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Exact results for the scattering of electromagnetic waves with a nonlinear film
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Exact analytical results for the scattering of a TE electromagnetic wave with a nonlinear thin film

is derived. We assume that the incident wave is monochromatic, and that the film is nonabsorbing
and has a Kerr-like optical nonlinearity. Among other things, the reflection coefficient is calculated
exactly as a function of the incident intensity. Optical bistable and multistable behaviors are found.
The phenomena of induced resonances and induced transparency are also discussed.
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FIG. 1. The basic scattering configuration.

There has been considerable interest in nonlinear (NL)
surface and guided electromagnetic (em) waves in the last
several years. ' These waves either propagate at the inter-
faces or are guided by single or multilayered structures
involving NL dielectric film characterized by a Kerr-like
dielectric constant. In contrast, there is relatively little
work on the scattering of electromagnetic waves with NL
dielectric layers. Most of the studies on the scattering
problem rely on the use of Kaplan's solution which ap-
plies to a plane wave incident on a semi-infinite NL medi-
um. However, a numerical study carried out by Tomlin-
son et al. did not find any optical bistable behavior, in
contrast to the theoretical prediction. This is because
there is no memory mechanism so that information on
the field configuration at the front of the beam can be
stored and transmitted to the back of the beam. In this
regard, a NL thin film is therefore interesting in that a
portion of the incident wave is rejected from the surface
at z =d (see Fig. l) and thus can strongly aff'ect the wave

that arrives at a later time, especially when the incident
beam has a sufficient width, and the incident angle (mea-
sured with respect to the normal of the film) is not very
close to tr/2 Ade. tailed understanding of the scattering,
of course, can only be obtained from a time-dependent
analysis of the problem, which unfortunately lies outside
the scope of the present article.

Besides its fundamental importance, work on the
scattering of em waves with finite NL film will also be im-
portant for understanding a variety of phenomena such
as the coupling efficiency of NL prism couplers.

The problem of interest here is the scattering of a
plane-TE-polarized em wave of a single frequency from a
NL thin film. The nonlinearity is assumed to be Kerr-
like. The electric field is separated into an intensity and a
phase function. The Maxwell's equations are then solved
exactly in terms of the Jacobian elliptic sine function.
The integration constants are determined by matching
the boundary conditions at the two interfaces. Results
for the reAection coefficient are calculated as a function
of the incident intensity, and optical bistable as well as
multistable behaviors are found. Unlike the preliminary
version of the present article, full details of the calcula-
tion are given here, and the complete results for rather
general parameter values are obtained for the case of a
self-focusing material. In addition, the present paper also
shows that by suitably adjusting the incident intensity, in-
duced resonances as well as induced transparency of the
film can occur.

An independent work on this problem has recently
been published by Chen and Mills The main results are
quite the same. However, there are a few di6'erences that
are worth mentioning. (I) Our results are not restricted
to normal incidence only. (2) In Ref. 6 a certain parame-
ter has to be scanned through a fixed range to find partic-
ular values which yield a solution consistent with the
boundary conditions. This in e8'ect amounts to solving
for the roots of a single but very complicated algebraic
equation. This can be somewhat nontrivial because there
can be multiple roots present. However, in our work, by
a suitable parametrization of the problem, there is no
need to solve any equation numerically at all. Our
analysis is therefore much simpler. (3) As a result, we are
able to calculate the incident intensity at which induced
resonance scattering occurs. The intensity at which the
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film becomes totally transparent is also calculated. (4) In
Ref. 6 results were extended to bilayers and superlattices
involving nonlinear dielectric layers as well. Our results
here apply only to a single nonlinear layer.

Marburger and Felber did an analysis of a nonlinear
Fabry-Perot interferometer nearly a decade ago and
found multiple-valued transmission-versus-intensity
characteristic. At first glance, there may seem to be simi-
larities between their work and ours; however, there are
major differences which we want to stress. (1) They con-
sider circularly polarized waves while we consider TE-
polarized waves. The difference in the polarization can
be very significant, especially in a nonlinear analysis. (2)
Our results apply to any angle of incidence while theirs
apply only to normal incidence. (3) We also show that by
a suitable choice of scaling of the various parameters, the
basic results are, in general, independent of the incident
angle. There are in total only four possible kinds of be-
haviors, depending on the ratios of the dielectric constant
of the film and the media in front and at the back of it.
(4) In a nonlinear Fabry-Perot interferometer, the front
and the end of the cavity are covered by mirrors whose
reAectivities are fixed. The situation in a nonlinear film is
quite different in that the reflectivities at the two surfaces
are not given but must be determined together with the
reflectivity of the film itself in a totally self-consistent
manner. This is comparatively much more difficult to
handle.

II. REDUCTION OF THE PROBLEM
TO QUADRATURKS

Let us consider here a single nonlinear film which oc-
cupies region (2) between z =0 and d (see Fig. 1). It is as-
sumed that the nonlinear material can be characterized
by a dielectric function which depends on the instantane-
ous value of the local electric field intensity, i.e.,
ez=ez(lE(r, t)l ). Regions (1) and (3), which correspond
to z )0 and z (0, respectively, are taken to be linear,
with dielectric constants E'& and e3.

The interest here is in monochromatic TE waves which
are independent of y, and have the form of a plane wave
along x. Thus one writes

E(r, t) =yE~(z) exp[i (k x cot)], —

H(r, t)=[xH (z)+zH, (z)] exp[i (k x tot)], —(2)

where z)—:k, c/co, g:—zen/c is the distance perpendicular
to the film in dimensionless units, and the double overdot
denotes differentiation with respect to g.

In order to solve Eq. (3), we express E (g) in the form

F. (g)=F(g) exp i f

ding(g)+i/

(4)

where F(g) and g(g) are unknown real functions and P is

where E~(z), H (z), and H, (z) are in general complex.
valued functions. On account of Maxwell's equations,
one can eliminate H (z) and H, (z) in favor of F. (z). The
resulting equation for region (2) is'

(3)

an unknown real constant. Clearly F(g) represents the
amplitude of the field, P gives the overall phase at z =0,
and the integral over g is the accumulated phase within
the film. Inserting Eq. (4) into Eq. (3) and equating the
real and the imaginary parts results in the following two
equations:

2QF+gF =0,
F [g„—+P e(F—) ]F=0 .

(5)

It is convenient to decompose e into a linear and a non-
linear part so that

e(F )=ea+ez(F ), (9)

where, by definition, the nonlinear part has the property
that e(F )~0 as F~O. For any given nonlinear dielec-
tric function ez(F ), Eq. (9) resembles a "classical equa-
tion of motion" and can be integrated to give the "energy
integral":

F /2+ V(F)=e, (10)

where

EI' I'
V(F)= + + —,

' f du ez(u),
2 2F' ' 0

K=—e0 —g (12)

In Eq. (10), e is an integration constant which plays the
role of the total mechanical energy of the system. "
Equation (10) can be integrated to give

dF =+( —0),
Fo &2[e —V(F)]

(13)

where $0 is another integration constant which denotes
the "time" at which the amplitude is given by F0 =F($0).
F(g) can then be obtained by inverting this equation to
give F as a function of g. Substituting the amplitude
function in Eq. (7), the phase factor can then be calculat-
ed via and additional integration. Thus the entire prob-
lem has been reduced to quadratures. For any given
form of the nonlinear dielectric function e2 the electric
field can be determined completely by performing a total
of three ordinary integrals.

Equation (3) can be derived from a Lagrangian of the
form

Equation (5) can be integrated at once, the result being an
exact expression relating the phase function g(g) and the
amplitude function F(g):

l
F'(g)( )=

where l is an integration constant. An ordinary nonlinear
differential equation for F(g) is then obtained by substi-
tuting Eq. (7) into Eq. (6). The result is

$2F g+ ——e(F ) F=O.x F4
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(14)

The fact that the field depends on a total of four real pa-
rameters, P, I, e, and go (Ref. 12) can easily be under-
stood. P is needed because the field can only be deter-
mined up to a constant phase factor due to the gauge in-
variance of I. or of Eq. (3). The rotational invariance of
L implies that l is the conserved angular momentum of
the system. This is also related to the conservation of em
Aux along the z direction, as can be seen by calculating
the Poynting vector S, which can be written, using Eqs.
(1) and (2), as

Eo(i +1)=F(0)exp(iP),

rti, EO(r —1)=[iF(0)—g(0)F(0)]exp(iP),

F (gd ) = tEO,

(22)

(23)

[p(gd )F(gd ) iF—(gd )]=il3ztEO (24)

First, it is clear that Eq. (17) is a direct consequence of
the translational invariance along the x direction. Next,
if Eq. (16), for the field in region (3), is substituted in Eq.
(15), one sees that l is in fact proportional to the
transmission coefficient:

S(g)= Re(il IF. I,O, iE E*) .
8m

(15) I = v)3, It I
F. o . (25)

With F. of the form given as in Eq. (4), Eq. (15) can be
rewritten as

S(g)= F (g)( il„, 0, it(g)) .

Next, we note that t and the phase factors can be elim-
inated from Eqs. (20) and (21), with the following very in-
teresting results:

(26)

Therefore the vector g=—(q, 0, $(g)) is in the direction of
energy flow. Equation (7), which states that f(g)F (g) is
a constant equal to l, is clearly a direct consequence of
the conservation of flux along z.

Equation (10) for e represents the conservation of the
total mechanical energy of the system. Finally the ex-
istence of the constant go simply reflects the time transla-
tional invariance of the Lagrangian. These four parame-
ters will be fixed by the boundary condition which we will
consider next.

III. BOUNDARY CONDITIONS

T

E2=yF(z) exp i kz x + J

ding(g)+p

0
(18)

With t as the complex transmission amplitude, the field to
the right of the film can be expressed as

E3 ytED exp i k,„x +i13 (g gd )

A plane TE wave is assumed to incident from region 1

onto the nonlinear film at an angle oi (see Fig. 1). If we
denote the complex reAection amplitude by r, then the
combined incident and rejected wave in region 1 is given
by

Ei=yE o[e xp(i k&, z) +r exp( —iki, z)]exp(iki x), (17)

where k] =k& sinO&, ki, =ki cosOi, and k] =e& co/c,
and a time-harmonic factor has been suppressed. From
Eq. (4), the electric field inside the nonlinear medium has
the form

and

F(gd ) =0 . (27)

d IEI' dE* „dE
dz dz dz

(28)

and that E and dE/dz are continuous at z =d. There-
fore, the quantity on the left-hand side of Eq. (28) must
also be continuous at z =d. At d this quantity is given
by 2F (g'd )dF (gd )/dz, and at d+, since the intensity in re-
gion (3) is constant, we have d lt I

/dz =0. Therefore ei-
ther F(gd ) =0 or dF(gd )/dz =0. Moreover, Eqs. (7) and
(26) imply that

Equation (26) means that the phase function g(g) is con-
tinuous at z =d. This result comes from the fact that the
energy flux along z is a constant [i.e. , Eq. (7) holds] and
the electric field is continuous across z =d. Equation (27)
implies that the electric field intensity must be an ex-
tremum at z =d. Since in general one cannot expect
F(gd ) to vanish, this means that the intensity must either
be a maximum or a minimum at z =d. From the way the
results in Eqs. (26) and (27) were derived, it is clear that
this result is independent of the boundary conditions at
the z =0 surface. Nor does it depend on the form of the
nonlinearity inside the film. In fact, it is true even in the
linear limit.

The physical origin of these e6'ects is clearly due to the
fact that the region with z & d is a homogeneous linear
medium, which extends all the way out to infinity. Con-
sequently there is only an outgoing wave but no incoming
wave at all. The result in Eq. (27) can also be derived
very simply by noting that

+ I dgit(g)+p (19) I =eh, F (gd), (29)

k,„=k2„=k3 (20)

where g, & is defined as k;&c/co, for i =1,3 and A, =x,z.
From the requirement of the continuity of the tangential
components of the fields across the interfaces at z =0 and
z =d, the following condition are obtained:

and so F (gd ) =i/q3, must be nonzero. Thus again the
result in Eq. (27) is obtained.

Next, in view of the difficulty associated with the "con-
tinuum problem" which has been discussed at great
depth by Kaplan, it is interesting to see if the four com-
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plex equations [(21)—(24)] obtained from the boundary
conditions are sufficient to completely determine all the
physical parameters of the theory. First, note that from
the solution F(g go;—e, l) the quantities F(0), F(0),
F(gd ), F(gd ), and f o dg P(g) in these equations can all

be expressed as functions of go, e, and i. Thus the equa-
tions involve two complex unknowns, r and t, and four
real unknowns, go, e, l, and P, i.e., a total of eight real un-
knowns. Consequently, unlike the case of a semi-infinite
NL medium, there are just the correct number of equa-
tions to determine all the parameters.

From Eq. (21), r can be expressed as

where y—:~eo
—g ~

', and the + (
—) sign is used when

K is positive (negative). Note that when K (0 total inter-
nal reflection should occur in the linear limit at the
boundary between (1) and (2). Also, a new length scale
along z is defined so that

yzcu/c . (40)

sign of a. Hereafter, only the case of a self-focusing
medium, i.e., a & 0, will be considered.

To further simplify the notation, K is rewritten as

(39)

F(0)
exp(i P) 1—.

Eo
(30)

The integral in Eq. (11) can be easily performed, and
Eq. (10) can then be rewritten in terms of a dimensionless
intensity variable 8' which is defined as

When r is substituted in Eq. (22) the result is

I[g„+g(0)]F(0)—iF(0)] exp(ig)=2Eog„. (31)
W(g)=aF /y (41)

Eliminating P from this equation yields the result

F (0)+[rii, +f(0)] F (0)=4EO g„.
—,
' W + V( W)=0,

(32)
where

(42)

The term with the derivative can be eliminated with the
help of the energy integral [Eq. (10)], and together with
Eq. (7) the following result is obtained:

+ (o)2e+[(g„—K)]F (0)+2q„l —J du e~(u)

V( W) —= W +2W 4TW+2S—

and the constants e and I are redefined so that

T =ae/y"

(43)

(44)

(33)
S =al/y

=4Eog), .
(45)

Making use of Eqs. (31) and (32), the phase angle P can be
expressed as

pi, F(0)+ I /F (0)
cosP=

0 91z
(34)

F(0)
sing =

2Eog(,
(35)

By combining Eqs. (30), (32), (34) and (35) the following
result for the reflection coefticient can be obtained:

respectively. Since the "kinetic-energy" term in Eq. (42)
cannot be negative, it is clear that a solution exists only in
a region where V( W) is not positive. From the form of V
and the fact that W cannot be negative (since a is as-
sumed positive here), the parameters S and T must be
such that V has a negative root (which always exists since
S )0) and two positive roots. These roots will be denot-
ed by 8'&, 8 2, and 8'3, which are ordered so that

(46)8'3 ~ 0 ~ 8 2
~ 8'] .

l
2n].&o

This result, together with Eq. (25), yields

(36)

(37)

which is a direct consequence of the conservation of flux
along the z direction. The results derived here will be
used later to determine the integral constants.

IV. EXACT SOLUTIONS
FOR A KERR-LIKE MEDIUM

Thus far the results apply for arbitary forms of the
intensity-dependent dielectric constant. In the remaining
part of the article, detailed results will be derived for the
case of a Kerr-like medium where the dielectric constant
can be written in the form

Of course these three roots can be found in terms of S
and T by solving a cubic equation given by V =0; howev-
er, it turns out that there is actually no need to do so, as
will be shown in the next section. It is clear that the
physical region is given by 8'2 ~ 8'~ 8', and therefore V
will be expressed as

V( W) = —( W, —W)( W —W'2 )( W —W3 ) (47)

The solution to Eq. (42) can be calculated exactly with
the result

W(g') = W, —( W, —W2) sn

(48)

where sn is the Jacobian elliptic sine function with
modulus

ez=a ~E(r, r)
~

(38)

The analysis will be slightly different, depending on the

(W, —W2)

(W, —W3)
(49)
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J, dk4(k)=
W

1/2
2

and go is an integration constant. With this result, the
phase function g can then be found from Eq. (7). A fur-
ther integration gives the accumulated phase within the
film as

complicated functions of W„W2, and W3, which are
themselves rather complicated functions of the parame-
ters S and T. For a given incident intensity Wo, one can
find S and T by solving the two simultaneous transcen-
dental equations. The reflection coefficient is then given
from Eq. (36) by

xrr
1/2

(P —0o»&'

S
r1Wo

(59)

(50)

where

W —W1 2
(51)

and H is the incomplete elliptic integral of the third kind
with modulus k.

It turns out that this somewhat complicated procedure
can be avoided if, instead of S and T, W1, W2, and W3
are treated as parameters. As a result, there is an extra
parameter which can be made use of to solve the equa-
tions parametrically.

To do so, one must be able to express S and T in terms
of W1 W2 and W3 . . This can be easily accomplished
since the Ws are roots of the cubic equation V(W)=0
and therefore obey the following equations:

V. INTENSITY-DEPENDENT
REFLECTION COEFFICIENT

and

Wi + W2+ W3 = +2,
+ W2 W3+ W3 W1 4T

(60)

(61)

In this section, using the above exact solution, the
reAection coefficient will be calculated exactly as a func-
tion of the incident intensity by imposing the boundary
conditions. The boundary condition as given by Eq. (27)
will first be imposed. It is easy to see that this condition
implies that two different types of solution, (1) and (2), are
in general possible. For solution (1), go is given by

W] W2 W3 = —2S

Now let us first consider solution (1) where we have

W((d )= W'i .

Equation (56) then gives r3 =S/Wi, which gives S as

(62)

(63)

Co=4 (52) S =r3W1 . (64)

Po=4—
1/2

E(k),
8'1 —W3

where gd ——ycod /c, with d as the thickness of the film. At
z =d the intensity takes on a maximum value and is equal
to W, . On the other hand, for solution (2),

W2( W~+2)

2r', —W,
(65)

It is clear from Eqs. (60), (61), (62), and (64) that there is
actually only one free parameter. For solution (1) it turns
out that it is convenient to choose W2 as the free parame-
ter. From these equations one finds that

where K(k) is the complete the elliptic integral of the
first kind, and the intensity at z =d has a minimum value
equal to W2.

Next, with new parameters defined by

—2r 3( W2+2)
W3=

2 ', —W,
(66)

r1 =—vl], /

r3—:'93z/'7 ~ (55)

Equation (61) then gives T as a function of Wz as

T = W2( Wz+2)[ Wz(2r 3
—W2 )

the boundary condition given in Eq. (29) can be rewritten
as

r3 S/W(gd ) (56)

where Wo is the dimensionless incident intensity defined
by

Wo =aEo/y (58)

The remaining boundary condition [Eq. (33)] can be ex-
pressed for a Kerr-like nonlinear medium as

2T+2riS +(r i + 1)W(0) ——'W (0)=4r i Wo, (57)

4r3(r3+1)]/(2r—3
—W2) (67)

Therefore, for each value of W2 one can calculate the in-
cident intensity Wo using Eqs. (57), (48), (52), (64), and
(67). The refiection coefficient can also be calculated as a
function of W2 with the help of Eqs. (59) and (64). As a
result, the behavior of the reflection coefIicient as a func-
tion of the incident intensity can be readily found.

Next, it is important to note that not all values of the
parameter W2 are allowed, since the roots are supposed
to be ordered as in Eq. (46). From this condition and
Eqs. (65) and (66) it is easy to see that Wz must be re-
stricted so that, for K )0,

At this point, note that W'(0) and W(gd ) are rather (r3 —1) ~ Wz ~ 2r3 if r3 ~ 1 (68)
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and

0 8'2 2r3 if r3 1, (69) r3
(77)

and, for K &0,

(r3+ 1) W, &2r3 if r3 & 1 (70)

T= — 1+
8'2

2 r2
3

(78)

2r3 Wz (r3+1) if r3 & 1 . (71)

Wo can then be calculated from Eq. (57), and the
reAection coefficient is found to be given by

On the other hand, for solution (2), it is more can-
venient to treat 8'& as the free parameter. The equations
for W(gd ), S, and T are the same as those for solution (1)
except that S'& and 8'2 should be interchanged. The
refiection coefficient can again be calculated as a function
of the incident intensity parametrically. However, W&

must be restricted so that, for K & 0,

0& W, &(r3 —1) if r3) 1, (72)

2& W, &(r3+1) if r3) 1 (73)

(r3+1)& W& &2 if r3) 1 . (74)

The limit of infinite incident intensity corresponds to
8'2=2r3. For K &0 the linear limit is represented by
8'2 =0 if r, & 1 and by 8', =0 if r, ) 1, and for K & 0 it is
8'I =2. As shown below, the results derived here reduce
to those in the linear limit when 0.~0. When K )0 and
r3 & 1 only solution (1) is allowed, and only in that region
does this solution have a linear analog. For K &0 and
r3 & 1 as well as for K (0 and r3 ) 1 or r3 & 1, both solu-
tions are allowed, but only solution (2) has a linear ana-
log; solution (1) does not have a linear analog and so it
exists only when the incident intensity is above some
minimum threshold value.

and if r3 & 1 then this solution cannot be allowed. For
K & 0, W, must be such that

4r, r3

(r, +r3) +(r3 —l)(r f —1}sin gd
(79)

aild

Wz =5/(r3 —1),

W3= —r35/(r, —1) .

(80)

(81)

With these results one finds from Eq. (49) that

(r3+1)5
k =1—

2(r3 —1)
(82)

which is precisely the correct result in the linear limit
when K &0.

For K &0 and r3 ) 1, one should consider solution (2)
with W, —+0. It is easy to see that the results are just the
same as above except that 8', and 8'2 are interchanged.
The reAection coefficient in the linear limit must be inten-
sity independent and therefore must again be given by
Eq. (79), which is just the result anticipated.

For K &0, regardless of whether r3&1 or r3&1, the
linear limit must correspond to taking solution (2) with
W, ~2. Solution (1), which has a maximum intensity at
z =d within the film, clearly has no linear analog and
therefore need not be considered here.

To investigate this limit, let 8'& =2+5, where 6 is an
infinitesimal quantity which is positive if r3) 1 and is
negative if r3 ( 1. One finds that

VI. LINEAR LIMIT

The purpose of this section is to show that the ap-
propriate results are recovered in the linear limit when
a~0.

When a~0 it is clear by examining Eq. (11) that, for
K )0, W& and 8'2 must go to zero while 8'3 must ap-
proach —2, and on the other hand, for K &0, W2 and

3 must go to zero while 8', must approach 2. The
cases K )0 and K & 0 have to be considered separately.

For K )0 and r3 ) 1 only solution (1) is allowed. The
linear limit corresponds to taking 8'2 to zero. From
Eqs. (65) and (66) one has

W(0)= [1+(r3+1}sinh gd] .5

r3 1

In addition, in this limit one finds that

S =r35/(r3 —1), T =5/2 .

(83)

(84)

Combining all these results, Wo and ~r ~
can be calculat-

ed, and the following result is obtained:

to first order in 5. When k —+1 the Jacobian elliptic func-
tions become hyperbolic functions and Eqs. (48) and (57)
yield the result

8'I = 8'2/r3 ~3 —2 . (75)

This is just the right behavior one expects. It is also clear
from Eq. (49) that in this limit, k ~0 and

W(0)= W2 + 1 — sin gd
1 1

(76)
r3 r3

4r)r3

(r&+r3) +(r, +1)(r3+1)sinh gd

which is just the expected result in the linear limit for
E &0.
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Let us investigate to see what happens when the in-
cident intensity is a et t the threshold value where solution

—1(2) becomes solution (1). If one sets W, = Wz = r 3 1 oi
the case where K )0 and r3) 1 (i.e., e3) ec), one finds
that the intensity within the film is uniform and is equa
to r —1 The incident intensity for this to occur is given3 ~

by

W' =(r3 —1)(r, +r3) /4r, ,0

and the reAection coe%cient has the same values as
though the film is totally absent, i.e.,

(r, r3)—
(r, +r3)

Co
Co
UJ

0

0
(a)

INCIDENT INTENSITY

12

ec+aE'(0)=eo+(eo i),')(r, ——1)=~, ,—1 =e (88)

i.e., the same as in region (3).
For K &0, setting 8', = 8'2=r3+1 yields an intensity

equal to r3 uni orm y+1 'f rmly within the film. The effective
dielectric constant of the entire film is

This can bc undcIstood bccausc at that 1ncldcnt 111tcIlslty
the effective dielectric constant of the entire film is given
by
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eo+crE (0)=go+(g —ec)(r3+ 1)=@3, (89)

i.e., the same as that of region (3). Thus one expects and
finds that ~r~ is again given by Eq. (87). The critical in-
cident intensity for this induced transparency to occur is

These results for included transparency can also be de-
rived based on some rather simple considerations.
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VIII. INDUCED RESONANCE SCATTERING

In the linear case, resonant scattering occurs wr when the
thickness of the film is precisely equal to an integral num-
ber of half-wavelengths. In the nonlinear case, since t e
effective dielectric constant and thus the effective wave-
length are functions of the incident intensity, one expects
that resonance scattering can occur .or a

0

for a film of a iven
thickness by adjusting the incident intensity. This section
is devoted to an analysis of this interesting phenomenon
of induced resonances.

First, one recalls that the function sn is periodic with
a eriod of 2K(k), and therefore the distance between
two adjacent maxima or minima of the intensity within
the film is given by

1/2
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g =2K(k)
i 3

(91) 0
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2
gd =2mK(k)

1 3

I = 1~2, .

One expects that resonances will occur for either type of
solutions when the film thickness is such that

1/2
FIG. 2. For any film thickness the incident intensities at

which resonances occur are shown for (a)
A )0, F3=2; (c) K &0, r3=0.5; and (d) K (0, r3=2. The di-
mensionless incident intensity is defined in q.E . 58).



39 EXACT RESULTS FOR THE SCATTERING OF. . . 3597

This claim is justified by the fact that when the above
condition is satisfied, one can see from Eq. (48) that the
intensities at z =0 and d within the film have the same
value. This in turn implies that F(0)=F(gz)=0. Then
one can show from Eqs. (21) and (22) that r is real and is
given by

(93)

which is exactly the same result at resonance in the linear
case.

For a film of a given thickness, the incident intensity at
which induced resonances occur can be calculated. For
solution (1), W(0) is equal to W„and one finds that the
incident intensity is given by

0.8

0.6

Reflection
Coefficient 04

0.2

0

04

10 20 30 40

Incident Intensity S'o

(r, +rs) W2(W2+2)

4r, (2ri —W~)
(94) 0.3—

From Eq. (92), gz can be calculated as a function of W2.
Therefore one can easily plot gz as a function of Wo
parametrically. This can be carried out similarly for
solution (2). The results are shown in Fig. 2.

As is expected for K )0, there are no resonances in the
linear limit (Wo —+0) regardless of the thickness of the
film. It can be seen from Eq. (49) that in the linear limit,
E approaches unity and K(k) goes to infinity logarith-
mically. However, with a sufficiently strong incident in-
tensity, the effective dielectric constant can become large
enough so that the effective value of K becomes positive
and thus resonances can occur. Moreover, for a film of a
given thickness, the number of resonances increases with
increasing intensity. This can be understood because
with increasing intensity the effective wavelength de-
creases and so more half-wavelengths can be fitted within
the film.

Finally, it is possible to interpret the results of the
reAection coefficient as a function of the incident intensi-
ty as shown in Fig. 3. The procedures for calculating
these results have already been discussed at length in Sec.
V. Here, for simplicity, the dielectric constants in regions
(1) and (3) are taken to be identical, and the film thickness
kd is

For K )0 and r3 ( 1, the dielectric constant of the film
in the linear limit is higher than that of the outside.
Therefore the reAection coefficient is not very large when
8 O~O. ' With higher incident intensity the effective
dielectric constant of the films is even higher, and reso-
nances can occur. The reAection coefticients at reso-
nances are zero, and the incident intensities at which res-
onances occur correspond precisely with those given in
Fig. 2(a). Between successive resonances the refiection
coefficient rises to some maximum value. These maxima
values increase with increasing intensity since the
effective dielectric constant of the film also increases. It
is clear from Fig. 3(a) that the refiection coefficient as a
function of the incident intensity exhibits optical bistabil-
ity.

For E )0 and r3 ) 1, the dielectric constant of the film
is smaller than that of the outside region in the linear lim-
it, but it is not so small that total internal reflection can
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FIG. 3. Plots of the reAection coeKcient as a function of the
incident intensity in dimensionless unit for (a) K & 0, r3 =0.5;
(b) K &0, r3=2; (c) K &0, r3=0. 5; and (d) E (0, r3=2. The
dielectric constants in regions (1) and (3) are taken to be identi-
cal, and the film thickness g~ is 3.
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occur. The reflection coefficient is therefore not very
large in the linear limit. As the incident intensity is in-
creased, the effective dielectric constant of the film in-
creases, and induced resonances occur. At SO=3 in-
duced transparency happens and the reflection coe%cient
is zero.

For K (0, regardless of whether r3) 1 or r3(1, the
incident angle Oo is such that the scattering at the bound-
ary of regions (1) and (2) is in the total internal reffection
regime in the linear limit, thus the wave inside the film is
evanescent and the reflection coefficient is close to unity.
With increasing incident intensity, the effective value of
K increases and can become positive. The reflection

coefficient therefore decreases with increasing intensity,
and induced resonances as well as induced transparency
of the film can occur. Optical bistability is possible not
only at high intensity but also at relatively low intensity,
as shown in Fig. 3.
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