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We consider the large-angle diffuse scattering of thermal-energy atoms by defects or adsorbates
on a surface. We obtain the Debye-Wailer factor for the thermal attenuation of the incoherent elas-
tic peak. When the Debye exponent is small, the diffuse inelastic contribution is dominated by the
single-phonon exchange, and is proportional to the frequency distribution function of the defect or
adsorbate. We discuss its magnitude compared to the multiphonon background.

I. INTRODUCTION

Elastic and inelastic scattering of neutral atoms at low
energies has provided a large quantity of detailed infor-
mation about the structure and vibrational properties of
surfaces. ' Defects and adsorbates have been intensively
investigated by observing the decrease in coherent
diffraction intensities as a function of surface coverage. '

Recently a new class of experiments has demonstrated
that the diffuse elastic intensity scattered at large angles
away from the specular can provide detailed information
on the differential cross sections of defects and adsor-
bates. ' In this paper we wish to examine the nature of
this large-angle diffuse scattering, with particular atten-
tion paid to the inelastic part due to exchanges of pho-
nons with the surface.

In a typical experiment on an ordered surface with a
highly monoenergetic incident beam, one observes
diffraction peaks at angles deAned by energy and
parallel-momentum conservation. The intensity of these
peaks can be large or small compared to the specular
beam, depending on the smoothness of the surface corru-
gation. A time-of-Aight analysis of the intensity scattered
between the diffraction peak positions virtually always re-
veals combinations of an elastic peak and of inelastic
peaks, due to features in the phonon spectral density such
as Rayleigh modes. Measurements of the inelastic peak
positions have been used to determine dispersion rela-
tions for the surface modes of a large number of materi-
als. The elastic peak is due to scattering from defects or
disorder on the surface and usually appears with the
same linewidth as the incident or specular beam. It
serves as a very useful reference point for determining the
inelastic peak positions, and in addition, measurements of
its intensity as a function of parallel-momentum transfer
have revealed structures which can be related to the size
and shape of defects or adsorbates on the surface.
These elastic and inelastic structures rise out of a diffuse
inelastic background that appears at all angles and ener-
gies, is dependent on incident energy and crystal temper-

ature, and is usually considered to be due to multiphonon
exchanges with the surface.

We examine here the details of this diffuse inelastic
background by considering the large-angle scattering
from a smooth substrate surface with a dilute concentra-
tion of defects or adsorbates. We And that the large-
angle inelastic scattering must, in general, be diffuse, and
that at any given angle it has a broad frequency spec-
trum, an exception being the case of adsorbates with
dispersionless Einstein-like modes. An interesting point,
however, is that under the conditions of most experimen-
tal observations the diffuse inelastic contribution is
predominantly due to single-phonon exchanges, with the
multiphonon contribution being substantially smalle'r. In
addition we derive the Debye-Wailer thermal attenuation
factor for the diffuse elastic peak.

In the next section we develop the theory for large-
angle scattering from surface defects, and in Sec. III we
consider the inelastic part using simple Debye and Ein-
stein models for the phonon spectral densities. In Sec. IV
we give an explicit calculation of the scattering amplitude
of an isolated defect on a smooth surface, and in Sec. V
we conclude with a summary of the results.

II. SCATTERING FROM DEFECTS

We develop the theory for scattering by a small cover-
age of defects, here considered to be adsorbates or other
point-scattering centers. We consider the coverage to be
sufFiciently dilute that multiple scattering between defects
can be ignored; then the principal result looks very simi-
lar to that commonly used for neutron or x-ray scattering
from the bulk. We begin with the transition rate between
the initial state i and final state f of the entire system,

tof, =
I Tf; I'5(E, —Ef ),

where the unperturbed Hamiltonian is

Ho= — V' + U+H'
2m
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w(kf, k;)= f dt e ' f (Tf(0)Tf, (t)),

where c, and cf are particle energies. We assume that
multiple scattering between different defects is negligible,
and also assume that we are interested in the intensity

sufficiently far from specular that we can ignore the
scattering from the Aat substrate surface between centers.
Then the transition matrix can be written as a sum of
atomiclike scattering amplitudes, each multiplied by a
phase factor

(1)
—ik (Rl+ul )

Tf, = graf, e
1

where k=kf —k, is the total momentum exchanged by
the scattering particle, the sum extends over all surface
defect positions R1, and u1 is the displacement from the
equilibrium position due to vibrational motion. If, in ad-
dition, all scattering centers are assumed to be identical,
Eq. (6) takes the form

—ik.(Rl +ul )

Tf, =rf, ge
1

This form is further justified and the approximations
leading to it are clarified in Sec. IV below, where we ex-
hibit an explicit calculation for a hard surface in the
eikonal approximation. We note here that ~f, is not sim-

ply an atomic scattering amplitude for the defect; it must
also include multiple scattering with the surrounding sub-
strate surface. The transition rate of Eq. (5) now becomes

w(kf, k, )=, f" dt e
"" f lr(kf, k;)l'

lk. [RI 0)+ul(0(e

—ik-[R.(t)+u. (t)] &Xe (8)

where H' is the crystal Hamiltonian and the remaining
two terms in (2) comprise the unperturbed particle Ham-
iltonian which includes a static distorting potential U.
Thus, for a typical unperturbed state of the system, i'

stands for the momentum of the scattering particle k,
and the quantum numbers of the unperturbed crystal
[n, I. S. ince only initial and final particle states can be
measured in the experiment, we must sum the transition
rate over all possible final crystal states and average over
all initial crystal states. This produces a particle transi-
tion rate w(kf, k;) given by

wtkt, k, )=( X tU~,. (3)
In

where the angular brackets ( ) represent the average
over initial-crystal states. We make the van Hove trans-
formation which consists of representing the energy 6
function as an integral and defining time-dependent
operators in the interaction picture as

T (t) iH tt'AT —iH't/ii (4)

The sum over final crystal states can be carried out using
closure and we have

where we have made the further assumption that ~f; does
not depend on the crystal operators (see Sec. IV below).
Equation (8) has the general form of the fundamental
equation for a large class of scattering treatments involv-
ing a many-body target:

w (kf, k; ) = lr(kf, k, )l S(k, to),

where (o=(sf —s; )ifi. It is the product of a form factor
l
7 ( kf, k, ) l

for the scattering centers, and a dynamical
structure factor S(k, 0)) which depends on the average
over positions of the scattering centers.

We examine the Fourier transform of the structure fac-
tor as it appears in Eq. (8):

ik Ri(0) —ik.R (0), ik ui(0) —ik u. (t))

I,j
(10)

—( [k-u. (t)] ) /2
Xe

(k-u, (0)k u, (t) )Xe
—2 W(k) ~l

in which exp( —28 ) is the Debye-Wailer factor, where
W = ( (k.ui ) ) /2 is independent of the position l parallel
to the surface. Real-energy transfers between the surface
and scattered particle are governed by the correlation
function

Qi (k, t)=(k ui(0)k u (t)) .

We consider brieAy the case of elastic scattering which
corresponds to the zeroth-order term in the expansion of
exp[Q( (k, t)]. The structure factor (10) is then indepen-
dent of t:

(13)

For randomly distributed scattering centers, the sum over
positions can be replaced by its average value over an en-
semble of distributions and we find, as usual,

S(k)=g, (14)

where r) is the total number of scattering centers. (This
same result holds for the diffuse part of the scattering
from a random lattice gas. ") If, instead, the defects were
arranged in an ordered array on the surface we would
have

S(k, t)=q +5ko,

where Cx is the set of surface reciprocal-lattice vectors.
(This is also the result for the coherent part of the
scattering by a random lattice gas. ") Using (14) for a
random distribution of scattering centers on the surface,
we obtain for the transition rate

If all vibrational modes of the crystal and defects satisfy
the harmonic approximation, the vibrational average can
be carried out by standard methods: '

ik.ul (0) —ik.u ( t ) —( [k.ul (0)] ) I2(e ' e ' &=e
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w(kf, k;)=i) ~r(kf, k;)~ e '"'5(Ef —E;) .

The quantity which is usually measured is the differential
reflection coefficient dR /d cfd AI, which is obtained
from (16) by dividing by the incident fiux normal to the
surface j;= ~))lk;, ~/m, and multiplying by the density of
states for a 6nal scattered particle:

2NMco (Q)
u t =

1/2

e(Q, v)

ties just "ride along" with the phonons of the unper-
turbed surface. With this approximation we can write
the vibrational amplitude of the jth scattering center in
terms of normal modes as

2 ~r(kf, k;)~ e 5(Ef —c;) .dR "' m 'Ikfl, ,)t,(„)
dEfdA, f i)i'k;, (2ir)

(17)

iQ R +ice„(Q)t
X a & e

—iQ R. —iso„(Q)(
+ay ~e (18)

This is essentially the result which has been used to ex-
plain the experimental observations of structure in the
diffuse scattering of He by steps or by adsorbed CO (Ref.
5) on a smooth Pt(111) surface. We note that our con-
sideration of the vibrational motion of the crystal shows
that the diffuse elastic peak is multiplied by a Debye-
Waller factor similar to that which is associated with
diffraction peaks.

We now move to the problem of inelastic scattering,
where we must evaluate the displacement correlation
function of Eq. (12). We assume at first that the impuri-

where Q is the parallel-phonon momentum, v represents
additional phonon quantum numbers such as Rayleigh-
mode branch or normal momentum of bulk modes,
e(Q, v) is the polarization vector, and a & is the
phonon-creation operator. The polarization vector is re-
lated to the frequency distribution function p &

in the
usual way:

g e (Q, v)et3(Q, v)5(co —co(Q, v)) =p ti(co) .
Q, v

The displacement correlation function can then be
straightforwardly evaluated as

()i k.
(20)

where n„(Q) is the Bose-Einstein factor,

n (Q) = [exp(A'co„(Q)/k~ T) 1]—
with kii Boltzmann s constant. To obtain the single-phonon contribution to the transition rate of Eq. (8), we expand
exp[gii(k, t)] in Eq. (11)and keep the linear term. This leads to

w'"(kf, k;)= —f dt e ' f ir(kf, k;)~ e

~k e(Qv)~ + i(&+Q).(R —Ri) —(ca (Q)~ '(K —Q) (R —Ri) i (Q)t

2NMco (Q)

(21)

The sum over particle positions, just as in the elastic case of Eq. (14), gives a factor of i) for a random distribution, or
for the diffuse scattering by a lattice gas. Thus the final expression for the differential cross section becomes

2 —2 W(14)

X g ' [5(E;—Ef+A'co„(Q))n (Q)+5(e; —Ef —))ico,(Q))[n (Q)+1]I .lk'(Q, v) I'
2NMco, (Q)

(22)

Considering now the general case when the impurities
affect the phonon spectrum, we see that in Eq. (18) we
inust replace e(Q, v)exp(iQ R. ) by a general polarization
vector ei(Q, v) that depends on R,. in an unknown way
and is characterized by three quantum numbers that we
still write as (Q, v), even though Q is no longer a wave
vector. The only property of e (Q, v) that we need is that

its phase varies randomly with R, so that, in the analog
of Eq. (21), we can still discard all terms with i&j. Equa-
tion (22) is then the general result for the single-phonon
contribution to the diffuse scattering from a dilute collec-
tion of scattering centers. It consists of the phonon-
creation part proportional to n (Q)+1 and the destruc-
tion part proportional to n (Q) and both are multiplied
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by a Debye-%"aller factor. We note that one of the sums
over Q, v can be trivially carried out using the energy 5
function, and consequently the differential reAection
coefficient is usually diffuse, and the only structure is that
appearing in the phonon spectral density. This structure,
of course, is very sharp for a dispersionless mode in
which co is independent of Q, i.e. , an Einstein mode. '

These points are illustrated by the model calculations in
the next section.

III. DEBYE AND EINSTEIN MADRAS

We now take the results of the preceding section and il-
lustrate them by considering some simple forms for the
spectral density for vibrations of the scattering centers.
The single-phonon contribution to the scattering is ob-
tained from Eq. (8) with Eq. (11) expanded to first order
in Qij(k, t):

u)"'(k&, k; ) = f dt e ' ~ lr(k&, k; )l e '"' g e ' ' (k ui(0)k. u (t) ) .
1,j

(23)

From the arguments after Eq. (21) it is clear that the diffuse contribution comes only from those terms with I =j, i.e., it
is the incoherent contribution. Then we have

u)"'(k/, k;)= f dt e ' ~ lr(k/, k, )l e '"'(k.u(0)k u(t)) . (24)

(u (0)u (t)) = f p(co)e'"'n (co),
2M (25)

where M is the effective mass of the surface defect and
n(to) is again the Bose-Einstein factor. This correlation
function substituted into Eq. (24) leads to a differential
reAection coeKcient of the form

m k&q
2''lk, , l(2 )'M

For simplicity we will assume that only vibrations in the
direction perpendicular to the surface are important.
This is usually the case because the normal momentum
transfer q =k,, +k&, is typically considerably larger than
the parallel momentum. Thus we are making the replace-
ment (k.u(0)k. u(t) ) =q (u (0)u (t)), where u is as-
sumed to be the normal component of u, although we
note that it is a straightforward matter to keep all the
components. Now, in terms of the frequency distribution
function p(co) we can write the correlation function as Xe 2~'")n (co~ )6(co—co~) . (2&)

DifFuse scattering from several species of adsorbates on
surfaces has been shown to exhibit such dispersionless
Einstein vibrational modes. ' '

It is of interest to consider the multiple-phonon contri-
bution to the difFuse elastic scattering and to compare its
importance to the above single-phonon terms. The two-
phonon contribution is obtained from Eq. (8) with Eq.
(11) expanded to second order in Qi (k, t). Using the
simplified displacement correlation function of Eq. (25)
leads to

and it is understood that dR ")/de&dQ& =0 if lQl ) cot).
A second example is the Einstein model, in which the
spectral density consists of a single strong peak,
p(co)=|)(ro —co@). In this case the differential reflection
coeScient also shows the same sharply peaked structure,

dg (1) m lk lq
lr(k, , k, )l2

d e/d 0/ 2A' k;,M (2~) co~

—2w)i) p(&)n(&)
0 (26)

4 (k k )
2 —2w(k)

m 'll

Se'Jk l(2~)'M'

where 0= (e& —e, ) /A. Note that since n ( —co)
= —[n (io)+1] this expression contains both energy-loss
(phonon creation) and energy-gain (phonon annihilation)
events. Equation (26) describes totally diffuse scattering
at all final angles with the only structure due to the pho-
non distribution coming from its linear dependence on
p(to). The temperature dependence is contained in the
Debye-Wailer factor and in the Bose-Einstein factor.

As a specific example we can look at the Debye model
in which p(to) =3' /coi, , where co2, is the Debye frequen-
cy. Then

3m 2lk/I q2
lr(k/, k, ) f'

2A'Mlk l(2')2co2n

X dc'f p(co)n(ro) p(O —co)n (II—co)

CO co

(29)

dz(2'

dc) ding

~9m'lk, lk, Z'

4' k;, (2~) M d'or
q lr(k, k;)

This depends on the convolution of the phonon spectral
density with itself. This simplifies in the high-
temperature limit ki) T ) fetor, where n (to)~kii T/Ace,
and if we further consider a Debye model for p(co), the
integral over co gives a factor of 2coi, —lQl (and zero for
I&I ) 2toii). Then

xe '"'lQln (0) (27)

—2W)i )
COg) (30)
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If we evaluate the single-phonon contribution of Eq. (27)
in the same high-temperature limit, we obtain the ratio of
the two-phonon contribution to that of single phonons to
be the following for ~Q~ &2coi):

can rewrite Eq. (34) in the form

C(K)— dR e
—iK Re —iqg(R)1

L2

R 3& k T pyg En kg T
=12

M A'coD Ace
(31) + g f dRe ' — fdReL2 g L2

IV. SCATTERING AMPLITUDE
FOR ISOLATED DEFECTS

In this section we calculate explicitly the transition-
matrix amplitude for a dilute coverage of adsorbates on a
Aat surface. We assume that the surface can be treated as
a hard reAecting mirror and that the adsorbates are
represented by hard hemispheres on that surface. We
will use the eikonal approximation, since it is sufticient to
exhibit the features of more exact solutions and justifies
readily the statements above Eqs. (6) and (7).

The usual starting point for developing the eikonal ap-
proximation for surface scattering is the Rayleigh ansatz,
in which the wave function is represented as a plane wave
incoming toward the surface and a distribution of outgo-
ing scattered waves:

K
(32)

with kf, =[k;,+K; —(K, +K) ]'~ for elastic scattering.
The hard surface is defined by a corrugation function
g(R) such that the boundary condition on g at the hard
surface is

where the effective normal energy of the scattered parti-
cle is defined by E„=R q /Sm. The result of Eq. (31) is
sometimes referred to as the Weare parameter, ' and we
note that it is also of the same form as the Debye-Wailer
exponent 8' for the same one-dimensional Debye phonon
distribution. Thus under circumstances in which Eg. (31)
gives values «1, and this corresponds to many experi-
mental situations, the diffuse inelastic scattering is dom-
inated by the single-phonon contribution.

The last term, in which the integral is over the entire sur-
face, is a 5 function describing specular scattering. This
arises because we have subtracted and added the middle
term, which is an integral, over the Aat surface under-
neath each of the bumps. This middle term is the
Fraunhofer contribution, while the first term is the
illuminated-face contribution. Since we are interested in
scattering at large values of parallel-momentum transfer
K, we can neglect the 6-function contribution at K=O.
If we now assume that all of the bumps are identical, we
have

—iK R(e —iz((R) 1)y e I

s

c(K) peL
(36)

with R& is the equilibrium origin of the 1th center and the
integral is carried out over only one of them.

Under many circumstances there are multiple semi-
classical hits which may contribute to scattering at a
given final angle, but the eikonal approximation only ac-
counts for single hits. An important example occurs
when the second hit is a backreAection by the mirror sur-
face. When such terms occur they can be accounted for
by adding in an "image" contribution to the illuminated-
face term corresponding to the transfer of perpendicular
momentum q'=k, , —kf, . In this case c (K) becomes

, (K)= — dR, -'K "(,-'« —e -'q'~'R' —1) .1

L
g(R, z =((R))=0 . (33)

(37)
The eikonal approximation consists of assuming that the
dependence of kf, on K is very weak, which leads direct-
ly to the evaluation of the amplitude C(K):

C(K)= — dRe-'" R -'«'"'1

L 2
(34)

As in Sec. III above this ignores any parallel momentum
exchanged by the phonon.

If we now assume that the scattering centers are hard
bumps, well separated, and each occupying an area 5&, we

where q =k;, +kf„and the integral is over the entire sur-
face.

For the inelastic case considered here, where there is
energy loss or gain by the particle at the surface, the most
straightforward extension of the above treatment is to re-
place kf, by

k =[k +k —(K +K) ]' +fia)/2m

The relationship between the transition matrix and C(K)
is obtained by comparing forms of the asymptotic wave
function and is given by

0, RAG
(a —R )', A&a.~(R)= ' (39)

The simplest term is the Fraunhofer part, which is just
the integral over a Aat circle of radius a,

C(K) = r(kf, k, )e'
L fi kf,

where 5 is an unimportant phase. This together with Eq.
(36) justifies the form chosen for the transition matrix in
Eq. (7) above.

We illustrate the above results by making the explicit
calculation for the case when the perturbing bump is a
hemisphere. Then we have
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1 2ma J&(Ka)
z

dRe
L 2 L2 (40)

where J&(Ka) is the Bessel function of order 1. For the
illuminated-face contribution we can obtain a solution us-
ing stationary-phase methods. ' This is sometimes re-
ferred to as the primitive semiclassical approximation:

~ —iak n
J' dR —rK.R iq—g(R) 2ut eRe eI. (41)

where

k n=kf+k, +2k, kfcos(Of+8, ), (42)

and in the expression where q is replaced by q' the result
is of the same form as (41) except that k n is replaced by

k' n'=kf+k; 2k;kf—cos(8f —0,. ) .

Thus for the case of a hemispherical bump we have

2vra ie

L 2

ie iak n— 'J') (lpga)

a (k' n')a(k n)

(43)

(44)

V. CONCLUSIONS

In this paper we have considered the diffuse scattering
by a collection of defect centers on an otherwise fiat sur-
face substrate. Our treatment does not consider the large
contribution to the total scattering cross section due to
the long-range van der Waals part of the defect or adsor-

It is a straightforward matter to obtain a somewhat
better solution for c(K) by considering the atomic
scattering cross section from a hard sphere, together with
its image contribution accounting for a second refiection
from the Aat surface. One can again apply the
stationary-phase approximation. For elastic scattering
~kf ~

= ~k; ~, and for normal incidence the result is identi-
cal with Eq. (44).

(2)R tot

R(3)
3q k~T

2coD~g
(45)

As a by-product of our analysis, we also determine the
Debye-Wailer thermal attenuation factor which multi-
plies the incoherent elastic diffuse intensity: in the sim-
plest approximation, it has the standard form
exp[ —((k u) ) ], where u is the displacement of the de-
fect. Although these results have been obtained for de-
fects or adsorbates on a Aat surface substrate, it is
straightforward to make the extension to surfaces with
periodic structure and exhibiting diffraction effects.
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bate potential, ' but this contribution appears only very
near the specular direction. The results are then valid for
large-angle scattering ( 8 10'), or equivalent for large
parallel-momentum transfer.

We show that the reAection intensities can be directly
related to the structure factor for the distribution of de-
fects. We are primarily interested in the nature of the in-
coherent diffuse inelastic contribution. We find that, for
suSciently low surface temperatures, the incoherent
diffuse inelastic scattering is dominated by the single-
phonon term R'", according to Eq. (31). It is also in-
teresting to compare R ' " to the total two-phonon
scattering intensity R,'„'.

The comparison is relevant because even for a perfect
surface the two-phonon processes are diffuse" in the
sense that they give contributions in regions of the coK
space where one-phonon (coherent) processes are
kinematically forbidden. In the simple model where the
defects "ride along" with the surface and have the same
mass as surface atoms, we have, in analogy with Eq. (31),
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