coordinates, subject to the ortho-
normality constraints of the wave functions (this minimi-
zation is referred to in the literature as quenching the
electrons to the Born-Oppenheimer surface). In this pa-
per we use the method proposed by Car and Parrinello"
to achieve this aim. In this procedure the trajectories of
both the ionic and the electronic coordinates are predict-
ed via molecular dynamics, with the forces on the elec-
trons being calculated from a "fictitious Lagrangian. "

In order to reduce the number of indices in the
mathematics which follows, we combine the coe%cients
of expansions of the occupied wave function i [Eq. (11)]
into a single vector of dimensionality NT —=4N+NH with
elements c', whose first 4' elements are defined by
c4[I,~+ =cI and the last NH elements are defined by
c4&+I =c& '. In the method of Car and Parrinello these
electronic degrees of freedom [c' I are treated as "posi-
tion" variables of classical particles of fictitious mass p.
The dynamics of the silicon ions with mass M and these
fictitious "electrons" is governed by the classical La-
grangian I.,
I.= —,tiM g (c '

) + ,'M g R,—E'"[[R, I—, [c' j ],
i, m

(20)

and the (NT12)(NT/2+1)/2 number of constraining
equations imposed by the orthonormality of the occupied
states,

NT

g c' c' —5;, =0.
m=1

(21)

PC m
Bc

(23)

Here, i and j run over the occupied states 1,2, . . . , NT/2.
The matrix A,-. is a symmetric NT/2XNT/2 matrix
whose elements are the Lagrange multipliers introduced
to satisfy the orthonormality constraints of the electronic
coordinates given by (21). Since A," is symmetric, there
are (NTI2)(NT/2+1)/2 independent Lagrange multi-
pliers, and there are an equal number of independent con-
straining equations (21}. The unknowns in this problem
are the ionic coordinates [ Rl ], the electronic coordinates
[c ' ], and the Lagrange multipliers [A;, I . Note that the
number of unknowns is exactly equal to the number of

There are 3N equations of motion for the 3N silicon ionic
coordinates,

BE'"[[R,], [c' I ]
MRI =—

I

and for the (NT) 12 electronic coordinates there are an
equal number of equations,
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equations given by (21)—(23) used to determine these un-
knowns. The Lagrange multipliers are easily determined
by diff'erentiating (21) twice with respect to time, giving

l JP~ m&m (24)

where

NH

E = U X [qi' —(qi')'1+ U & [(qP)' —(qi'")'] . (26)

E2 and E3 have been defined in the preceding section,
and g;"E; is the sum of the lowest NT/2 (occupied) ei-

We now outline our method to simulate the dynamics
of the ions. For a given position of the ions, the electrons
are quenched to the Born-Oppenheimer surface by a self-
consistent diagonalization of an NT XNT Hamiltonian
matrix as explained shortly. This accomplishes a minimi-
zation of E"'[tR&I, Ic/ [] with respect to the electronic
coordinates Ic/ I for a fixed ionic configuration [R&I;
i.e., it corresponds to having the electronic degrees of
freedom at the bottom of the potential well
E"'[{R& I, t c/ I ] with zero fictitious kinetic energy

—,'p(c '
) . Now during the molecular-dynamics step,

not only are the positions of the ions updated after a time
b t by integrating equation (22) but the "positions" of the
electronic coordinates are also updated after this time
step by integrating (23) and using (24). For a small
enough value of p, the electronic coordinates will remain
arbitrarily close to the true Born-Oppenheimer
minimum, provided the integrating algorithm is used
properly with a small enough At. Operationally we set
the velocity terms in (24) to zero for reasons given below.
This inclusion of the electronic degrees of freedom in the
molecular-dynamics step is the important innovation of
Car and Parrinello, and we will refer to this as the "ficti-
tious Lagrangian" method. The advantage of this pro-
cedure is that for a judicious choice of the fictitious elec-
tronic mass p the prediction of the electronic coordinates
via Eqs. (23) and (24) keeps the electrons sufficiently close
to the Born-Oppenheimer surface for the next NB„„
number of steps, so that the need for a time-costly Born-
Oppenheimer quench is obviated during these steps. In
our calculations we use NB„„=100. Another speed ad-
vantage of this scheme is that the "fictitious Lagrangian"
method operates only on the coordinates belonging to the
occupied subspace of the electronic eigenvectors; the vec-
tors of the unoccupied subspace do not enter.

As mentioned above, to quench the electrons to the
Born-Oppenheimer surface we minimize the total energy
(12) with respect to the electronic coordinates via self-
consistent matrix diagonalization. We employ the Broy-
den' mixing scheme to handle the self-consistent itera-
tions. It can be shown by using the method of Lagrange
multipliers that the minimum of E"' for a fixed ionic
configuration IR& J and subject to the constraints (21) is
given by

OCC

E~ „=2g c,; NEs; NHEH +E2 Ei —EU, —(25}— —

R, (t„+,) =R,(t„)+htR, (t„)
+ b, t'[4R(r„)—R(t„,)]/6+O(ht"),

btR&(t„+i) =R&(t„+,) R&(t„)—
+br'[2R(r„+, )+R(t„)]/6+O(hr4) .

(28)

(29)

To make the procedure efficient the accelerations should
be stored in memory since they are needed more than
once in the integration scheme. As far as the memory re-
quirement of this algorithm is concerned, at first sight it
appears as if one requires a storage space for 7X3N real
numbers; actually the required storage space is 4X3N.
To calculate the positions at time t„+&

we need stored po-
sitions and velocities at time t„. The new positions at
t„+, can be stored in the space used by the velocities at t„
since the latter are no longer needed. Next, to calculate
the velocities at t„+, we need stored positions at times t„
and t„+&. These new velocities can be stored in the space
used by the positions at t„which are not needed again.
Thus, by swapping the storage space for velocities and
positions the memory requirement can be made more
efFicient. A similar situation holds for the accelerations.

The "fictitious Lagrangian" procedure involves updat-
ing the trajectories of the electronic coordinates c (t„)
along with the ions during NB„„ times steps after each
quench to the Born-Oppenheimer surface (when the ki-
netic energy associated with the electronic degrees of
freedom is set equal to zero). The forces (23) on the elec-
tronic coordinates at time t„depend on the Lagrange
multipliers (24). Since the electrons are kept near the
Born-Oppenheimer surface during the NB„„steps, their
kinetic energy is always very small and the term in Eq.
(24}, that depends on the electronic velocities, is always
negligibly small; hence, we set this term equal to zero.
This simplifies the integration of the equations of motion;
otherwise velocities at time t„would be needed to calcu-
late positions at time t„. Since any algorithm to integrate
the equations of motion (23) is approximate, the electron-
ic trajectories will systematically drift away from the con-
straints (21) as the simulation progresses in time, even

genvalues c.; of a self-consistent NT XNT effective Hamil-
tonian H,z with matrix elements

(m ~H&~n ) =(m ~M~n )+2U~ ~(q~ ~

—
q~ ~)5 „. (27)

Here, q~ ~=q, , q~ ~=q, , U~ ~=U, and /=I(m/4)+1
for 1 ~m ~4N; I(x) is defined as the largest integer
smaller than x. For 4N+ 1 ~ m ~ 4N+NH we have

corrects for the double counting of the charging term
which arises from the sum over the eigenvalues in (25);
the charges in EU are evaluated by using the NT/2 eigen-
vectors of H,z corresponding to these occupied eigenval-
ues.

To update the ionic trajectories R&(t„) at the nth
molecular-dynamics time step t„=n 6T we use
Beeman's' algorithm to integrate the ionic equations of
motion (22):
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though the forces of constraints are explicitly accounted
for in the equations of motion. This results in poor ener-

gy conservation. To overcome this problem, we explicitly
perform a Gram-Schmidt orthogonalization of the elec-
tronic degrees of freedom after each update of the elec-
tronic coordinates. Since Gram-Schmidt changes the
coordinates from the ones calculated by the integration of
the equations of motion, the "electronic" velocities at
time t„are not appropriate to predict the "electronic"
coordinates at time t„+,. Thus the Beeman' algorithm
is not suitable and instead we use Verlet's' procedure to
integrate (23),

c' (t„+,)=2c' (t„) c' (—t„,)+At c ' (t„)+O(bt").

(30)

—,'M gR, +E"'[IR,I, Ic' I],
I

(31)

should be a constant of motion for a fixed-energy simula-
tion. Strictly speaking, adiabatic dynamics is obtained
only in the limit of an infinitesimally small p. Unfor-
tunately a very small electronic mass requires a small
time step At with a corresponding increase in the total
number of time steps in the simulation. Thus in practice
a compromise is reached by choosing p larger enough so
that the ionic energy (31) is conserved to within some
predetermined tolerance. The values of these parameters

This coupling of the forces of constraints and the Gram-
Schmidt procedure actually produces smooth trajectorie.
Other orthogonalization schemes such as "shake"' or
Lowdin' are possible. The precise set of vectors ob-
tained via Gram-Schmidt depends upon the order of
orthogonalizaton; we orthogonalize in the order of lowest
energy first. This might be expected to put noise into the
trajectories of the electronic degrees of freedom. Lowdin
and "shake" are expected to give smoother trajectories.
For example, the Lowdin scheme finds the set of orthogo-
nal vectors closest in a least-square sense to the input vec-
tors, i.e., those produced by the Verlet step. The Lowdin
first-order scheme takes 1.5 times longer than the Gram-
Schmidt step. Second-order Lowdin is overkill. Opera-
tionally we find identical trajectories whether we use

. Gram-Schmidt or Lowdin over the 100 time steps
(Nn„„=100) in between the quenches to the Born-
Oppenheimer surface. We also employed the Payne-
Joannopoulos' scheme instead of (30) in order to deter-
mine whether larger time steps could be used. For the
tight-binding systems, no advantage was gained over the
Verlet integrator.

A few words are in order concerning the fictitious mass

p of the "electrons. " The value of this mass is entirely
arbitrary as long as the electrons are in their ground state
with zero kinetic energy. The simulation of the ions is
physical only if there is negligible exchange of energy be-
tween the ionic and the electronic system and the kinetic
energy of the electrons remains approximately zero; i.e.,
we want the electrons to remain near their ground state
at all times and follow the ionic motion adiabatically. In
order to ensure adiabatic dynamics, the total energy of
the ions,

chosen for the simulations in this paper are given in the
next section.

It should be pointed out that the method presented in
this section can be used for both seeking the zero-
temperature ground state and for finite-temperature
simulations of the atoms. A number of methods are
available for simulating systems at finite temperatures via
molecular dynamics which can be readily applied to the
scheme outlined here. These methods are based on the
fact that for a system of X classical particles at a temper-
ature T the canonical average of the total kinetic energy
equals 3%k&T/2, where kz is the Boltzmann constant.
In the simplest of these methods most commonly used,
the velocities of all the classical ions are scaled periodi-
cally to give a total kinetic energy equal to 3Nkz T!2cor-
responding to a given fixed temperature T. Thus energy
is either pumped into or extracted from the system to
simulate a heat bath at temperature T. The Beeman' al-
gorithm is particularly suitable for velocity rescaling.

V. RESULTS OF Si(100) SLAB CALCULATIONS

The aim of this paper is to develop a method based on
tight-binding molecular dynamics which can be used to
study silicon clusters and surfaces, both at zero and at
finite temperatures. We now illustrate how our algorithm
can be used in a "simulated quenching" mode to find
metastable ionic coordinates for a series of candidate
ground states for the Si(100) surface. Although the
ground state of Si(100) has been studied before by tight
binding '" we treat this surface here for the following
reasons. (i) To study the feasibility of this method and
perform benchmarks to determine its advantages over
other methods; the results of these benchmarks are
presented in the next section. (ii) To test the accuracy of
this method; towards this aim we use Alerhand and
Mele's total-energy expression in our method and com-
pare the results with those of Ref. 9. (iii) To obtain the
ground-state properties predicted by the total-energy ex-
pression (12), which is more suitable for molecular dy-
namics than the energy expression of Ref. 9.

A truncated 1 X 1 Si(100) surface contains many unsa-
turated bonds and the system tends to minimize its ener-
gy by reconstructing its surface. Theoretical "' ' and ex-
perimental evidence shows that this reconstruction
causes dimers to appear on the surface; i.e., surface atoms
move toward each other to form pairs. Furthermore,
these dimeps are tilted and asymmetric with respect to
terminated bulk. The tilting is accomplished by a charge
transfer from one of the atoms of the dimer to the other,
which makes it necessary to introduce the charging term
E4 in the total-energy expression (12) and turns the prob-
lem into a self-consistent one. To add to the richness of
this problem, the dimers can arrange themselves in vari-
ous patterns on the surface with difFerent supercells and
thus many reconstructions of the surface are possi-
ble. "' In this paper we study a few important recon-
structions for the Si(100) surface, namely the (2X1),
(4X1), c(4X2), and the p(2X2) reconstructions belong-
ing to the "2X 1" family and the c(2 X 2) reconstruction
belonging to the "c(2X2)"family. The notation of Ref.
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Si (100) (2 x 1)

FIG. 2. Dimers on the surface of the supercell used in our
(2 X 1) Si(100) ("2X 1" family) simulations. Each arrow
represents a dimer with the tip indicating the up atom.

Si (100) C(4 x 2)

FIG. 4. Dimers on the surface of the supercell used in our
c(4X 2) Si(100) ("2X 1" family) simulations. Each arrow
represents a dirner with the tip indicating the up atom.

&k 3k ik

23 has been used to catagorize, the various reconstruc-
tions. The arrangement of the dimers in these recon-
structions are shown in Figs. 2 —6; each arrow in the
figures represents a single dimer with the tip of the arrow
indicating the up atom.

Our system consists of 128 silicon atoms and 64 hydro-

gen atoms. Figures 2—6 qualitatively show the actual
number and arrangement of atoms for the surface of the
supercell used in our slab calculations. Keeping in mind
that periodic boundary conditions are applied in the
plane of the surface, these figures can be used to deter-
mine the number and position of k points in the irreduc-
ible Brillouin zone of the primitive lattice of the respec-
tive reconstructed surface. With a choice of the fictitious
electronic mass p = ( 15.04) X (actual electronic mass),
XB„„=100 and the molecular-dynamics time step
b, t =10 ' s, the total energy of the ions (31) is conserved
to within a tolerance of one part in 10 over the course of
at least 3000 updates. The simulation was performed in

the following manner. To start a run for a given symme-

try, the atoms on the surface were arranged as symmetric

Ak Jk Ak lk

3k ak Jk
&k &k

Si (100) (4 x 1)

FIG. 3. Dimers on the surface of the supercell used jn our
(4 X 1) Si(100) ("2X 1" family) simulations. Each arrow
represents a dimer with the tip indicating the up atom.

Si (100) P(2 x 2)

FIG. 5. Dimers on the surface of the supercell used in our

p (2 X 2) Si(100) ("2X 1" family) simulations. Each arrow
represents a dimer with the tip indicating the up atom.
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of the dimer is defined as

5q =(q& —
q& )/2, (32)

Si (100) C(2 x 2)

FIG. 6. Dimers on the surface of the supercell used in our
c(2 X 2) Si(100) ["c(2X 2)" family] simulations. Each arrow

represents a dimer with the tip indicating the up atom.

TABLE II. 2X1 Si(100) reconstruction using Alerhand and
Mele's Hamiltonian. Note that since the Hubbard-like on-site
charging term as defined in Ref. 9 differs from the correspond-
ing term in our paper by a factor of two; 2 U = 1.9 eV in this
table corresponds to U& =1.9 eV as defined by Alerhand and
Mele.

Alerhand and Mele, ' U=O. O eV
Present work, U=0.0 eV
Alerhand and Mele, ' 2U=1.9 eV
Present work, 2U=2. 0 eV

'Reference 9.

5z (A)

0.59
0.59
0.58
0.58

0.39
0.39
0.23
0.16

dimers with the given symmetry and an arbitrarily
chosen uniform tilting for all the dimers. As the simulat-
ed quench proceeded in time the kinetic energy of the
ions was periodically and carefully quenched to keep the
system from overheating and jumping into another meta-
stable well with a different symmetry. The electrons were
quenched to the Born-Oppenhimer surface after every
100 steps, i.e., XB„„=100. A typical run to reach an en-
ergy minimum required approximately 4000 molecular-
dynamics time steps. We consider the system to be
sufficiently close to an energy minimum if its temperature
does not increase by more 0.5 K in 400 molecular-
dynamics time steps; with this criteria our total energies
per atom are reliable to +10 meV.

To test our procedure we first use Alerhand and
Mele's total-energy expression instead of the total energy
(12) and apply it to the Si(100) 2X1 reconstruction. A
comparison with their results is given in Table II, which
shows that the two sets of results are in good agreement.
Slight differences are due to the fact that we use the
tight-binding matrix-element parameters of Ref. 10 in-
stead of Ref. 9. The surface dimer tilt in this paper is
denoted by 6z and charge transfer 6q between the atoms

where qI and qI. are the charges on the two atoms l and l'
of the dimer. Finally we use the total-energy expression
(12) of Tomanek and Schliiter modified for molecular dy-
namics by the appropriate cutoff functions described in
Secs. II and III. These results are summarized in Table
III for the case where the on-site charging parameter U is
set equal to 0 and in Table IV for the case U = 1.0 eV. In
both cases, the p(2X2) structure had the lowest energy
and is presumed to be the ground state. In these tables,
AE' for a given reconstruction X is defined as the relative
surface energy per unit surface atom with respect to the
p(2X2) ground state reconstruction G, i.e. ,

E"'(X) E"'(G—)

N~
(33)

where N~ is the number of surface atoms (Ns =32 in our
calculations). The tables show that the c(2X2), c(4X2),
and p(2X2) reconstructions are almost degenerate, both
for U=O and 1.0 eV. These results are similar to pub-
lished results of the Si(100) surface using tight binding.

VI. BENCHMARKS AND CONCLUSIONS

The computer code was run on a Cray XMP/24. To
increase the performance of the simulation we use the
standard techniques of molecular dynamics to optimize
speed, such as constructing neighbor (Verlet) lists of
atoms which are updated infrequently. Because
nearest-neighbor tight binding implies a finite range of in-
teraction between atoms, the use of Verlet lists turns
many of the (M XM)-order matrix multiplications (e.g. ,

the product of the Hamiltonian and coefficient matrices)
from order M to order M processes. As a function of
system size NT, our programs scale as XT . The code is

written in FORTRAN and the do loops are constructed
with an eye towards easy vectorization. Cray subroutines
for finding matrix eigenvalues and eigenvectors are used
and most of the code has been written so that it function-
ally looks like the inner product of large vectors. Cray
routines are used for dot products. The speed advantage
of vectorizing alone was benchmarked to be around a fac-
tor of three.

Our system consisting of 128 silicon atoms and 64 hy-
drogen atoms needs about 2.6 Cray megawords of
memory. The effective Hamiltonian matrix (27) has the
dimensionality of 576X576; one quench to the Born-
Oppenheimer surface involves iterated (self-consistent) di-
agonalization of this matrix. Our benchmarks show that
a single time step without quenching to the Born-
Oppenheimer surface takes about 3.5 CPU seconds and a
full quench to the Born surface takes around 23 s per
self-consistent iteration of the matrix diagonalization.
We find that typically the self-consistent diagonalization
requires only about two iterations, but occasionally it
may require five or even as high as ten iterations of this
time-costly step; this happens when the energy band gap
between the occupied and unoccupied states of the Ham-
iltonian H, fr, Eq. (27), becomes very small, i.e., the system
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TABLE III. Si(100) reconstructions using the total-energy expression (12) with the Hubbard-like
on-site charging parameter U=0.O eV. For the symmetries and families of reconstructions the nomen-
clature of Ref. 23 is used. NT is the total number of silicon and "hydrogen" atoms in the slab.

Symmetry

(2X1)
(4X1)
c(2X2)
c(4X2)
p(2X2)

Family

cc2 X 1&t

"2X1"
"c(2X2)"
"2X1"
cc2 X 1&~

E tot /N
(eV/atom)

—4.825 21
—4.833 51
—4.851 30
—4.854 23
—4.855 23

AE'
(meV/surf. atom)

180.13
130.32
23.59

5.99
0.00

6z
(A)

0.66
0.15
0.43
0.47
0.47

0.35
0.14
0.34
0.36
0.36

approaches semimetallic behavior. Recalling that
XB„„=100,this translates into about a 4-s typical time
step and a 4.6—5.8-s average time step when the band gap
is small. We estimate that the number of time steps re-
quired for a realistic simulation at finite temperatures is
around 10000, which translates into 10—16 Cray
XMP/24 CPU hours if the algorithm presented in this
paper is used.

The benchmark figures mentioned above show that the
time advantage gained by using this method over the
straightforward molecular-dynamics approach (in which
the electrons are quenched to the Born surface at each
time step via a self-consistent matrix diagonalization) is
typically a factor of 12 and sometimes as high as a factor
of 40. As mentioned before, one reason for the efficiency
of the "fictitious Lagrangian" scheme is that it operates
only upon the coordinates belonging to the occupied elec-
tronic states. However, the advantage is smaller for tight
binding, where the number of occupied states X„,is half
the number of elements in the basis set Xb„;„ than in
methods based on plane waves where N„, «Nb„;, . Our
algorithm achieves its main speed advantage by perform-
ing the most time-costly step of matrix diagonalization
infrequently. A potential drawback of this method could
be that one is restricted to use a comparatively small time
steps At of the simulation because the adiabatic dynamics
imposed by the "fictitious Lagrangian" method restricts
the "electronic" mass p to be small. However, our tests
show that for our total-energy expression, even if we
quench to the Born-Oppenheimer surface at every time
step, At cannot be increased by more than a factor of 1.7
over the one we are using in this paper (10 ' s), if good
energy conservation is required. By carefully adjusting

the fictitious electronic mass p, the tolerance for energy
conservation, and NB„„, one can increase At to
1.7 X 10 ' s even within our scheme; we, however,
remain on the conservative side and use 10 ' s. Stich
has recently developed an energy-minimization scheme
based on conjugate gradient methods, which is more
efficient than large matrix diagonalization. The expecta-
tion was that one could use straightforward molecular
dynamics by quenching to the Born surface at each time
step and by-pass the "fictitious Lagrangian" procedure.
Unfortunately, quenching the electrons to the ground
state at each time step yields trajectories for the ions
which diverge from the real trajectories because of a sys-
tematic addition of small errors generated by the finite
precision of the minimization scheme. In the method of
molecular dynamics with the "fictitious Lagrangian"
step, the electrons respond to Newtonian equations, and,
because of inertial overshoot effects, the errors cancel in-
stead of adding systematically. Thus another major ad-
vantage of this approach is that the ionic trajectories are
more reliable. One might also consider quenching to the
Born-Oppenheimer surface by the conjugate gradient
procedure instead of the self-consistent diagonalization
every iV&„„steps. We have used a steepest-descent algo-
rithm in this manner and found it to be of marginal im-
provement over diagonalization, the reason being that the
Born-Oppenheimer quench occurs sufficiently infrequent-
ly that the overall speed of the simulation is not very sen-
sitive to the particular minimization scheme used.

In conclusion, we have successfully incorporated the
tight-binding total-energy expression of Tomanek and
Schluter into the scheme of molecular dynamics with
simulated annealing first proposed by Car and Parrinel-

TABLE IV. Si(100) reconstructions using the total-energy expression (12) with the Hubbard-like on-
site charging parameter U=1.0 eV. For the symmetries and families of reconstructions the nomencla-
ture of Ref. 23 is used. NT is the total number of silicon and "hydrogen" atoms in the slab.

Symmetry

(2 X 1)
(4X 1)
c(2X2)
c(4X2)
p(2X2)

Family

cc2 X
cc2 X 1&s

"c(2X2)"
"2X1"
cc2 X 1&o

E to't /N
(eV/atom)

—4.811 73
—4.831 32
—4.843 31
—4.844 50
—4.845 31

AE'
(meV/surf. atom)

201.47
83.88
11.98
4.87
0.00

5z
(A)

0.69
0.11
0.42
0.47
0.48

0.17
0.04
0.13
0.15
0.15
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lo. The scheme, permits efficient zero-temperature and
finite-temperatures simulations of silicon clusters and sur-
faces. We have demonstrated that this method can han-
dle large systems of the order of hundreds of atoms and
the time required for realistic simulations is of the order
of tens of Cray XMP/24 CPU hours.

APPENDIX: TOTAL ENERGY
FOR SILICON CLUSTERS

This Appendix contains a detailed description of
Tomanek and Schluter's expression for the parametrized
tight-binding total energy of silicon clusters. The expres-
sion has been modified to permit molecular-dynamics
simulations by introducing appropriate smooth cutoff
functions. The total-energy expression (2) has already
been introduced in Sec. II of this paper; here we treat the
various terms involved in detail.

1. The band structure term E

The band structure term, Eq. (3), is
OCC 2N

EBs+~E'„=g (q, IHIP', . ) =2 g (e, IHIP', )

2N
=2 y y y c/. c/ &1'a'IHIla&,

i =1 l', a' l, a
(A 1)

where (Pi IHI PI ) = (1'a' H I la) and Es; is the energy
of an isolated silicon atom given by 2(E, +E ), where
E, —= (P„IHIP„) and E—:(PI„,IHIP'», ). This term
can be rewritten as

ACKNOWLEDGMENTS

We thank P. B. Allen and M. A. Schluter for helpful
discussions. This work was supported in part by the
Division of Material Science, Office of Basic Energy Sci-
ences, U.S. Department of Energy under Contract No.
DE-AC02-76CH00016. One of us (F.S.K.) also gratefully
acknowledges support through a grant from Cray
Research, Inc. and the Ohio Supercomputer Center for
the allocation of computing resources. The work of
J.Q.B. was supported in part by the U.S. Office of Naval
Research.

Ro
&lctlHll'ct' & =f ( IRi RI I)Ei,r zIR,, —Ril'

(A4)

where Ro is the nearest-neighbor distance in diamond-
structure Si, Ro=v'3/4X5. 4307 A. f, is the cutoff
function de6ned as

R —Rb
f, (R)=— 1 —tanh

2
(A5)

Rl&y Rly

IR., —R, I

Rl z
—Rlz

IR, , —R& I

(A6)

The EI I. 's can be determined as follows (here
a=1,2, 3, 4is equivalent to s, x,y, z, respectively):

E

Is, I'x Elx, l's IVsp(T

Els, l'y Ely, I's m Vspo ~

E„l, = —El, l., =nV,
p

E, I, =EI I „=1m(V —V „),
»

»,.„™( V»~ —V»~, ,

EI„ i. =1 V +(1—1 )V

EI I y
=m V» + ( 1 —m ) Vp

E„(,, n'V„.+——(1 n') V„—..

The tight-binding parameters have the following values
for Si

Let Il, m, nj be the direction cosines of the vector
R,.—R

Rl'x Rlx

IRg. —RI I

2N N 4 Ex if CX —1

E +XEs&:2 g g g (c/ ) X 'E f 2 3 4
i =1 1=1 a= 1

2N N l —1 4 4
+4 g g g g g c,'~c/, , (1'a'IHIla) .

i =1 l =21'=1 a=1 a'=1

E, = —5.25 eV, E =1.20 eV,

V„=—1.938 eV, V, =1.745 eV,

V =3 050 eV, V = —1 075 eV.

(A8)

E, if +=1,
&lctlHll'a') = E~ if a=2, 3,4,

0 if a&a'.
(A3)

Case 2 (1&1'): For the case 1&l', we assume a 1/R
dependence of the matrix element on the interatomic dis-
tance R.

(A2)

a. The matrix element ( laIH Il'a')
Case 1 g =1'): When 1 =1', the matrix element is given

by

2. The repulsive term E2

E,= g g E„(I R, —R, I ) .
1=2 l'=1

(A9)

E2 is the repulsive energy needed to neutralize the effect
of double counting of the Coulomb interactions in the
band-structure term E . The E, appearing in E2 is

E„(R)=Es' (R)f, (R)—Es; (R), (A 10)

In this subsection we consider the second term E2, Eq.
(4), of the total energy E"',

N l —1
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where Es' is the total energy of diatomic Si, Es; is the
'2 '2

band-structure energy of diatomic Si, and f, (R) is the
cutoff function defined by (A5).

a. Total energy ofdiatomic Si

Es' has the following expression where

E, 0 d' 0

0 E 0 d'

d' 0 E 0

0 d' 0 Ep

(A15)

A [(R /R ' P —
( R /R '

) t]
Es' = . Xexp[y/(a —R/R ) ] if R/R*(a,

0 if R/R'~a,

with

(A 1 1)

a'=V„ f, (R)(RO/R ), b'=V, f, (R)(RO2/R2),
(A16)

c'=V f, (R)(RO/R ), d'=
Vpp f, (R)(RD/R ) .

The matrix M, gives the following four energy eigenval-
ues, ki~ A2~ A 3, and X4.'

2 =80716.277 eV,

R *=1.7814354 A,

y = —10.706 328,

p = —3.372065 8,
9 = —0.475 829 60,
%=0.310406 57,
a =2.8067254 A .

(A12)

2A, i =(E, +Ep ) —(a' —c')

+ I[(E, E~)——(a'+c')] +4b' }'~

2A2=(E, +E )—(a' —c')
—

I [(E, E~ ) —(—a'+c')] +4b' }
'i

2A3=(E, +E )+(a' —c')

+ I [(E, E)+(a'+—c')] +4b' }
'~

2A4=(E, +E )+(a' —c')

(A 17)

E I has a minimum value E of —3.07 eV which occurs

at R0=2.265 A and a vibrational frequency f of 519
cm '. The vibrational frequency was found in the fol-
lowing manner. The curve E E=(K/2)(R——Ro)
was fitted to the function (All) at the point E =E and
R =Ro. Here K is the force constant. The frequency f is
then given by

1/2

2m M„
(A13)

b. Band structure -energy of diatomic Si

Consider two Si atoms situated a distance R apart. Let
one of the atoms be situated at the origin and the other at
position R i+Oj+Ok. For the basis set choose the eight-
eleme~t set III i, 4i, , z 41, 3 O'1, 4 4't, i 41,2 4'I, 3 41,4}
l, and l2 denote the two atoms. These basis functions
have been described in Sec. II of the main text of this pa-
per. The matrix elements (1'a'~H ~la) of the 8X8 Ham-
iltonian matrix are given in Sec. A1 of this Appendix.
The Hamiltonian matrix splits up into the following two
submatrices:

where M„=M/2 and M is the mass of a Si atom. Iff has
units of cycles/s, then the frequency in cm ' is given byf /c, where c is the velocity of light in cm/s.

With the values of the tight-binding parameters given
in (A8), these energy eigenvalues appear in the following
order (this order was determined by plotting the eigenval-
ues versus R for all R & 2.2 A):

A,4 & A.2 & k3 (A&5 Ar7 & A,6
=A, 8 & A, ] (A19)

Thus in the ground-state configuration the eigenvalues
k3 X4 and A, 5 are occupied, each with two electrons,

one with spin up and one with spin down. The band-
structure energy of the diatomic molecule at interatomic
separation R is therefore given by

Es; +2Es; =2(Ai+Ai+A4+A5)

=a'+2d' —c'+3E, +5E (A20)

—
I [(E, E~)—(a'+c')] —+4b' }'i

(A21)

—I[(E, E)+(a'+c—')] +4b' }'~

The energy eigenvalues A, 5, A,6, k7, and A, 8, of the matrix
M2 are readily found to be

A5=A7=E +d',
(A18)

A, =A, =E —d'.

a' b'

—b' c'

0

0 E
a' —b' E, (A14)

Note: A second way to determine Es; is to invoke the
variational principle, i.e., vary the coefficients I cr I in (1)
until the minimum of the band-structure energy is
achieved. This method gives the "occupied eigenvalues"

and

br c 0 E
A, '; = g g c/~ c/~ ( l'a'~H

~
la ), i = 1,2, 3,4

I', a' l, a
(A22)
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and the band-structure energy

EsBs +2Es, =2(A, ', +A2+A3+A4) . (A23)

3. The terms E3 and E4

The third term (5) of the total energy (2) is
2

Here, the coefficients [c/ ] have the values which give
the minimum band-structure energy.

The two equations (A20) and (A23) should give identi-
cal results for the band-structure energy Es;,' however,BS.

the occupied eigenvalues I A, ,
'

J obtained via (A22) may not
be equal to the actual eigenvalues I A, ; I, (A17) and (A18),
of the Hamiltonian. This is illustrated in the following
exercise. the band-structure energy (A 1) of the diatomic
Si molecule was minimized at an interatomic separation
of 2.265 A to get the "occupied eigenvalues" having the
values

k'l= —1.115 eV, A,z= —1.115 eV,

X3 —5.375 eV, A,4
= —5.375 eV

(A24)

The actual eigenvalues, (A17) and (A18), of the Hamil-
tonian were also calculated at the same interatomic sepa-
ration to give

nb
E3 =N

X
nb

+4'2 ~ +43 (A26)

Here, nb is the number of bonds,
N 1 —l

nb= g g f, (~Ri —Ri ~) .
1=2 1'= l

(A27)

The cutoff function f, has been defined by Eq. (A5). The
other parameters in (A26) have the following values:

$, =0.225 eV,

Pz = l. 945 eV,

$3= —1.03 eV .

(A28)

Note that with the above choice of parameters the term
E3 goes to zero for Si2 (N =2 and nb = 1).

The fourth term (6) of the total energy (2) has already
been defined via Eqs. (6) and (10). These equations are re-
peated here for completeness:

X5=0.04 eV, A,3= —1.48 eV,

k2= —3.60 eV, A.4= —7.94 eV .
(A25)

N

E4 U X (qi qio)
1=1

where

(A29)

Notice that the 'occupied eigenvalues" (A24) are different
from the actual occupied eigenvalues (A25), although use
of (A20) and (A23) shows that both sets of eigenvalues
give the same band-structure energy Ez; +2Es; of
—25.96 eV.

2N 4

qi=2 g g (ct ), qi =4.0 .
i =1 a=1

(A30)

Note that this term is equal to zero for uncharged clus-
ters and has a positive value for charged clusters; thus
this term prevents charge transfer among the atoms.

*Present address: Sacks/Freeman Associates, Landover, MA
20785.
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