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The relative stability of monolayer and double-layer epitaxial islands consisting of equal numbers

of atoms is studied within the framework of the Frank —van der Merwe model as a function of island

size, misfit, stiffness of the layer, and strength of film-substrate interaction. An exact solution of the

governing equations has been obtained after linearization. The validity regimes of the results have

been established. The main conclusion is that both registry strain energy and misfit energy consid-

erably enhance the tendency to three-dimensional growth when the misfit becomes significant. At
small misfit surface free energies are dominant. The predictions are compared with empirical data.
Although some uncertainties still exist, the agreement with experiment is encouraging.

I. INTRODUCTION

Epitaxial growth frequently starts with the formation
of monolayer (ML) islands, even if the surface free energy

ys of the film material B is larger than that (y~ ) of the
substrate, A. The thermodynamical equilibrium condi-
tion for ML formation, '

~XaW:—'Pa+Xi 3'~ —O ~

then requires that the interfacial free energy y, be nega-
tive, which means that there is only a small misfit and a
strong A —B bond, and accordingly a strong tendency to
alloy or compound formation. In the presence of misfit,

y;, which contains the elastic strain energy in the ML
and misfit energy of interfacial disregistry, increases with
island size so that the ML condition may be violated
beyond a critical island size. As a consequence, a transi-
tion from two-dimensional (2D) to three-dimensional
(3D) growth may occur, provided it is not suppressed by
kinetic limitations.

In an atomistic description using pairwise nearest-
neighbor interaction energies E~~ and Ezz such a transi-
tion may even take place in the absence of misfit, simply
on account of the dependence of the total energy E upon
the number of A and B neighbors and its difT'erent depen-
dence upon the total number No of atoms in a 2D and a
3D island. The critical number N, at which the 2D-3D
transition occurs depends evidently on the relative mag-
nitudes of E~~ and Ez„as well as upon the island
shapes. The problem of the 2D-3D transition arises also
in the Stranski-Krastanov growth mode, in which initial-
ly one to several 2D ML's are formed on top of which 3D
crystals grow. It has been noted repeatedly that the 3D
crystals not necessarily form by 3D nucleation but by a
2D-3D transition from 2D islands on top of the stable ini-
tial monolayer or multilayer.

The present paper addresses the question of the
inAuence of misfit and bonding on the 2D-3D transition
by calculating the relative stability of monolayer and
multilayer islands with (approximately) equal total num-
bers of atoms No within the framework of the Frank —van

der Merwe model and its "small-displacement" parabol-
ic approximation, valid when there are no MD's and the
maximum disregistries, occurring at the perimeter, are
less than about a quarter of an atomic spacing. The
theoretical predictions are then applied to specific epitax-
ial systems of current interest.

II. THE MODEL

We wish to calculate the energy associated with the
misfit between an epitaxial island and a substrate crystal
for a monolayer (ML) island and a double-layer (DL)
island —the thinnest 3D crystal —containing the same
number No of atoms. Assuming that in both cases the
atoms form quadratic arrays with a quadratic boundary,
that there is an atom in the central position, and that the
half-widths are M and N atomic spacings for the ML and
the DL islands, respectively, we have

No=(2M+ 1 ) =2(2N+ 1 ) (2)

where a and b are the quadratic unit-cell dimensions in 3
and B, respectively. Because of the large disparity be-
tween the crystal thicknesses —the island is at most two
atoms high —we neglect the strain in the substrate. Be-
cause this neglects the elastic relaxation of the substrate
the calculated energy will be slightly in excess. Other
simplifying approximations are that the crystals have
simple cubic structure, satisfy isotropic elasticity, and are
in parallel orientation.

Also the island atom-crystal interaction is represented
by a truncated Fourier series '

V(x,y ) = —,
' W[2 —cos(2' /a ) —cos(2my /a )], (4)

Clearly the M as calculated for an integer N from this
equation will not be an integer itself. This difficulty is
overcome by treating specific cases and otherwise by ap-
proximating M and N as continuous (the continuity ap-
proximation) variables.

We define the misfit in the conventional way as

f=(b —a)/a,
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where (x,y) defines the position of an interfacial island
atom and the amplitude factor 8' may be related to the
activation energy Q of surface migration and the desorp-
tion energy E~„(bond strength) approximately by

IV = Q =xE~„, 0. 1 & Ir & 0.33 . (5)

The proportionality factor ~ depends strongly on bond
type and surface crystallography. It is about —,

' for W on
W(110) (Ref. 5) and about —,', for Cu, Ag, and Au on
W(110). On the fcc (100) surface which also has two
close packed directions ~ is expected to have a similar
value but on the rather open bcc (100) surface it should
be larger.

We introduce integers (n, m ) to enumerate interfacial
island atoms and corresponding substrate potential
troughs; n along x and m along y. It is convenient to de-
scribe atomic positions in terms of dimensionless dis-
placements (g, q) defined by

0.5—

0.1-

/
/

I
/

/

x„=a(n+g„), y„=a(m+rl„),
(6)
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x„=a(n+g, ), y„=a(m+rI„),

where (x,y) and (g, rl) belong to the upper monolayer.
Inserting (6) into (4) we obtain

FIG. 1. Curves of the (island) atom-crystal interaction poten-
tial V in units of W vs atomic displacement g: curve A for the
truncated Fourier series in Eq. {7) (g=0) and curve B for the
parabolic representation V~ in Eq. (8). P is acceptable limit.

V= —,
' IV[2 —cos(2m/) —cos(2irrI)] . (7)

In the analysis the need arises [see Eq. (17)] for replacing
(7) by its small-displacement approximation, the parabol-
ic potential

Vp=IV~ (g+r) ) .

may drastically effect the result.
We consider the DL island first. The ML case easily

follows from the results. For the island atom-atom in-
teraction we adopt the harmonic (elastic) approximation,
applicable to small relative displacements and express the
strain energy per atom in the form

The two expressions are compared in Fig. 1 for g=O.
We adopt the criterion that V is an acceptable approxi-
mation for V provided

Ib'E= [e +e +2ve e + —,'(1 —v)(e2, +e2, )
1 v

+e „+e +2ve e ], (10)

(9)

With this criterion the average discrepancy between V
and V in the interval ~g~

&
—,
' is only about 13%, the max-

imum is about 23%. We shall see that the criterion (9)
can easily be satisfied even for large islands if the misfit is
small and the ratio of island atom-substrate to island
atom-atom bonding large. In the foregoing we have tacit-
ly assumed that the truncation (4) is a good approxima-
tion to the real potential. In some cases, presumably co-
valently bonded semiconductors the representation, with
an appropriate value of 8' may even be closer to reality.
However, the adoption of the parabolic potential for met-
als, like the adoption of a rigid substrate, will cause the
calculated energies to be slightly in excess. Although the
excess will be somewhat different in magnitude for the
ML and DL islands it is believed to be so small that it
will not eA'ect the conclusions except in the case in which
b, yii~ is (very) near zero. In this case a small discrepancy

where the terms in e, and e, take account of the shear
strains between the two ML's constituting the DL. For
symmetry reasons shear strains in planes normal to the
crystal surface are second-order small, being only a
consequence of the Poisson effect. They have been delet-
ed in Eq. (10). The strains are defined in terms of the dis-
placements as

e, =5(g„—g'„), e, =5(r)„—rl„),

e.=5(4+, —4 f ), ey 5(n. , + i n.———f)— —

where 5=a/6 The total ener.gy E=g„(V+c.) may
now be written in the form
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E= —,8'g [2—cos(21rg„)—cos(21ril„)]+8'l2+ [(g„+, —g„f—)2+(1l„+,—1l„f—)2

n, m n, m

+2v(k. +i, —k. f—)(n., +i 11—. —f)1
+ ~l'X [(&.+ i,

—k. f—)'+(n. + i n—. f )'—
n, m

+2v(k. +i, —k. f—)(n., +i n.——f)]
+ —,'(1 —v)Wl g[(g„—g„) +(11„—11„)2],

n, m

where For symmetry reasons we may have solutions of the kind

l =p, ba /(1 —v)W' . (13)

For the purpose of formulating the boundary condi-
tions at the "vertical" boundary faces of the island we
need expressions for the tensional forces acting on island
planes made by vertical cuts parallel to the crystal axes:"

T =[2',bl(1 —v)](e„+ve ),
T, =[2pb/(1 —v)](e, +ve ) (14)

with similar expressions for T and T„. At the free boun-
daries (edges at n =N, m =N ) the relations

(=g(n ), g=g(n ),
11=11(m ), 11=ii(m ),

by which the governing equations separate in pairs:

d, =II'0 —a'(k —0»

d2 2—

dye

dying

2
=13 11

—a (1l—11), =a (1)—11),

and we have used the abbreviated notation

(18)

(19a)

(19b)

O=T =T =T =T (15)
P=1r/l, a =(1—v)/2 . (20)

must be satisfied.
The appropriate solutions of Eqs. (19) must be antisym-

metric, i.e.,

III. GOVERNING EQUATIONS
AND THEIR SOLUTIONS: DL ISLAND

The equations governing the atomic positions in the
DL island are determined by the minimum-energy equi-
librium principle, i.e., that in the equilibrium
configuration O=aE/ag„= .

, etc. We obtain from
relation (12)

En+i, m 2knm +kn —i, m +v( 9n+ i, m 9nm + 1n —i, m )

+ —,'(1 —v)(g„—g„)=(1r/2l )sin(21rg„),

g/f = A isinh(yin )+ A2sinh(y2n ),

g/f =B,sinh(y, n )+B2sinh(y2n ),
11/f = A, sinh(y, m)+ A2sinh(y2m ),
11/f =B,sinh(y, m )+B2sinh(y2m ) .

It follows by substitution of (21a) into (19a) that

Q, +Q2, Q, 2 =[(&'/2+a'+a»/2]'" .

(21a)

(21b)

(22a)

(22b)

In+i, m knm kn —i, m +V(9n+1, m lnm + kn —i, m

—
—,'(1—v)(g„—g„)=0 (16)

and two similar equations for BE/Bg„=BE/Bq„=O.
These are nonlinear coupled second-order difFerence

equations. They can only be solved if two additional sirn-
plifying approximations are made: first that g and 11 are
small enough so that the parabolic approximation (8) is
acceptable, and second that the variations of g and 11

(from atom to atom) are so slow that we may use the con-
tinuum ' approximation, e.g., g„=g(n, m ) and

g„+, —2g„+g„, =a g/an . The governing equa-
tions (16) accordingly linearize

a'g a'~ 1 —v-
l2 c)n2 gn2 2

a2 a20= — —v + (g —g) .
an an

The integration constants A& and A2 are determined by
the boundary conditions (15).

In the continuum approximation the relations (11) be-
come

e /6 =d g/dn f=fy, A, cosh(y, n —)
+fy2A 2cosh(y2n ) f, —

e„/5=de/dn f=fy, p, A, cosh(y, n )—
(23a)

+fy2A 2cosh(y2m ) f, —

e /5=de)/dm f=fp, y, A i cosh(y im )—
(23c)

+fp2y2A2cosh(y2m ) f . (23d)—
Also from Eqs. (14) and (15) the boundary conditions at
n =N takes the form

+fy2 p2 A 2cosh(y2n ) f, (23b)—
e /5=d11/dm f=fy, A, cosh(y, m )—
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O=T =[2pb/(I —v)][e, (X)+ve (m )] . (24a)

This equation cannot be identically satisfied because of
the dependence of e~ on m. The reason for this depen-
dence is that the Poisson contraction induces a slight cur-
vature into the free boundary which cannot be described
by the simple solutions in Eq. (18). Since it is a small
effect we can overcome the difficulty (approximately) by
ignoring the Poisson effect in Eq. (24a) setting v=O, or
overestimate the effect by noting that the effect will be
most notable in the middle (m =0) of the boundary at
n=N setting m =0 and v=v'. We adopt the second
course because it includes the first one as a limiting case
if we replace Eq. (24a) and its equivalent for the upper
ML, respectively, by

e (X)+v'e~(0)=0, e„(X)+v'e (0)=0, 0(v'(v .
(24b)

In these relations, v' is an adjustable parameter which we

may choose appropriately. Furthermore since symmetry

requires e (X)=e„(X),e (0)=e„(0), these equations also

define boundary conditions at m =¹If we substitute
I

from Eqs. (22) and (23) into (24b) we may solve for the
constants, obtaining

A)=
1(p i p 2 )cosh('y 1X )

(25a)

yz(pz —p, )cosh(y2N )

q, 2 =(1+v')/[1+v'sech(y, 2X)] . (25b)

IV. ENERGY: DL ISLAND

The energy induced by the competing forces may be
calculated from the relation in Eq. (12) using the continu-
um approximation that has led to Eqs. (17), the parabolic
approximation (8), and the relations (18):

Of some interest is the limiting case in which the entire
island is homogeneously deformed into perfect registry
with the substrate so that

(26)

2 2 2

2
= f dn f dm J33 g +a (g —g) + f + — f +P r—t +a (rt i)) + — f—

+ f +2v-d XJ

dm
dg f d g f + dg f
dn dm dn

f-
dm

(27)

If we substitute from Eqs. (21)—(25), it follows after a somewhat tedious but straightforward calculation, that we may

express the mean energy per DL island atom in the form

DL + 2N FDL
2W&'f '(2++1)' »+1 (28a)

FDL

+ (P —1)
PN

1 q2t2
(P —1)(q, —2) +(P+1)(qz —2)

PN 1

2
q2t2+(P+1)
y2

q, t, q2t2+2(1+v)— (P —1) +(P+1)
PN yl 72

(28b)

P=(1+P /4a )'~, t, =tanh(y, X) . (28c)

For the extreme case of perfect registry, defined in Eq.
(26), we obtain from (27) and (28)

'2 2
2N oL 2 1+ 2X

2%+ I "s 2%+ I
DL

~reg

V. MONOLAYKR ISLAND

The corresponding relations for the ML island may be
simply obtained from the foregoing. Since the second
layer is absent in the ML case the shear, defined in Eq.
(11),and the terms containing e, are absent from Eq. (10).
Equations (19) and (27) accordingly reduce, respectively,
to

and

=f dnf P((+i) )

dg f +dil f
dn dm

+2 d'g

dm
(31)

The appropriate solutions of Eqs. (30) are the antisym-
metric ones

d
2

—p /=0, —p iI=0
g( n ) =fA sinh(pn ), i)(m ) =fA sinh(Pm ),

(30)
so that

(32)



3636 JAN H. van der MERWE AND E. BAUER 39

d f—=f/3A cosh(Pn ) f- ,
dn

d'g f =—fPA cosh(Pm ) f—.
dDl

(33)

The integration constant follows from the boundary con-
dition (24) as

A = (1+v') /P[cosh(PM ) +v'] . (34)

It is easily shown, using (32)—(34), that if the acceptabili-
ty criterion (9) is met for a DL island, it will also be met
for a ML island whose half-width M is defined by (2).

If we now substitute from (32)—(34) into (31) we obtain
for the mean energy per ML island atom [in analogy to
Eq. (28)] the result

2
EML

EML FML( M )
2Wl f'(2N+1) 2N+1

A sinh(PM )

M

pa b

p~ (1—v)W ' (38)

for an overlayer 8 on a substrate A; 3 taken as reference.
We may similarly write down lo for 3 on 3 and define a
bond ratio

numbers of atoms [see Eq. (2)], in order to establish the
inAuence of interfacial misfit and bonding, and hence of
the resulting misfit and misfit strain energy, on the
growth mode. The ML and DL islands must consist of
integer numbers of atoms, M and N. For any integer N
the solution M' for M from (2) is irrational though. In
the range of small N —the present interest —relation (2)
defines integer pairs (N, M ) =(2, 3) and (7,10) for which
M=3 and 10 diAer from M' by only about 1%. These
two cases will accordingly receive special consideration.
In order to estimate the values of M and N at which the
2D to 3D transition may occur, it will also be useful to
treat M and N as continuous variables.

The foregoing analysis suggests that the natural vehicle
for introducing atomic bonding is through the parameter
l in Eq. (13); thus

—2(1+v) +1+v . (35a)

X
M [PMcosh(PM ) +v sinh(PM ) ] 1 0 p2 po(1 —v) Wa

po~ p, (1 —vo) Wob 1+f ' (39a)

Applying relations analogous to those that have led to
Eqs. (29), we obtain for the ML island

EML
ML reg (1+ )

2M
2 Wl f ( 2N + 1 ) 2N + 1

(35b)

p =77 /l =p~/2 (36)

The present calculations allow us to estimate the error in-
volved in this approach. The energy of such an episystem
may be calculated from the integral in Eq. (31), integrat-
ing up to N rather than M, yielding instead of (35) the re-
sult

EDL
DL

2Wl2f (2N+1)

2

FML(p
2N +1

The equivalent of Eq. (35b) likewise follows as

(37a)

EDL
i, «g (1+ )

2N

2W12f (2N+1) 2N+1

2

(37b)

VI. DISCUSSION

It has, in the past, often been assumed in semiquanta-
tive considerations that a double layer comprising two
monatomic layers can be described by the formalism of a
monolayer, replacing p by 2p —alternatively b in Eq. (13)
by 2b. This approach essentially neglects the strain gra-
dient normal to the film plane and introduces, in analogy
to Eqs. (13) and (20), the relations

p„(1—v) W

p, (1—vo) Wo
(39b)

Poa 83

1 —vo m8'0
(40)

Previously, lo has been shown to be about 6. It is con-
venient to take lo =2~, and hence from (20), P0=0. 5. It
accordingly follows from (39) that

/3 =poco=0. 25co . (41)

Also, when a numerical value is needed for the ratio
(1—vo)/(1 —v) we shall make the conventional assump-
tion that v =vo = 3.

It is of interest to establish the validity regimes of the
acceptability criterion (9), i.e. , to find the values of f and
co for which the condition s(f, co;N) ( —,

' is satisfied. In
(f, co) space the boundary line for given N is defined by
the relation

g(f, co;N)= —,
' .

With Eq. (21) this gives the implicit equation

(42)

f(co; v', N ) = 1/4[ A, si h(ny, N ) + A 2sinh( yzN ) ]

The misfit f is defined in Eq. (3). Thus coo, in (39b), is the
true bond ratio depending on p/po and 8'/8'0 but not
on f.

Also, for B on A it is seen from (28a) —(29) and
(35)—(37) that the energy is proportional to

p(1 —vo)(1+ )W'l'= Wol = Wol
po(1 —v) co Wo

We wish to compare the energetics of monolayer (ML)
and double-layer (DL) islands, consisting of the same :—1 /4$( coo, v', f;N ), (43)
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0.4

0.3

FIG. 2. Maximum misfit f =f, for which the potential ap-
proximation (8) is acceptable as a function of the parameter coo

[Eq. (39b)]. The curves are the solutions (f, coo) of Eq. (43) for
v'=0.2 [Eq. (44)] and v= —,': curve A for N=2 and curve B for
N=7. At oio=0, f =1/4N. Curves A' and B' represent the
corresponding zeroth-order solutions f .

0.2

10
N

15 20

the quantities y», v', A», and cu0 being defined by Eqs.
(22), (24b), (25), and (39), respectively. The acceptable
values of f are those below the curve of f,:f(roc;v—', N),
for fixed values of v' and N, f, being the exact solution of
Eq. (43).

The implicit equation (43) is dealt with iteratively,f I/4$( coo, v', 0, N), f '= I/4$(roc, v', f,X), andf"=f, being the zeroth-order, first-order, and final solu-
tions, respectively. We have carried out calculations cov-
ering the intervals O~cu0~ 10 and 0 v'~ v for %=2 and
7. The most notable result is that the convergence is rap-
id; while f differs from f, by about 20%%uo, f' is within
2%%uo of f, . The dependence of f, on coo and v' are

100-
M—

-1 000

80- 800

FIG. 4. Curves of the energy ratio r =s /s " [Eq. (46)] vs
DL island size 1V (N and M treated as continuous variables) for
bonding parameter [defined in Eq. (39b)] coo=0.5 (curve A) and
coo= 1.0 (curve B).

60- 600

. N=7
40- 400

0.6-
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0.4-

0.2-
0-

COp

10

I

10

FIG. 3. Ratio r =s /e [Eq. (46)] of energy per atom in
double (DL) and monolayer (ML) islands with (approximately)
equal numbers of atoms [Eq. (2)] as a function of the parameter
coo [Eq. (39b)]: curves A and B for N=2 and N=7, respectively,
and misfit f as defined by Eq. (43) and displayed by curves A

and B in Fig. 2. The dotted curves are the corresponding ones,
but for f=0.05. The curves for f=0.1 lie between each pair
consisting of dotted and solid lines.

FIG. 5. Curves displaying the variation of ML- and
DL-island total energies, respectively, E "/E
=2(2M)iFML(P M) [Eqs. (47)] and ED&L /EoML

=4(2N) F "()332,N) [Eq. (37a)] vs ohio in units of E
=pa (1+f)f /(1 —v), where the two ML's constituting the
DL island are constrained to undergo the same deformation: (a)
A, A, for ML's (M=3); f =f, from Eq. (43) and f=0.05, (b) B
for a ML's (M'= 10); f =f„(c) A o and A, for DL's (N=2);
f =f, and f=0.05, and (d) B and Boi for DL's (N=7); f=f,
and f=0.05. The values designated D and M represent, respec-

y EDL //'EML and EML //EML
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DL

ML

F (N, coo f v v)

F (M, aio, f, v', v)

(46)
using Eqs. (2), (22), (25), (28), and (35a). It is useful to in-
vestigate the dependence of r on coo: (a) for f values satis-
fying Eq. (43), i.e., for the maximum misfit for which the
potential approximation (8) is acceptable, and (b) for fixed

f=0. 1 and f=0.05, bearing in mind that the results are
meaningful for f=0. 1 only when coo is greater than the
value defined by Eq. (43). The results are displayed in
Fig. 3 for small (N=2) and large (N=7) islands. The

significant; f, increases monotonically from 1/4N (at
coo=0) as aio increases, but decreases monotonically as v'

increases from v'=0 to v'=
—,'. At aio=10 (a rather high

value) f, decreases from about 0.5 to 0.4, i.e., by about
25%, when v' increases from 0 to —,'. Clearly the truth is
somewhere between v'=0 and v'=

—,', possibly closer to
v'=

—,'. We adopt a value of

v'=0. 2 (44)

knowing that the eAect on relative values of calculated
quantities will be small. The dependences of f and f,
on co0 for N =2 and 7 are displayed in Fig. 2.

In order to assess the contribution of misfit and bond-
ing to the energetic preference for 2D or 3D growth we
need to know: (a) the relative magnitudes of the energies
per atom c. " and c " so that we can establish the direc-
tion of the related driving force, and (b) the magnitudes
of these energies as compared to free-surface energies.
We may thus assess their ability of swaying the growth
towards one mode or the other.

We begin by comparing the energies in the limiting
case in which the islands are homogeneously strained into
registry as defined by Eq. (26). From Eqs. (2), (29), and
(35) it is seen that

(45)

For the specific cases (N, M) =(2, 3) and (7, 10),
representing respectively "small" and "large" islands, it
follows that r„&1.

We may write for the general case
EDL

r(N, coo,f, v', v) =
EML

EML 2(2~)2FMLEML

W'Ol op(1 —vo)(1+f )f
IMO(1

—v)
EML

0

(47a)

(47b)

using Eqs. (35a), (38), and (40). Curves of E and E
versus co0 in units of EQ

L are displayed in Fig. 5. The
limiting value E„, in Eq. (35b) and Ei „ in Eq. (37b),
are also indicated in Fig. 5 as M and D, respectively. A
numerical value of E "for given Wolo in Eq. (41a), given
cop 111 Eq ~ (39b), and given f is obtained from the figure by
scaling with the ratio p(1 —vo)/po(l —v) occurring in
both E0 and ~Q

We wish to compare the energy contributions of purely
electronic nature and the contributions E and E "due
to disregistry and strain. With the conventional assump-
tions that, particularly (i) a ML is macroscopic, (ii) the
surface free energy is isotropic, and (iii) the structure is
simple cubic, the growth mode criterion [see Eq. (I)] for
B on 3 —excluding the contributions of the side faces,
disregistry and strain —is'

curves for f=0. 1 lie between the members of each pair,
consisting of a dotted and solid line, and are not shown.

In Fig. 4 we compare the variation of the ratio r with N
for coo=0. 5 (curve A) and 1.0 (curve B). Apart from the
fact that the dependence illustrated in the curve is in-
teresting in itself, it also demonstrates the expectation
that a crossover between curves 3 and B as well as a
crossover between the mechanical energies of DL and
ML islands (r increasing from below, to above unity) is
not possible.

Having determined the relative values of E "and E
we shall know both if we know one of them. We pick the
one with the simpler formulation, namely, E " in Eq.
(35a). One remaining difficulty is that both are propor-
tional to O'I, which does not simply depend on co, but
rather on parameters appearing separately in co, as may
be seen in Eq. (40). And, of course, if we wish to analyze
the dependence of E on m we are limited to the accep-
tability domain whose upper bound is defined by Eq. (43).
We consider the acceptable regimes of ai for f=0.10 and
0.05, and write

&0 for FM
(2M+1) a (7 11+yii~ —y~ )=—(2M+ I) a 5'yii~ 0 fo VW, (48)

where y21& is the electronic contribution to the interfacial free energy in the absence of misfit and (2M+ 1) is the num-
ber of atoms No in Eq. (2). VW refers to the Volmer-Weber and FM to the Frank —van der Merwe mechanism for the
growth of thin crystalline films near equilibrium. If the energies of the side faces, as well as the energy of disregistry
and strain when misfit exists are included, the criterion generalizes to

((2N+1) a hyzz —(2N+1) a @11+ED for FM
YBA 1 A ) (2N+ 1 )2a 2+ 0 (2N + 1 )2a2 +EDL for

8(i/2 1) 2(EML EDL) (0 for FM

2~+ 1
~ (2M+1)2a2 )0 for VW . (49)
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Here we have made use of Eq. (2). The second term on the right comes from taking the side surfaces of the DL and ML
islands into account. It follows from Eqs. (35a), (40), and (46) that

E E—=(2M) 2W&liJ' ( W/ Wino)(1 —r)F "(P,M) .

Combining Eqs. (50), (39), and (40b) the growth mode criterion in Eq. (49) becomes

(50)

8(&2—1) 2M
+ 1

V 2~+1
(0 for FM
)0 for VW;r &1 .

The ratio r is given by Eq. (46) and illustrated in Figs. 3
and 4, whereas F is given by Eq. (35a) and illustrated
in Fig. 5. Since r and F depend in a complex manner
upon M, p, v, W, pii, vii, Wii, and f, this relation is
difficult to analyze. It does, however, clearly show that
misfit favors VW growth as do positive values of hy „z,
whereas negative values of 4y ~z and the contribution of
the lateral boundaries of the islands favor FM growth.
The excess of one or the other implies the existence of a
driving force towards the relevant growth mode. The
contribution from the side faces is seen to decrease with
island size.

VII. COMPARISON WITH EXPERIMENT

Reliable predictions on the basis of Eq. (51) are not
only hard to make because of the difficulty of evaluating
the second term in it, but also because of the lack of data
for yz„ in Ay~„. Nevertheless a few examples of
current interest in which y~ & y z will be discussed
briefly. Such systems are fcc, Fe, fcc Co and Ni on
Cu(100}, and bcc Fe and Cr on Ag(100} and Au(100).
The interatomic distances d (defining the misfit) and the
surface energies y as taken from Ref. 10, are listed in
Table I. Estimates of y s ~ (in J m ) are Co/Cu,
+0.20;" Ni/Cu+0. 02;" Fe/Cu, +0.40;' Fe/Ag,
+0.62; ' Fe/Au, +0. 19; ' and Cr/Ag, +0.57. '

For fcc Fe, fcc Co, and Ni on [ 100 j Cu we have
(f, b,ys„ in Jm ) equal to ( —0.007, ) +1.40),
( —0.018, +1.06) and ( —0.025, +0.45), respectively. In
order to apply the criterion in Eq. (51), we need also to
have values for the second and third terms. The third
term is easily estimated using the data in Table I. To
evaluate the third term we need to estimate ~p. On the
basis of the relation pp= Cp S p we may take p= C8', so
that cop=Cp/C and cop=1 when C=Cp. For cop=1 it
follows from Fig. 3 that r =0.25 and 0.65 for M =3 and
10, respectively, and then from Fig. 5 that
E "/Er =2(2M) F =30 and 800, respectively. On
using stiffness constants for Fe from Ref. 14 and formulas
for Voigt averages from Ref. 15 we find p=0.9X10"
N m and v=0. 27. The third term in Eq. (51) may now

be calculated. The three terms in this equation accord-
ingly yield (in J m ) 1.40, —1.39, and 0.002, respective-
ly, for M=3 and 1.40, —0.46, and 0.002, respectively,
for M=10. For values of cop other than 1 the last term
can at most be two times larger and thus still negligible.
We may accordingly conclude that FM growth is unlike-
ly in Fe/Cu(100), and that Co/Cu(100) with hays~ = 1.06
J m is probably a borderline case, whereas Ni/Cu(100)
with hy~~ =0.45 Jm may be a clear case of FM
growth. Of course, since the third term is proportional tof, it would become significant at misfits of the order of
10%, about 200 times larger than for the 0.7% of Fe/Cu.

Similar considerations apply to bcc Fe and Cr on Ag
and Au that have the orientation relationship
(100)s )~(100)„,and [010]s~~

[011]„. In spite of the small
misfits of —0.008 and —0.006 for Fe on Ag and Au and
of —0.002 for Cr on Ag, and the negative contribution of
the side faces, FM growth is not possible because of the
large positive Ay~~ values, 2.26, 1.50, and 1.32 Jm
respectively. For Cr on Au, with f= —0.0002 and
Ay&„=0.50 Jm, the situation is similar to that for Ni
on Cu. The predictions of Eq. (51} with the values of
Table I are in part in disagreement with recent experi-
mental data which claim FM growth for fcc Fe (Refs.
16—18) and Co (Ref. 19) on Cu(100), for bcc Fe on
Ag(100) (Ref. 20) and Au(100), ' and for bcc Cr on
Ag(100) (Ref. 22) and Au(100). Most of these con-
clusions were based on the evolution of the magnitude of
the derivative high-energy Auger electron signal of the
film materials at energies E & 600 eV with film thickness.
The signals were found to increase in a piecewise-linear
manner and the first slope change was attributed to the
beginning of the second monolayer. While this technique
for the determination of the growth mode is well estab-
lished now, it has to be used with some caution. In par-
ticular, the high-energy Auger electron signals are rather
insensitive to the fine details of the growth mode. For ex-
ample, in the growth of Fe on Mo(110) the low-energy (47
eV) Fe and the 186-eV Mo signals show a clear slope
change at 1 ML while no slope change is discernible at
this coverage in the 704-eV Fe peak and only a smaller
change after completion of 2 ML. The slope changes

TABLE I. Interatomic distances d and specific free-surface energies y of metals (Ref. 10) discussed
in the text.

d (A)
y (Jm )

bcc Cr

2.884
2.056

bcc Fe

2.886
2.939

fcc Fe

2.539
2.939

fcc Co

2.509
2.790

Ni

2.492
2.364

2.556
1.934

Ag

2.889
1.302

Au

2.884
1.626
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after completion of a monolayer decrease with decreasing
packing density of the layer, which usually is accom-
panied by a decrease of the interplanar distance. For ex-
ample, in the growth of Cu on W(100) even the slope
change of the 63-eV Cu Auger signal, after the first
monolayer, is very small.

Thus the claims that FM growth occurs for Fe on Cu,
Ag, and Au(100) and Co on Cu(100) have to be viewed
with some caution, in particular as there is also some evi-
dence to the contrary. (i) In the growth of Fe on Ag(100)
no high-resolution electron energy loss (RHEED)
specular-beam intensity oscillations, which are typical for
monolayer-by-monolayer growth, could be seen under the
same experimental conditions which produced such oscil-
lations in the growth of Fe on Fe(100). For Fe on
Cu(100) the non-FM-type growth has been demonstrated
with several techniques including RHEED specular-beam
intensity oscillations, photoelectron forward scatter-
ing, ' and CO titration. Of course, differences in the
deposition conditions could cause differences in the
growth mode. If, for example, the surface temperature is
so low that the condensing atoms cannot diffuse across
the surface to form the 3D clusters expected on the basis
of the equilibrium growth mode criterion, then
monolayer-by-monolayer-like ("quasi-FM") growth may
occur. ' An indication in this direction is the observation
that Fe does not grow in the FM mode on Au(100) at
150 C (Ref. 21) and that Cr on Au(100) forms at approxi-
mately 120'C, initially a substitutional alloy. Taking all
this evidence into account it appears safe to conclude
that the experimental data —excluding some controver-
sial interpretations —are in agreement with the theoreti-
cal predictions of Eqs. (49) and (51).

Even though uncertainties in the value of the parame-
ters entering the relevant equations still exist, the theoret-
ical considerations seem to support the experimentally
based conclusion that FM growth occurs for the system
Ni on Cu(100). Nevertheless we need to have further
recourse to experiment which, in itself, is risky because of
the danger of alloying. Some of the early studies reported
FM growth, most of them VW growth. ' More recent
work, using surface science techniques, such as Auger
electron spectroscopy or photoelectron forward scatter-
ing, indicate FM growth up to about six monolayers
in agreement with the foregoing considerations.

VIII. CONCLUSIONS

The following conclusions are of interest.
(1) The acceptability regime of a double-layer island

encloses the acceptability regime of a ML island contain-
ing the same number of atoms.

(2) The first-order solution of the implicit acceptability
relation (43) is almost indistinguishable from the exact
solution.

(3) The acceptable misfit f, increases with increasing
bonding (coo) and decreases with increasing island size
(N) having a lower limit of I/4X at zero bonding. Con-
versely, the island "size" X that falls within acceptable
limits, being proportional to f for given coo, can be
quite large when f is small enough. Also, for a misfit

f=0.05 the acceptability criterion will never be violated
for an island size %=2, but when %=7, it will be violated
when coo ~ 0.3.

(4) The energy ratios E /F =r are very insensitive
to misfit; the maximum discrepancy between r values for
f =f„satisfying Eq. (43), and f=0.05 (for both %=2
and N=7) is less than 3%.

(5) The ratio r is everywhere less than unity (as may be
seen from Figs. 3 and 4) and approaches the value
(X/M) as coo goes to zero. This implies that the energy
contributions of disregistry and strain invariably increase
the total energy in relation (51) so that it may become
positive if Ay&~ were negative and hence favors 3D rath-
er than 2D growth.

(6) It may be concluded from Fig. 5 that the energy
E

&

" of a DL, in which the ML's are constrained to un-
dergo the same deformation, is less than that of the corre-
sponding ML when the number of atoms is small. How-
ever, since E

&
will increase more rapidly with size it will

ultimately exceed that of the ML.
(7) Application of the growth mode criterion to some

film-substrate systems of current interest predicts non-
FM growth for Fe on Cu, Ag, and Au, and Cr on Ag(100)
surfaces, in contradiction to some experiments but in
agreement with others. Theoretically Co on Cu is a bor-
derline case and Ni on Cu a clear VW case, depending on
the reliability of surface energy data. In systems with
small f and yii —y z, the criterion does not allow reliable
predictions at present because of the uncertainties in the
parameters involved.
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