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Formation of Frohlich bipolarons
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The binding energy of a bipolaron is calculated by the variational method as a function of the
Frohlich coupling constant o. and g=e /eo, where e (eo) is the optic (static) dielectric constant. It
is found that the system of two equally charged polarons is stable in a broad region of o, and g.
Since o. and q for strongly ionic crystals take on values close to this region, the possibility of experi-
mental evidence for Frohlich bipolarons is suggested. The estimated average electron-electron sepa-
ration for the bound state takes on values between 0.2 and 1.0 polaron radius.

I. INTRODUCTION

Two identical charge carriers in solids, i.e., electrons or
holes, repel each other via the screened Coulomb poten-
tial and, in most cases, do not form a bound state. How-
ever, the properties of the charge carriers are modified by
their interaction with the vibrating lattice, i.e., by
electron-phonon coupling. In some materials, e.g. , in ion-
ic crystals, this coupling can be strong enough to over-
come the Coulomb repulsion and create a stable electron
pair or hole pair. This pair is called a bipolaron since it
consists of two equally charged polarons, i.e., the charge
carriers coupled with phonons. A possibility of the bipo-
laron formation in solids is determined by the competi-
tion between the Coulomb repulsion of electrons or holes
and their attraction to the distorted lattice. This problem
was qualitatively discussed by Pekar' and Schultz.

The recent interest in the bipolarons is caused by their
role in attempts of explanation of the high-temperature
superconductivity. According to the proposed bipola-
ronic mechanism of superconductivity, the bipolarons
of high enough density undergo the Bose-Einstein con-
densation, which leads to a formation of the supercon-
ducting state. The bipolaron concept can as well be use-
ful in studying the properties of negative-U centers '
and D complexes" in ionic crystals. These systems
consist of the defect and the two bound electrons and can
be considered as extrinsic bipolarons. The problem of
stability of the bipolaron is of general interest in physics,
because its solution provides an answer to the question:
When do two identical charge carriers form a bound state
in a polarizable medium?

The bipolaron in a bound state yields an example of a
real-space pairing of electrons, ' which should be dis-
tinguished from a k-space pairing being characteristic of
the Cooper pair. Another difFerence between these two
types of the electron pairing relies on the position of the
energy levels, which lie inside the conduction band for
the Cooper pair and below the bottom of the conduction
band (in the semiconductor band gap) for the bipolaron.

A quantitative treatment of the bipolaron problem was
a subject of the papers. ' ' Bishop and Overhauser'
found that the effective phonon-mediated electron-
electron interaction can be attractive in polar crystals.

However, the direct calculations' ' of the bipolaron en-

ergy either provided no bound state in three-dimensional
crystals' or were unreliable due to the use of the consid-
erably underestimated free polaron dissociation ener-
gy. ' ' Recently, Hiramoto and Toyozawa' calculated
the bipolaron energy with the help of the path-integral
method and obtained the binding of the bipolaron in the
strong-coupling limit. In the present paper the problem
of the bipolaron is solved by the variational method,
which is a generalization of the method previously pro-
posed for the exciton' and the bound polaron, and
yields the binding energy and the region of the bipolaron
stability considerably larger than those in Ref. 18. The
preliminary results of this approach have been announced
in Ref. 21.

II. THEORY

The present paper deals with the problem of the bind-
ing of two electrons or two holes in an ionic crystal or a
polar semiconductor. In these materials the dominant
coupling with phonons is that with the longitudinal opti-
cal (LO) phonons, which can be described by the
Frohlich interaction Hamiltonian

~;„,=g[U„a,(e' "+e' ")+H.c.],
k

with

Uk
= (i /~k~ )(4am—/0)'

where r& and rz are the position vectors of the electrons
or holes, ak is the annihilation operator of the LO pho-
non with the wave vector k and the frequency co, and 0 is
the quantization volume. The Frohlich coupling con-
stant is defined as

a=(1/e„—1/eo)e /2%cga„, (3)

where a~=(fi/2m')'~ is the free polaron radius, m is
the band mass of the electron (m =m, ) or the hole
(m =mh), and e and eo are the optic and the static
dielectric constants, respectively. In Eqs. (1) and (2) the
polaron units of energy (A'co) and length (a ) are used. In
these units the Hamiltonian of the bipolaron has a form
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H = —V, —V2+ +g akak+H;„, , (4)

where r, 2= ~r&
—r2~, P=2a/(I —il), and il=e /eo. The

parameter P characterizes the strength of the Coulomb
interaction, which expressed in the usual units is equal to
e /e . The material parameters fulfill the following ine-
qualities: a ~ 0, I3 ~ 0, and 0 ~ il & 1. Throughout this pa-
per we will express the bipolaron energy as a function of
e and q.

The bipolaron is stable if its binding energy

function is not in contradiction with the variational prin-
ciple. Any translationally invariant trial wave function
should provide better estimates for the bipolaron energy,
however, one cannot expect an essential improvement of
the present results. The physical consequence of this
choice is a localization of the bipolaron, which corre-
sponds to the self-trapping of polarons in the strong-
coupling limit.

The ground-state energy of the bipolaron is calculated
in two steps. First, we construct the effective Hamiltoni-
an

8'= 2EO —E H,~=(Xo &'H&Iso& (10)

is positive. In (5) Eo and E are the ground-state energies
of the free polaron and the bipolaron, respectively, mea-
sured with respect to the bottom of the conduction band.
If the bipolaron consists of the two holes, the zero of en-

ergy scale is put on at the top of the valence band.
In the present paper the following variational wave

function is applied in order to calculate the bipolaron
ground-state energy:

and next we calculate an expectation value of H,~ with
the help of the electronic wave function P. The first step
leads to the following form of the effective Hamiltonian
for the bipolaron:

H, s = —V, —Vz+ V(r, 2)+ U(r, )+ U(r2)+X

with the effective polaron-polaron interaction

'p=d&Xo . (6) V(r&2) = [P+2aA. &(A &

—2)(1—e " ')]
"&2

In (6) 1t1 depends on the electron coordinates only, T is the
canonical transformation

=eS S

2elk) q /p

pi

and the self-energy

(12a)

where

rf Fk(rl r2)+k
k

SX22

[A, ,(1+I/p, ) —4]+
. P1 16P2

(12b)

and yo is the phonon vacuum state defined by akyo=0
and (go~go) =1. The disPlacement amPlitude Fk in (8) is
proposed in the form, which is a generalization of that
applied previously by the author to the bound polaron
problem

Assuming p, &P2 and introducing 5&2= 1/(p, —
p2) we ob-

tain

U(r )=—(2ak2[A, (
—1 —

A, )p)5)2e

Ar ] ik.rl ik r2 k2
Fk(r„r2) =Uk (e '+e ')+

p2k +1 (p2k +1)

+ [1+ktp25, 2( I+P, 5&2) ]e ' '
I )

—r. /p2+al2(A, ,P25, 2+ 1/p2)e (12c)

(9)

with the variational parameters X&, A.2, p„and p2.
The present choice of I'k is motivated as follows.
(i) Canonical transformation (7) can be expressed as a

product of weak- and strong-coupling variational solu-
tions resulting from the first and the second term in (9),
respectively. One can therefore expect that the transfor-
mation T provides reasonable results for arbitrary
electron-phonon coupling.

(ii) An application of the corresponding trial wave
function, i.e., in the form (6) but with Fk (9) without the
r2 dependence, to the free polaron problem provides esti-
rnates of the ground-state energy, which for large o. are
very close to the best results.

Due to the presence of the spatially independent term
in Fk [the second term within the large parentheses in (9)]
the proposed trial wave function is not translationally in-
variant although Hamiltonian (4) possesses the transla-
tional symmetry. Nevertheless, the use of such trial wave

where r = ~r
~

and j=1,2. The terms U(r~) and U(r2),
which result from the breaking of the translational sym-
metry, can be interpreted as self-energies of the polarons.
Similar terms appear when calculating the ground-state
energy of the free polaron by the present approach.

The ground state of the bipolaron is the spin singlet,
accordingly, the function 1)) in (6) is proposed in the sym-
metric form

N

(1+p )e n 1 n 2 n 12

n =1
(13)

which is properly normalized. In (13) P&2 is the permuta-
tion operator interchanging the indices 1 and 2; a„, b„,
and c„are the nonlinear variational parameters chosen
similarly as in Ref. 23, and d„are the linear variational
parameters obtained from the diagonalization procedure.
The calculations have been performed with the use of an
%=16-element basis (13), which consists of four terms
with a„&b„and twelve with a„=b„. Form (13) of the
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electronic wave function has been chosen as the optimum
trial function after experimentation with several other
functions.

III. RESULTS AND DISCUSSION

The results are shown in Fig. 1. The two polarons can
form a bound state if a ~ a, and g ~ g„and are free oth-
erwise. The estimated values of a, are given in Fig. 1 by
the crossing points of the dashed curves with the abscissa
and the solid curve shows the dependence of g, on a;
The minimum value of a, obtained by the present
method is 7.3. Due to the variational character of this
approach, the estimated values of a, provide upper
bounds whereas those of q, provide lower bounds for the
corresponding limits of the bipolaron stability. The bind-
ing energy &of the bipolaron (the dashed curves in Fig.
1) is an increasing function of a and a decreasing function
of g. It can take on rather large values reaching 50%%uo of
the free polaron dissociation energy Do, where
Do = Eo ~ In energy units of Ace the estimated max-
imum values of 8' are 25.8, 56.8, 80.7,, and 86.3 for
g=0.1, 0.05, 0.01, and 0, respectively.

The present approach allows us to understand a physi-
cal nature of the binding of the two identical polarons.
For this purpose let us consider the effective Hamiltonian
(11). It appears that in the bound state the effective
polaron-polaron interaction V(r, 2) is repulsive, however,
the self-energy given by the sum U(r, )+U(r2)+X is
much lower than the self-energy of the two free polarons.
Therefore, the binding results from the lowering of the
self-energy, but not from the attractive interaction be-
tween the polarons. Nevertheless, the strength of the
Coulomb potential, which dominates in V(r, 2 ), decreases

taking on the values smaller than e /e, but larger than
e /eo. The lowering of the bipolaron energy which re-
sults from the terms U(r ) means that the bipolaron is
(nearly) self-localized similarly as the polaron in the
strong-coupling region.

In the present calculations the polaron dissociation en-
ergy Do is taken from Ref. 22, which provides the best es-
timates of Dp for 3.5 ~a ~ 35, i.e., for the coupling range
of special importance in the bipolaron problem. The au-
thors of papers' ' have applied the Pekar strong-
coupling method' to estimate both the polaron and bipo-
laron energy. It means, however, that the values
used' ' for Do were much too low (cf. Ref. 22). After
recalculating the results' ' with the use of the values
for Do taken from Ref. 22, one obtains no binding of two
polarons, with an exception of very large o.. Moreover,
the calculated energies' ' exhibit the dependence on a
only, which is generally not true. The correct depen-
dence on a is shown in Fig. 1. The ratios 8'/Do grow
with o. and approach their constant asymptotic values for
very large o.. Then, g, becomes independent of a as well
and is equal to 0.14. This value can be compared with

g, =0.079 quoted by Hiramoto and Toyozawa' for the
strong-coupling limit. It is seen that the region of the bi-
polaron stability obtained by the present method is much
broader than that in Ref. 18.

The present approach enables us to estimate the aver-
age electron-electron separation in the bipolaron, but not
the bipolaron mass. The calculated electron-electron sep-
aration (Fig. 2) varies from 0.2a (a =40) to 1.0a
(a=7.3) for g=0 and rather slowly increases with
These numbers would suggest that the Frohlich bipola-
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FIG. 1. Calculated binding energy 8'of the bipolaron as a
function of the Frohlich coupling constant cx for several values
of q=e„/eo (dashed curves). The solid curve shows the es-
timated limit g, of the bipolaron stability, i.e., the bipolaron is
stable if g ~ q, . Do is the dissociation energy of the free pola-
ron.

FICx. 2. Calculated average electron-electron separation
(r, 2 ) in the bipolaron vs electron-phonon coupling constant a.
The solid curve shows the results for g=0.1; the dashed curve
for q=0. The unit of length is the free polaron radius a~.
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ron is small (cf. Ref. 18). However, our unit of length,
the polaron radius a for the electron, has the following
dependence on the material parameters:

a /a~ =soap(m, o/m, )/(1 —q), (14)

where a~ is the Bohr radius and m, o is the electron rest
mass, which means that this ratio takes on rather large
values in the region of the bipolaron stability, e.g. ,
a~ /a~ —= 100 for o.'= 10, g =0.01, m, /m, o=0.1, and
E'0 = 100. Therefore, the size of the bipolaron can be
much larger than the typical interatomic distance in
solids.

The limits of the bipolaron stability estimated in the
present paper are close to the values of a and q, which
correspond to real substances. Using these results to the
charge carriers in crystals, we should remember the ap-
proximations of the present treatment (e.g. , the assump-
tion of the isotropic parabolic bands and neglecting the
details of the band structure). An incorporation of the
neglected effects will move the limits of the bipolaron sta-
bility. Therefore, we can expect the formation of bipola-
rons for the crystals with a and g taking on the values
from the stability region, but we cannot exclude a possi-
bility of stable bipolarons even if o. and q lie somewhat
outside this region. The best materials for a search of the
Frohlich bipolarons are the strongly ionic crystals of al-
kali halides, e.g. , LiF, RbBr, and CsC1. The stability can
more easily be achieved if another factor makes the bind-
ing stronger, e.g. , an anisotropy of the crystal. The spe-
cial case of the anisotropic crystals are the one- and two-
dimensional crystals, for which the low dimensionality
stabilizes the bound state of two electrons. ' Moreover,

the large mass of the charge carriers also favors the bind-
ing. It leads to the possibility of the two-hole bound
states (biholes) in polar crystals. The hole-phonon cou-
pling is larger than that for the electron by the factor of
(mh /m, )'~, which is usually larger than 1 and can take
on the values of the order of 10, e.g. , in CuCl and CuBr.
Therefore, the limit of the bihole stability is shifted to-
wards weak electron-phonon coupling.

The bipolarons can also be observed indirectly in trans-
port phenomena, e.g. , in superconductors. It seems, how-
ever, that the bipolaronic mechanism of superconductivi-
ty is of minor importance, especially in the high-T, su-
perconductors, due to the large mass' and small mobility
of the bipolaron (self-localization). Recently, Chakraver-
ty et al. have proposed a new kind of the bipolarons
with low effective mass which may be responsible for the
high-temperature superconductivity.

Until now, the stability has been demonstrated both ex-
perimentally and theoretically for the so-called "small
bipolarons, " in which the electrons interact with the
acoustic phonons through the short-range deformation
potential. Yet, no experimental evidence of the Frohlich
bipolarons has been found. The present paper supplies
the theoretical support of the statement that these bipola-
rons can as well exist in the crystals.
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