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Hg-In alloy consisting of Hg, which shows several anomalous features in its properties and In,
has been studied with a square-well attractive tail as an interaction potential between the atoms in
the amalgam. The partial and the total interference functions have been computed with the Le-
bowitz hard-sphere mixture solution for the Percus-Yevick equation with an attractive square-well
potential over a hard-sphere mixture. In addition, the Bhatia-Thoronton correlation functions have
also been calculated. From the partial structure factors the number of nearest neighbors has been
calculated. All the computed results have been found to be in very good agreement with the x-ray
diffraction results obtained by Halder and Wagner [Z. Naturforsch. 22a, 1489 (1967)] except at 62%
atomic fraction of indium. All these results were computed purely from the potential parameters of
the pure metals. The alloy is found to show a shoulder in the Syc(K) cross correlation function.
This may be due to either compound formation or internal segregation, even though the metals mix
freely at all concentrations. The compressibilities at various concentrations of In have been com-
puted from the Kirkwood-Buff formula. The diffusion coefficients have been calculated from
Helfand’s linear-trajectory principle. The self-diffusion coefficients as evaluated correctly predict
them for both metals because of the attractive wells associated with these metals. Thus Hg, in spite
of its heavy mass, has a comparatively higher diffusion coefficient than In, which has a lower mass.
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The melt appears to form a regular solution, as predicted by Bearman and Jones.

I. INTRODUCTION

Mercury amalgams present a long-standing puzzle. Hg
is a polyvalent element that has anomalous effective
mass' and thermoelectric power>* and various other
peculiar properties.? Mercury forms a variety of pseu-
docompounds with indium.* The structure factor of the
Hg-In alloy at various concentrations of Hg has been ex-
tensively investigated by Halder and Wagner.5

In the present investigation we derive the partial struc-
ture factors, the associated Bhatia-Thoronton structure
factors, and other thermodynamic and transport proper-
ties of the alloy at various concentrations of Hg.

II. THEORY

We use the well-known Lebowitz solution of hard-
sphere mixtures along with a square-well attractive tail in
arriving at the partial structure factors. Thus in the eval-
uation of the direct correlation function between i and j
atoms we choose

Ci(r), 0<r<oy (1a)
Cij(r)= —Bsij(r), U,J_r_A 0' (lb)
0, r>A4;0; . (1c)

Here C,-‘}(r) stands for the hard-sphere solution of the
Percus-Yevick equation for binary mixture as obtained by
Lebowitz.® Equation (1b) is formed under the mean-
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spherical-model approximation. Here o, €;, and 4;
are the hard-sphere diameter, potential-energy depth, and
breath of the square-well potential of the ith species, re-

spectively. The hybrid parameters have been computed
through Lorentz-Berthelot rules,
=(0;+0;)/2,
=(e,-ej)“2 , 2)
=(A;0,;+ A;0,;)/20

The C;;(r) were obtained by Lebowitz and have been
discussed already in detail.””® The Fourier transforms of
the direct correlation function C;(r) and C,,(r) have also
been given previously.”!® The partial structure factors in
terms of C;;(K) can be written in a straightforward
manner!'! as

S11(k)={1—p,C},(K)
“P1P2C%2(KV[1_chzz(K)]} -1, 3)
S22(K):[1_P1C11(K)]S11(K)/[1_P2C22(K)] ’ (4)

S1,(K)=(p1p,)'?C,(K)S 1 (K)/[1—p,Cp(K)] . 5

Further, the total structure factor!2
structure factors can be written as

2 2
=3 2 (Cicj)l/z
i=1j=1

in terms of partial

fifi
Cifi+Cof3 "
Here f; and f; are the atomxc scattering factors and are

]
taken from the literature!? and C; is the atomic fraction

(6)
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of the ith species. Thus, for a binary alloy we get for the
total structure factor

S(K)= !

=——————[C,f3i5,,(K)
Cui e

+2(C,C)V2f 1 f251,(K)
+C,f38,(K)] . )]

The input parameters used in the evaluation of the partial
structure factors have been given in Table I.

In order to compute the important thermodynamic
properties, for the compressibility we use the Kirkwood-
Buff equation,14 which can be written as

pkpTBr=[1—C,p,C;;(0)—Cyp,Cp,(0)
—2p1,C,C,C (0017 1. 8)

Here C;(0) is the direct correlation function in the long-
wavelength limit, and the various expressions for C;;(0)
and C,,(0) have been given already®'® and hence will not
be repeated here. Here p;,=(p;p,)!"?
ity at various concentrations is given in column 7 of
Table II.

The well-known Bhatia-Thoronton!® correlation func-
tions which are related to the various thermodynamic
properties'® are related to the partial structure factors
linearly as )

Syn(K)=C,8,,(K)+C,S,,(K)+2C12CY2S ,(K) , (9)
Scc(K)=C,C,[C,851(K)+CSp(K)

—2(C,C,y)'"28,(K)], (10)
SNC(K)=C1CZ[SII(K)_SZZ(K)
+S1,(K)C,—C)/(C,C)M?T . (1)

Here Syy(K), Scc(K), and Syc(K) are number-
number, concentration-concentration, and  cross-
correlation functions, respectively. The densities of the
alloy are taken from the literature!’ at various concentra-
tions of Hg. From these experimental values the number
densities have been calculated.

A. Coordination number

From the partial structure factors the radial distribu-
tion functions have been computed by Fourier inversion.
Thus we have the partial radial distribution function
g;;(r) given by
g;(r)=1+

mfo“’[sij(x)—aijm sin(kr)dr .
iFj

(12)

TABLE 1. Input parameters used in calculations of Hg-In al-
loy.

Temp. T ii € /kp
Metal (K) (A) (K) A
Hg 298 2.80 100.00 1.73
In 298 2.83 173.76 1.72

. The compressibil-
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Here 3;; is the well-known Kronecker delta. From these
g,-j(r) we obtain the first coordination numbers through
the equation

"min
nij=41rp0fo g,-j(r)rzdr . (13)

Here 7, is the first minimum of the partial radial distri-
bution function.

III. RESULTS AND DISCUSSION

The calculated partial structure factors S;;(K), S,,(K),
and S,(K) are shown in Figs. 2-5. The total structure
factors are shown in Fig. 1 and are compared with experi-
ment. Here subscripts 1 and 2 refer to Hg and In, respec-
tively. S;;(K) and S,,(K), and also S (K), the total struc-
ture factor, show characteristics similar to a single-
component system, while S, (K) goes to zero at large K.

From Egs. (9)-(11) we obtain the Bhatia-Thoronton
structure factors which are shown in Figs. 6-10. The
number-number correlation function shows a great
resemblance to the total structure factor and becomes
unity at large K. However, at all concentrations Syy(K)
shows two conspicuous first and second peaks, thereby
showing a strong number-number correlation in momen-
tum space. The S-(K) function oscillates around the
value of C,;C, and shows a comparatively large value at
small K, and is shown for clarity in Figs. 9 and 10 sepa-
rately. The Syc(K) functions oscillate around zero. The
graphs also show a shoulder around K =3.7 A~!, indi-
cating the formation of a compound.* The peculiar na-
ture of Hg is also observed in the resistivities of Hg amal-
gams.?

Unfortunately, no experimental data are available for
comparison of theoretical compressibilities. However, it
may be observed that at low concentrations of indium
(i.e., at 5 at. % of In) the compressibility of the amalgam
is 15.92X 10712 cm?/dyn as compared to pure Hg, whose
compressibility is 5.5X 107!2 cm?/dyn,'® and that of In,
which is approximately 3.5X 10712 cm?/dyn. This may
be due to the presence of a large number of holes present
in the amalgam and the loose compound-forming nature
of the alloy. Besides, there is a difference in the valencies
of these elements. The same observations as to the for-
mation of unstable compounds of Hg amalgams have
been made by Faber.2 Thus, according to him, Na and
Hg form a loose compound (NaHg,) which could affect
the compressibility. The case must be similar for Hg-In
as well, and hence we see the high compressibility exhib-
ited by the alloy. Further, in the case of Hg-In, two
anomalies in the sound velocity were observed* which
may be due to some compound formation, and hence we
have the high compressibilities as obtained in the present
calculations. However, it may be observed from Table
III that the compressibilities smoothly increase with in-
creasing concentration of In, which shows that the two
elements mix freely in spite of their valence differences.

The partial coordination numbers at different concen-
trations are given also in Table II. Here 7; stands for the
number of nearest neighbors of the same kind (i.e., first
shell) while 7,, gives the number of nearest neighbors of
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TABLE II. Calculated values of the coordination member and isothermal compressibility at various

concentrations of Hg-In alloy.

p
Composition Atoms 102X,
(at. % In) (A7 M M Mo n 5(0) (cm?/dyn)
S 0.0405 8.1335 0.4249 1.9136 10.4720 0.0265 15.92

12 0.0404 7.5180 1.0322 2.8511 11.4013 0.0287 17.29
25 0.0401 6.4479 2.1622 3.8295 12.4396 0.0320 19.41
35 0.0398 5.4740 3.0217 4.1357 12.6314 0.0340 20.80
42 0.0396 4.8602 3.6189 4.2617 12.7408 0.0351 21.57
50 0.0393 4.2152 4.3502 4.3495 12.9149 0.0364 22.55
62 0.0389 3.1691 5.3632 4.1876 12.7199 0.0377 23.58

the second kind with respect to the first. As expected, it
may be observed that when the concentration of Hg
(designated as 1) is high, the number of nearest neighbors
is also high, while the reverse is the case with respect to
indium, whose concentration is less. Further, as the con-
centration of In increases, the number of nearest neigh-
bors (NN’s) of its own kind increases smoothly. The
same trend is also observed in the case of Hg. It may be
noticed that at 50 at. % concentration the NN’s of the
same kind are astonishingly the same. This is expected
because the atomic volumes of the elements (In=15
cm?®/mol, Hg~=~14.1 cm®/mol), and also their compressi-
bilities are nearly equal. Thus, the number of nearest

S(K)

K(AT)
FIG. 1. S(K) vs K at different at. % In.

neighbors at 50 at. % is found to be the same. Further,
the total number is around 12, which corresponds to a fcc
or a hcp structure and is in good agreement with those
obtained by Wagner and Halder.® The near-equal values
of the NN’s at 50 at. % concentration is in satisfactory
agreement with the fact that the diameters of the atoms
are nearly equal.

IV. COMPUTATION OF TRANSPORT PROPERTIES
FROM PARTIAL STRUCTURE FACTORS

In this part of the paper we present computations using
the above data to evaluate the diffusion coefficient. We
use the linear-trajectory method applied to mixtures. !>

As is well known, the diffusion coefficient of the /th
species D; is connected to the friction constant as

Sy (K]
T

5
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FIG. 2. §,,(K) vs K at different at. % In.
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D= 6 (14) FIG. 5. S,5(K) vs K for different concentrations of In.
1
The friction constant can be written as a sum of three
contributions, namely
§=&"+E+E" . (15)
Here £/, £7, and £7 are the hard sphere, soft part, and 4.5
cross coefficient of the friction constant, given by the fol-
lowi tions:
owing eque: ions 2.0 . % In
=3 202 g1 (01 )pm 2y, kg T)'? (16) "
=
172 351
5= 22: Pm | 27Uy, 1
S= — Fm
~ 3 kgT (27)? 50
m=1 B 3.0k
xfo K3V3 (K)G,,, (K)dk , (17)
- 42
x 2.5
z
> 35
0751 2.0+
25
~ 050 -5
X
o
) L 12
025 1.0
L 5
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0.0 1 1 1
-0-25 1 1 1 1
5 = L L - 0 2 4 B 6 8
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FIG. 4. S,,(K) vs K for 5 and 12 at. % In. FIG. 6. Syy(K) vs K for different at. % In.
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FIG. 7. Syc(K) vs K for 5, 12, 25, 35 and 42 at. % In.
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FIG. 8. Syc(K) vs K for 50 and 62 at. % In.

k(&™)

and

172
Uim

wkgT

2 2p
TH=— E_ Tglm(alm)

X fowdk[Ko,mcos(Kolm)
—sin(K 0,17 5, (K) . (18)

Here p; is the number density of the ith species.
G,,,(K)and V$ (K) are the Fourier transforms of the to-
tal correlation function 4 (r) and the soft part of the po-
tential, ¥ $ (r), respectively. Further, u,,, is the reduced
mass,

= (19)
Yim m+m,

In the present case we have

G (K) =[S}, (K) =8, 1p1p )" ? (20)
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FIG. 9. Scc(K) vs K for 5, 12, 25, and 35 at. % In.
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FIG. 10. S--(K) vs K for 42, 50, and 60 at. % In.

?S (K)= 47781,"

K3 [AlmKUlmcos(AImKolm)

—Ko,cos(Koy,)+sin(Ko,, )] .
(21)

The various contributions to the total friction constant
are given in Table III and the self- and mutual-diffusion
coefficients are given in Table IV. The approximate
mutual-diffusion coefficient is computed from the follow-
ing equation:

D,=C,D,+CD,+correction terms . (22)
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The self- and mutual-diffusion coefficients as evaluated
from Egs. (14) and (22) are given in Table IV.

It may be observed from Table III that the hard-sphere
part of the friction coefficient is higher for Hg than for
In. From Eq. (16) we can easily perceive that the hard-
sphere part for Hg should be higher than that of In since
the mass of Hg is much higher than In. However, the
soft part of In contains ¥ 3, (K), which, as can be ob-
served from Eq. (21), has a term ¢g,,, (the potential-energy
depth) which is much higher for In than for Hg. Hence
£S5 and &5 are higher for In than Hg. Thus the total of £,
is nearly the same for both elements, which therefore
gives almost the same self-diffusion coefficient. Thus the
high potential-energy depth, which is an indication of its
attractivity to its cluster, offsets its mobility in spite of its
low mass. On the other hand, Hg has a higher mass but
also a low potential-energy depth, and hence has a segre-
gating nature. It may be observed from Table IV that at
a very low concentration of In (5 at. %) the present com-
puted value is nearly equal to that obtained by
Mangelsdorf?""?? for Hg (1.6 X 1073 cm?/sec). In the case
of In t was actually reported?? that its diffusivity is less
than Hg. In fact, the observed value of In in liquid Hg
was found to be 1.39X 1075 cm?/sec. Thus the present
calculated values are interestingly in conformity with the
observed values. At the high concentration of 62 at. %
atomic fraction of In, the value of its self-diffusion
coefficient is 2.3 X 1073 cm?/sec, while that of pure In is
1.6X 1073 cm?/sec. The present computed results on
diffusion, which are in conformity with experiment,?? are
the result of taking an attractive tail as a perturbation
over the hard sphere. If a simple hard-sphere potential is
taken into consideration, the computed results are not in
conformity with experiment. This can be easily seen
from Table III, where £7 of mercury is higher than In
with the result that the diffusion coefficient would have
been less than that of In and hence in contradiction with
experiment. i

It may be observed from the last column of Table IV
that the ratio of the self-diffusion coefficients is nearly
constant (within 5%) over the entire range of concentra-
tions. A similar behavior was observed for rare-gas mix-
tures by Jacucci and McDonald?® in their computer ex-
periments. From the regular-solution theory of Bearman
and Jones,** a constancy of ratio is also expected. It was
found that the ratio of the diffusion coefficient is inversely
proportional to the square of the atomic radii, i.e.,

TABLE III. Computed values of friction constants at various concentrations.

Composition 10°655 (g/sec) 10°€5 (g/sec) 10°5H (g/sec)
(at. % In) Hg In Hg In Hg In

5 1.015 0.8697 0.2993 0.3936 0.4752 0.5400

12 1.001 0.8600 0.3056 0.4033 0.4781 0.5446

25 0.9688 0.8359 0.3171 0.4213 0.4798 0.5493

35 0.9401 0.8139 0.3259 0.4353 0.4789 0.5502

42 0.9206 0.7993 0.3321 0.4452 0.4785 0.5511

50 0.8950 0.7791 0.3393 0.4566 0.4756 0.5493

62 0.8598 0.7518 0.3503 0.4742 0.4727 0.5481
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TABLE IV. Calculated self- and mutual-diffusion coefficients at different concentrations.

Composition In units of 10™* cm?/sec

(at. % In) Dy, Dyg1n Dy, /Dy,
5 0.2299 0.2280 0.2281 1.0083
12 0.2304 0.2275 0.2278 1.0127
25 0.2329 0.2276 0.2289 1.0193
35 0.2357 0.2285 0.2310 1.0315
42 0.2375 0.2290 0.2326 1.0371
50 0.2405 0.2304 0.2355 1.0438
62 0.2444 0.2318 0.2396 1.0544

D,/D,=(0,/0,)* In the present case (0,/0,)*=1.02, ACKNOWLEDGMENTS

while the average value, as seen from Table IV, is 1.03.
Thus Hg-In alloy appears to form a regular solution and
both the structural and transport properties can be calcu-
lated purely from the parametrized potential energy of
the simple liquid metals.
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