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We present a new method for calculating the density of electronic states on a disordered square
lattice. The method is based on the real-space renormalization-group technique proposed by
Gongalves da Silva and Koiller for the case of a disordered chain. It is shown that the method can
give correct energy ranges and detailed structures of the spectra of disordered square lattices
without much numerical work. The improvement required and the further use of the new method

are discussed.

I. INTRODUCTION

Investigation of the electronic properties of disordered
systems has received considerable attention over the past
few decades. The classical analytical methods based on
the single-site approximations,’*? which may be used to
study both the energy spectra and the localization of the
eigenstates of such systems, have the shortcomings of re-
sulting in an average medium and hence cannot properly
describe the effects of strong disorder. For example, the
coherent-potential approximation (CPA),* usually regard-
ed as the best of these single-site approximations, is
shown to be successful only for systems with a large coor-
dination number z (z > 10). The numerical simulation
methods, such as Schmidt’s exact-functional-equation
method* and Dean’s negative-eigenvalues method,’ can
be used to obtain the total integrated densities of states
and to reveal the rich structures of the spectra. However,
the numerical schemes are rather tedious in practice and
incapable of obtaining the local densities of states and
more information about the nature of the eigenstates. In
recent years, various real-space renormalization-group
(RSRG) methods have been developed to study the densi-
ties of states for disordered systems.®”!®* Some of these
methods are based on the RSRG scheme proposed by
Gongalves da Silva and Koiller (GK).57!¢ Starting with
the equation of motion for the Green’s function, they ob-
tain the densities of states from the usual relation,
p(E)=(—1/m)Im[Gy(E +i0")]. Wiecko and Roman
have proposed another successful method of calculating
the densities of states wusing the decimation
renormalization-group technique, in which they always
work with real numbers.!””!® All the RSRG methods
mentioned above have the advantage of requiring much
less numerical work than other possible methods. In all
forms of the GK scheme, two approximations are intro-
duced. The first one is that the configuration averages of
the Green’s function over the eliminated sites are used to
substitute for that over all the lattice sites. The second is
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that the averages of the Green’s function are actually per-
formed by averaging the renormalization coefficients.
Langlois et al’® had suggested an improved RSRG
method to calculate the densities of states of random
binary chains, but they found that the method will give
negative values in certain energy ranges. In a recent pa-
per'® we have shown that these unphysical negative
values can be avoided in actual calculation, and this
method is very efficient when used to calculate the densi-
ties of states for disordered chains accurately.

In the present work, a RSRG method based on the GK
scheme is proposed to calculate the density of states of a
disordered square lattice. It is well known that there is a
basic difficulty in extending the RSRG method men-
tioned above to systems with dimensions greater than 1.
This is essentially because in two- or three-dimensional
systems, lattice decimations introduce more than
nearest-neighbor interactions, which prevent the
definition of a close and finite system of renormalizable
variables. This difficulty has been surmounted in our
method, in which we first transform the square lattice
into an approximately equivalent chain and then treat the
equivalent chain with the usual cluster-decimation
method.

II. METHOD

Let us consider a random binary alloy system 4,B;_,
as shown in Fig. 1, where each site of the square lattice is
labeled with (i,I). We start with the tight-binding Hamil-
tonian,

H=SE,D|i,I)i,I|+ 3
1i LiJ,j
i;tj,I;JtJ

Vi (LD G,

(1)
where E;(I) and |i,J ) are the energy and the Wannier
wave function of the atom centered at site (i,I), respec-
tively, and V; ;(I,J) is the hopping integral between sites
(i,I) and (j,J). We assume that E;(I) may be E , and E
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FIG. 1. Illustration for labeling the sites of the square lattice.

with probabilities x and 1—x, respectively, and V,-,j(I,J)
equals a nonzero constant V for nearest neighbors in-
dependent of the occupations and is zero otherwise.

In order to make the basic idea of our method clear, we
discuss first an infinite ordered strip of finite width as
shown in Fig. 2. Regarding this system as an infinite
chain of clusters in which each cluster consists of the N
sites situated in the same array, the Hamiltonian of the
system can be written in the form

h=3hH+ 3 [hULI+1D)+R(ULI-1)], (2)
I I
where

N N—1
h(D= 3 EDIL,I) (G, Il+ 3 VIi,I) {i+1,1|

i=1 i=1
N
+ 3 VILI) {i—1,1| (3)
i=1
describes the Ith cluster, and
J
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FIG. 2. Illustration for grouping the strip system in a cluster
of N atoms.

N
h(LIL)= 3 VI|iI) (i, I+1| )
i=1

describes the hopping between nearest clusters. The
equation of motion for the Green’s function,

g(Z—h)=1 (Z=E +in, n—0), (5)
can be expressed in the matrix form
[Z—h(D)]g(1,0)=8(1,0)+h(I,I —1)g(I—1,0)
+h(L,I+1)g(I+1,0)
=—00,...,0,...,0 (6)
where g (I,J) is a N X N matrix defined as
g, (LN={iIlglj,J) . )

Equation (6) is of exactly the same form as that for a
single chain with only nearest-neighbor hoppings ob-
tained by Koiller et al.” Therefore, it is easy to obtain
the recursion relations for renormalization by using the
cluster-decimation technique.”!'®!* Without loss of gen-
erality, only the terms involving the center cluster (I =0)
are given here:

RETD0)=h%0)+R %0, —1)[Z —AF(—1)] 'R F(—1,00+r%0,1)[Z —A ¥ (1)1 'h¥(1,0) , (8)
AT, +1)=R"0,=1)[Z —hN(£1)] Th8(£1,12) . 9)
Here, the superscript k denotes the times of renormalization. The fixed point can be obtained as
klim h'%)0,+1)=0, klim A90)=h*(0)=h(0)+3 , (10)
where
== 3 R0, - D[Z-hP(=1D]"ThP(=1,00+ 3 n'®0,1[Z —r® (1] 'h¥(1,0) (11)
k=0 k=0

is the so-called self-energy which contains all the infor-
mation obtained from the strip. We can regard h*(0) as
the Hamiltonian of a chain consisting of N atoms. Thus
we have transformed the strip into an equivalent finite
chain, as is illustrated in Fig. 3. It should be noted that
there are hoppings between any two sites in the
equivalent chain described by A *(0).

It is evident that the numerical work would be too
much for a strip of very large N. Fortunately, it is found
that the hopping term [4*(0)];; of the equivalent chain

[

tends to approach zero quickly as the value of |i —j| in-
creases, as shown in Table I. Therefore, as a good ap-
proximation, only the short-range hoppings (|i —j| <m)
need to be considered for an infinite equivalent chain with
respect to an infinite square lattice, and these short-range
hopping terms can be approximately determined from the
N XN matrix A*(0) by taking N =m. Thus the Hamil-
tonian of the equivalent chain with respect to an infinite
square lattice can be approximately written as
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FIG. 3. Schematic representation of the effect of the RG
transformation in x direction.

equ — gyequ
Li+j HiE,

(A0 Fp1/2) (m — 11, FLOL/2) (m — 1140 ] <M
0, j>m (12)

where F(x) stands for the integral part of x. It should be
noted that such a definition is in favor of minimizing the
boundary effect introduced by the finite value of m.

Now we have an infinite chain approximately
equivalent to a square lattice. The approximation is
determined by the value of m. The infinite chain can be
exactly treated with the cluster-decimation method. Di-
viding the system into a chain of clusters consisting of m
atoms, as shown in Fig. 4, we get a chain with only
nearest-neighbor cluster hopping. Hence, H " can be ex-
pressed as

HeM=3 HUM)+ 3 [H(M,M +1)
m M

+H* Y M,M—1)], (13)

where
HYM),; ;=H{ — ym +i,(M—1im+j > (14)
HCMM +1), ;=HESE vt ptm +) > (15)
HSY MM = 1), ;=HG 1)+, (M —20m + - (16)

Since Eq. (13) has exactly the same form as that of Eq.
(2), we can easily get the following renormalization recur-
sion relations for the equivalent chain:

FIG. 4. Illustration for relabeling the approximately one
equivalent chain.

0.02,and V=1, where j <m and F(x) stands for the integral part of x.

8, n=

TABLE 1. The values of 4 *(O)F[(I/Z)(m —)+11, F[(1/2) (m = j)+1]+j for m

Imag.

Real
Part

Imag.

Real
Part

2.1
-1.3

Imag.

Real
Part

1.3
—9.5X 107!

Imag.

Real
Part

Imag.

Real
Part

0.0
—2.8X107?2

Part

Part

Part

Part

Part

3.3 3.2X1072

—13

49x107!

8.7Xx107!

1.2

5.8%107!
—5.3%107!

1.3

0.0
—40%x107!

5.5%X107! 6.2X107! 43%x107! 9.9%x1073

—2.1X107!
—9.5X107?

7.2X107°

—-1.1x107!
—5.5%107?
—2.9%X107?
—1.6X1072
—9.0Xx1073
—5.1X1073

1.0x107! 2.3X107? 2.6X107!

-1.1x107!
—6.0X1072

3.2X107! 2.7X107!

—14%x107!
—9.9X 1072

0.0
—12Xx107?2

52%X107°

1.0x107!
—24X1072
—3.6X1072
—1.7X1072
—4.9%1072

1.0x107!

7.3X1072
—7.3X107?
—7.2%X107?

0.0
—6.6X1072

3

3.6X1073

6.7X1072

7.2X107?
—1.2X1072
—3.3%X1072

0.0
—55%x107°?

2.6X1073

3.9%10°*
—34x107?
—3.7x10°?

8.1X1072

3.5X107?
—2.1X1072
—45%107?

0.0
—1.9X107?

5

1.6X1073

22X1072
—9.9X107?

2.6X1072

0.0
—22X1073

1.0x1073

8.3X10°°

4.1X1072

0.0
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(HE)*HD(0)=(H ") R(0)+(H*)¥(0, = D[ Z —(H*)F(—1)] ' (H*")F(~1,0)

+(Hequ)(k)(0’ 1 )[Z _(HeqU)(k)( 1 )]*I(HeqU)(k)( 1,0) , 17)

(He) k00, +1)=(H) X0, +1)[Z — (H") K (+1)]" (H®) K (+1,42) . (18)

In addition, we can obtain the fixed point

lim (H®)%(0)=(H*")*(0) (19)

k— oo

from lim, _, ,,(H*")¥(0,+1)=0.
The density of states for an infinite ordered square lat-
tice can be calculated by

p(E)=——— lim ImTe[Z —(H<*0)]'. (0)
mar .,1,_,0+

Figure 5 shows the density of states calculated with
different values of m compared with the exact result for
an ordered square lattice. It is shown that our calculated
results converge to the exact results rapidly as the value
of m increases.

—

The method presented here is obviously not necessary
for studying ordered systems; its importance lies in study-
ing disordered systems for which no analytical result can
be derived. The key problem for using the method to
study disordered systems is to choose a proper approxi-
mation for performing configurational averages: Here we
adopt the GK scheme®!%!? for simplicity.

For a strip of random binary alloy 4,B,_,, as shown
in Fig. 2, each cluster has 2V possible configurations,
since the site energy may be E , and Ejp, with probabili-
ties x and 1—ux, respectively. The probability for a clus-
ter in the £th configuration, which contains n 4 atoms is

Pe=x"(1—x)N"". 2D

The recursion relations for renormalization of the disor-
dered strip can be written as

hEFD0)=h{(0)+ %Pg,{h”‘)(o,—l)[z —h(=D]I 'R 1,0+RP0,D[Z A F (D] 'RP(1L,0),  (22)

h* D0, +1)= gp'g,h“”(o,irl)[z—hgf’(rl)]"h‘“(il,iz) , (23)
and the fixed point can be obtained,

lim A (0)=h}(0)=h(0)+Z', (24)

k— o

Jim h%0,+1)=0, (25)
where

3= f S P (0, —D[Z —h ¥ (= D] 'RP(=1,00+r M0, )[Z —h (D] 'h(1,0)} . (26)

k=0 g

Now we can define the Hamiltonian of a disordered chain, which is approximately equivalent to the infinite disor-

dered square lattice as

E;+Z52m +11,Fla/2m +1p J =0

’ PR
. . V+ZFrii2m+1L,F12mp T =1
H{Y =H{Y =

0, j=zm

’ .
2F[(l/2)(m—j)+1], FI(1/2)(m —p+1]+j> 1<j<m

where E; can take E , and E with probabilities x and 1—x, respectively.
Similar to the discussion for the equivalent chain with respect to an ordered square lattice, the recursion relations for
renormalization of the disordered equivalent chain can be obtained as

(HE Y H00)=(HE )R (0)+ 3 Sp {(H) R0, —1)[Z — (HF) O (— 1]~ (H) R (—1,0)
<

+(HeMy R0, [ Z —(HF) ()] H) 91,00}, (28)
(HeqU)'(k +1)(0,i1 )= 2 Sg:(Hequ)'(k)(O,il )[Z _(Hz_gu )'(k)(il )]_I(Hequ)’(k)(il,il’,) , (29)
g
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FIG. 5. Densities of states of ordered square lattice
(E ,=E=0, V=1) calculated using the RG method with (a)
m=N=2, p=0.1; (b) m=N=4, =0.1; (¢) m =N =6,
7=0.1; (d) m =N =8, n=0.1. The dashed line is the exact re-
sult.

where S, is the probability of a cluster consisting of m
equivalent atoms, as shown in Fig. 4, in the {th

configuration.
The fixed point can be finally obtained as
Jim (H®®)%0,+1)=0, (30)
Jim (HE)9(0)=(HE")*(0) . 31

The average density of states for a disordered square lat-
tice can the be calculated by

o 1 . equ y/x _
P(E)—*Enlin&r Im}g‘,ngr[Z—(ng )Y*(0)] .
(32)

FIG. 6. Density of states of random binary alloy (E =0,
Eg=—5, V=1, x =0.90) calculated using the new RG method
with m =N =6, n=0.02.
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III. NUMERICAL RESULTS
FOR DISORDERED SYSTEMS

In order to illustrate the applicability of our method in
treating disordered systems, we have considered specific
examples.

We have first examined a random binary alloy 4, B,_,
with V=1, E,=0, Ez=—5, and x =0.9. Figure 6
shows the numerical results calculated with 7=0.02. As
we can see, the density of states exhibits rich structures in
both the majority band and the minority band. We have
repeated the calculation for the same system with other
values of 7. It is found that the smaller n we take, the
richer structures emerge in the density of states. As is
well known, the structures in the density of states of a

(a)

(b)

(c)
LS

(d)

(e)

FIG. 7. Densities of states of random binary alloys (E 4 =0,
Ez;=—5, V=1) calculated using the new RG method with
m =N =6, n=0.1 for different concentrations: (a) x =0.99, (b)
x =0.90, (c) x =0.80, (d) x =0.60, and (e) x =0.50.
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FIG. 8. Densities of states in the A subband of random
binary alloys (E 4 =0, E,—Eg,,— »): (a) calculated using the
RG method for x =0.501 with m =N =6, n=0.02; (b) calculat-
ed using the RG method for x =0.715 with m =N =6,
71=0.02; (b) obtained by Kirkpatrick and Eggarter from com-
puter simulation for x =0.501; (d) obtained by Kirkpatrick and
Eggarter from computer simulation for x =0.715.

disordered system result from the compositional fluctua-
tions. For this reason, calculations based on single-site
approximations such as the CPA are not able to reveal
these structures. On the other hand, the RSRG tech-
niques enable us to approximately treat the compositional
fluctuations at all length scales, thus our calculations can
yield richly structured densities of states.

Figure 7 shows the calculated densities of states of a
random binary alloy 4,B;_, with various x. In all these
cases, we have set E =0, Ez=—35, V=1, and =0.1.
It is shown that each of these spectra consists of two sub-
bands, and the width of the subband corresponding to E ,
(Epg) is approximately proportional to x '/ ((1—x)'/?) as
predicted early by Lifshitz!® and Taylor.?°

Finally, we have considered the case of split-band-limit
|E —Eg|/V— . Figures 8(a) and 8(b) show our calcu-
lated results for x =0.501 and 0.715, respectively, and
Figs. 8(c) and 8(d) show the numerical simulation results
obtained by Kirkpatrick and Eggarter.?! Compared to
the numerical simulation results, our calculated results
are seen to be excellent in giving the energy ranges of the
A subband, although there are significant differences in
detail structures of the spectra.

IV. SUMMARY

We have presented a RSRG method based on the GK
scheme for calculating the densities of states of disor-
dered (or ordered) square lattices. The numerical results
have manifested the efficiency of the method in giving
correct energy ranges and revealing rich structures of the
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FIG. 9. The cluster of an isolated 4 atom which results in
the central peak in the density of states shown in Fig. 8(c) or
8(d).

spectra of two-dimensional disordered systems. The nu-
merical work required is not much.

It is certainly found in our numerical calculations for
disordered square lattices that smaller 7’s lead to more
peaks in the densities of states. In the GK scheme, the
value of the imaginary part n of a complex energy
Z =E +in should be taken as small as possible in princi-
ple, which means that the smaller the value of 7, the
more accurate the results that can be obtained in practi-
cal calculations. Therefore, all the peaks emerging in the
density of states as 17—0 should be physically relevant
We think that the phenomenon of smaller 7’s leading to
more peaks in the densities of states is probably related to
the localization of eigenstates of two-dimensional disor-
dered systems,>?%23 since the contributions of localized
states to the densities of states should be described by &
functions in E.

The discrepancies between our calculated results and
the numerical simulation results, as shown in Fig. 8, indi-
cate that our method should be improved. These
discrepancies originate from the neglect of some cluster
effects which are very important in the split-band limit.
For example, the peaks at E =0 in Figs. 8(c) and 8(d) are
just the results of the clusters in the configuration shown
in Fig. 9, and these peaks do not appear in our calcula-
tions since our RG transformation cells are all in the
form of chains, as shown in Fig. 10(a). We believe that
the results of our method can be improved if the RG
transformation cells are taken to be two-dimensional

L] o [ ] o e se L]

. . e .

. - . . LTI .

. . . LIC IR .

m ° m L] [ LJ co e °
° L L] L] .o 0 L]

L] L] o L . . L 4
~—————

(a) (b)

FIG. 10. (a) Illustrative example for the one-dimensional
cluster; (b) illustrative example for the two-dimensional cluster.
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clusters, as shown in Fig. 10(b).

Finally, the present method may be extended to treat
short-range order as done by Koiller et al.” for one-
dimensional systems, and may be used to study the locali-
zation of eigenstates in two-dimensional disordered sys-
tems. We will discuss these problems in later papers.
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