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Half-integer and integer quantum-flux periods in the magnetoresistance of one-dimensional rings
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A tight-binding model for a disordered ring coupled to two external leads is used to calculate the
transmission coefficient T as a function of the magnetic flux P threading through it. We found a
dominant go= h /e period in two cases: (a) strongly disordered rings and (b) arbitrary disorder with

weakly coupled branches. We And that the last situation occurs when the Fermi energy lies near the
band edge. The phase of T, which may be equal to 0 or ~, depends on energy and changes whenever

the Fermi energy crosses an eigenvalue of one of the two isolated branches of the ring. Finally, res-

onances (peaks) and antiresonances (valleys) are found in T as a function of energy. The width and

height of the resonances and antiresonances are calculated within this tight-binding model and their
shapes are found to be Lorentzian. This represents an extension of the results of Azbel on resonant
tunneling in the case of a tight-binding model.

I. INTRODUCTION

In recent years there has been an intense experimental
and theoretical interest in Aharonov-Bohm-like effects in
solid-state devices that enclose a magnetic flux P. The
first results in this field are the magnetoresistance oscilla-
tions in metal cylinders. The agreement between theory
and experiment was initially successful but shortly lead to
a dilemma. Even if quantum-mechanical properties are
expected to present a periodicity of a magnetic quantum
flux go= h je, the evaluation of the ensemble-average con-
ductance with weak localization theory predicted magne-
toresistance oscillations dominated by a half-integer Aux
period for both cylinders and rings. ' The experiments
showed that this is true for long cylinders and arrays
of metal rings. However, for single rings both periods
could be present, depending on the sample and the exper-
imental conditions. ' These surprising results motivated
the interest of many physicists who were soon aware that
an appropriate and simple description of the phenomena
comes from the Landauer theory. This relates the zero-
temperature dimensionless conductance with the quan-
tum probability T for an electron to tunnel through the
system

The numerical simulations for a single ring at zero
temperature showed a conductance of the form
g (E,P) =g(E, Q=O)+5g cos(2z(t /(()o+P)+, where P
is either 0 or m, resulting in a positive or negative correc-
tion depending on the system and on the value of the Fer-
mi energy E. '' Other values of P in the range ( —m., ir)
are associated with an asymmetry about /=0 which is
indeed observed in four-probe measurements. " The scale
of energy bE in which the changes of phase occur is
characteristic of the system. An important consequence
of this is that for finite temperatures, at which all the en-
ergy channels in a range of kT )hE are allowed, there is
an average which in some cases cancels the integer Aux
period and retains the half-integer Aux period. ' Al-
though the general ideas of this picture seem to be well

understood and explain both the half-integer and integer
quantum-Aux periods, there is a point which still remains
obscure and which we consider in the present paper.
This concerns the origin of the different phases in a two-
probe device. The problem of the asymmetry was recent-
ly clarified by Buttiker' and will not be discussed here.

Much of the previous work modeled the two branches
of the ring by considering two scattering centers in a
free-electron scheme. ' ' ' Although simple, this mod-
el does not bring out the relation between the scattering
amplitudes with the eigenstates and eigenvalues of the
system. No other complex models of finite-area rings
were explicit in this respect. ' ' For this reason, in this
paper we consider a simple one-dimensional tight-binding
model in which we are able to calculate the exact eigen-
values as well as localization lengths using a decimation
scheme. We discuss the model and the basic aspects of
its solution in Sec. II. In Sec. III we analyze how the
contacts may weaken the coupling between the low-
energy states of both branches. In Sec. IV we generalize
the idea of resonant tunneling for this tight-binding.
Novel results about transmission antiresonances are also
presented. Resonances and antiresonances are seen as
peaks and valleys, respectively, in T as a function of the
energy. In Sec. V we explain how one can understand the
different types of transmission curves generally obtained.
Section VI presents numerical and theoretical results for
the ring model. The most interesting result is the change
in phase of T(P) which occurs whenever the Fermi ener-

gy crosses an eigenvalue of one of the branches of the
ring. This happens for a strongly disordered ring when
the localization length is much shorter than the length of
the ring and in any other case in which the coupling be-
tween the ring branches is weak.

II. THE MODEL AND ITS DECIMATION

Consider a tight-binding Hamiltonian which describes
the system represented in Fig. 1(a). This is given by
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The Landauer theory of quantum transport at very low
temperatures assumes that inelastic processes only occur
at the electron reservoirs which are farther from the ring
contacts. In this condition the dimensionless resistance is
determined from the quantum tunneling probability of an
electron with the Fermi energy E. The problem then
reduces to the evaluation of T(E). In order to facilitate
the calculation, it is convenient to use a real-space de-
cimation procedure' ' which was extended to general
Hamiltonians. ' ' The method is exact and allows one to
generate an effective Hamiltonian that takes into account
the internal sites of the ring through an effective coupling
V~B and renormalized site energies to give total site ener-
gies E„and Ez [see Fig. 1(b)]:

2'

Q . N

-2 -1
---0 0 ~

8 1 2
~ 0 0

In the first term, sites with position vectors r„and r„- are
placed on the ring. Sites A and B are the contacts which
are connected to linear chains represented by the last
sums. The upper (lower) branch has N' (N") sites. The
length of the ring is M =N'+N" +2. Site energies on
the ring takes on random values in the range
[—W/2, W'/2]. The hopping parameters are restricted
to nearest neighbors and in the ring they have the form

V„„+,= V„*+,„=V exp( i2vrg„„+, /Po) .

The phase factor takes into account the magnetic vector
potential in a symmetrical gauge, by means of the path
integral

E~ =E~+~~«)+~~«»
E~ =E~+h~(E)+b,~(E),

(2.3b)

(2.3c)

where VU ( VI ) is the upper (lower) branch contribution
to the effective coupling. The dependence on Aux is given
by the phase factors. PU= J Adi and $1 =I Adl

UB LB
are the path integrals of the vector potential on the upper
and lower branch, respectively. They are related to the
total tlux PU

—Pl =P. Finally, b. „and 6„(b,~ and h~ )

are the self-energy contributions to site A (8) from the
upper (U) and lower (L) branches, respectively. These
magnitudes can be calculated using a recursive algorithm
that eliminates a site in each branch of the ring one at a
time. For example, for the upper branch one could begin
by eliminating site j. . This introduces an effective cou-
pling V&2 between the contact A and the site 2' and re-
normalized site energies E~ and Ez. given by

1
Eg =Eg+ V~]

E1 —E
1

E2. —E2. + V~.]. V1 2E1 —E
1

EV12 .
1

I

(2.4a)

(2.4b)
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The procedure is continued with site 2, taking into ac-
count that these new values must be used in the iteratian
of Eq. (2.4). After site N' is eliminated the process is
stopped. An analogous expression is valid for the lower
branch.

The effective coupling and the self-energy are related to
the Green's functions of each isolated branch. It is not
difficult to obtain the following relations:

Vzz = VU(E) exp(i2mPU/Po)+ VL (E) exp(i2n'0L /No)

(2.3a)
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1 20 0
FIG. 1. {a) Representation of the ring and leads. Upper

{lower) branch has X' {N") sites. Sites A and 8 are the con-
tacts. {b) Effective one-dimensional system after decimation of
the internal sites of the ring.

The transmission probability of the effective one-
dimensional system is now evaluated. For this, a pro-
cedure described by Stone et al. is used. They obtain a
general expression for the dimensionless resistance in
terms of the promotion matrix I' which relates the ampli-
tudes at each side of the ring:
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The dimensionless resistance is given by

~~11 22+(E/2V)(~12 ~21 ~ ~ 12+~21 ~+
4 (E—/V) 4

(2.6)

tion (3.2) is satisfied by the amplitudes inside each
branch. Notice that we may choose E„=EO=OVn to
represent an ordered system and a phaseless hopping pa-
rameter because there is no magnetic field. Equation (3.2)
can be written as

a n —1 +E n+1a

an an
(2.7)

where P; are the matrix elements. Making use of our
effective Hamiltonian, the promotion matrix takes the
form

1P=
V~a V

(E E„)(—E E21 ) ——
~ V„21

—V(E E21 )—
V (E E„)—

(2.8)

From now on V is adopted as unit of energy. Thus ener-

gy parameters are dimensionless. Inserting Eq. (2.8) into
Eq. (2.7) gives

p= +B(E)i V„21 i +C(E),
V~21

'

where

(2.9)

B(E)= 1

4—E
—2[1+E~E21+(E/2)(E~+E21 )]C(E)=

4 —E

(2.10a)

(2.10b)

(2.10c)

The dimensionless resistance is obtained using the Lan-
dauer formula p = (1 —T) /T. In summary, the decima-
tion method allows us to obtain the exact quantum-
transport properties of the ring by reducing it to an
effective one-dimensional chain with renormalized pa-
rameters.

III. SCATTERING AT THE CONTACT

We want to analyze the nature of the electronic states
which appear in the region where the circuit splits [i.e.,
points A and B in Fig. 1). As a first step we consider a
circuit with a single branching point. This T-shaped cir-
cuit can be obtained from that of Fig. 1 when the perime-
ter of the ring becomes infinite (1V'=i'"~ ~ ). Since we
are interested in the details of the eigenfunctions we come
back to the Hamiltonian, Eq. (2.1), and their correspond-
ing equations on diff'erences (with V = 1) for the eigenvec-
tors

[1+E„E21+(E/2)(E„+E21)] (E„Ei1)—
A (E)= +E2 4

The symmetry of the problem imposes the condition
a„+]/a„constant for any branch and position, even for
a„=a ~. Therefore

r 2 1/2
an+1 E —1

2
= exp(i8), 0=k+ix. .

Qn

(3.3)

It can be readily veri6ed that the compatibility of Eqs.
(3.1) and (3.2) is possible for eigenvalues in the continu-
ous range

~
E

~
(2 (the band), but also at

E =a2&9/8, a=+1 . (3.4)

These energies differ from the one-dimensional band
edges by an amount which can be interpreted as the ex-
tra kinetic energy due to an increase of the effective
dimensionality around the branching point, which appear
as the three hopping terms in Eq. (3.1). The resulting
states are localized around A. Therefore their ampli-
tudes can be chosen to be real (k =0 or k =1r) and the
symmetry condition becomes a „=a„.=a„-=a„. From
Eqs. (3.4) and (3.3) we find

a„=a z exp( zn );— (3.5)

that is, the wave function decays exponentially with dis-
tance to the branching point with a location length given
by

1
A, = 1/~= =2.88 .

arccosh(E /2)
(3.6)

a „=exp( ikn)+ r exp(ik—n),

The value of a „=—' becomes determined by the normali-
zation condition. This result implies that only —, of the
local density of states at the branching point remains
available for the extended states of the continuous spec-
trum. This must be shown in the transmission probabili-
ty T for the propagating states.

There are various ways to compute T, such as the pro-
motion matrix presented in the preceding section or a
Green's-function formalism. For the present purpose it
is enough to impose in Eq. (3.1) an incident wave from
the left with its corresponding reflected wave,

(E Ez )a& —a 1
—a 1

——a 1- =0,
(E E„)a„—a„ 1

—a„+—1=0 with n &0,
(3.1)

(3.2)

where r is the reflexion amplitude, and a transmitted
wave at the two equivalent channels of the right,

a„=a„=a „exp( ikn ) .
where Eq. (3.1) corresponds to the node and is the only
equation which connects one site amplitude to the other
three through the hopping (kinetic) parameter V. Equa-

With this amplitude inserted into Eqs. (3.3) and (3.1) we
get, after some algebra,
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When the branches are long enough (X))A, ), both states
remain outside the bands and their localization properties

I

It is important to note that the transmission probability is
zero at the band edges and reaches the maximum value 9

at the band center. For a splitter in the free-electron
scheme the transmission results are energy independent
(T=—', ), which is still lower than the value for an ideal
splitter (T =

—,'). Therefore, the effect of branching a cir-
cuit is not only to split the current but also to act as a po-
tential well (barrier) which disturbs the propagation of
the electrons (holes).

Now we want to understand the electronic states in a
finite ring with leads. For this purpose it is enough to use
the effective Hamiltonian approximation presented else-
where. ' In the present problem it requires us to deci-
mate the leads, which introduces a third correction in the
renormalized energies [Eqs. (2.3b) and (2.3c)]. Thus
E —EA and E —EB have approximate roots at the values
of Eq. (3.4). The next step is to use Eq. (2.3) as an
effective (2X2) Hamiltonian matrix, in which the local-
ized states at each branching point interact through the
effective hopping VAB. For the symmetrical ring
(N'=N" ) the maximum splitting is obtained at /=0 and
becomes

are not modified. This is consistent with the result of the
infinite ring presented above. Therefore, a propagating
wave in a branch will have a probability given by Eq.
(3.7) to pass to the other branch. An important conse-
quence which follows from the previous discussion is that
in the ring configuration the presence of the leads dimin-
ishes the coupling between the branches, the effect being
very strong for states near the band edge.

IV. RESONANCES AND ANTIRESONANCES

In a series of papers Azbel studied the transmis-
sion resonances in a one-dimensional disordered system
in the regime of strong localization. He found that reso-
nances are related to the localized eigenstates and eigen-
values of the random system. The height and width of
the resonances are functions of the localization length I,
and the distance between the center of localization and
the middle of the disordered region A. In this section we
analytically compute the form of the resonances for our
tight-binding model. Our results agree with those of Az-
bel. Moreover, due to the topology of the ring there also
exist antiresonances. ' This situation, which is not possi-
ble in a strictly one-dimensional system, is produced by
the multiply connected character of the ring. %'e also
calculate the form of these antiresonances. It will be seen
that the antiresonances exist for special values of Aux but
not for others.

To obtain the shape of the resonances it is better to
write the dimensionless resistance in terms of the Green's
function of the isolated ring:

p(&)= 1 [I—IGABI +(E~2)(GAA+GBB)+GAAGBB] GAB GBB+
4 —E 4

(4.1)

with

Q QI J
E —E (4.2)

where a; is the amplitude of the wave function of the iso-
lated ring on site i with energy E . In order to eliminate
band-edge effects only the center of the band is studied.
Hence the approximation 4 E=4 is made in Eq—. (4.1).
Also we take E =E because we are interested in analyz-
ing the transmission probability T near an eigenstate with
energy E . For the same reason we use

Ia~ I'
AA —E a

a eaaa
A B

AB —E a

(4.3a)

(4.3b)

BB —E
(4.3c)

This is valid for IE E
I (bE, whe—re bE is the mean

separation between levels. Inserting these approxima-
tions in Eq. (3.1) and using p=(1 —T)/T one has

4la I'la I'
T(E)=

[E —E.—(E.»)(l~; I'+ l~gl')]'+[I~~ I'+ l~; I']'
(4.4)

Thus T has a Lorentzian shape. The position of the max-
imum EM, the maximum value TM, and the width 8'~
are given by

4la~ I2 Ia~l2
TM

(l~ I'+l~ I')' ' (4.5b)

&M =E.+«.i2)(l~~ I'+ l~gl'), (4.5a) = la~ I'+ la ~I' . (4.5c)
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la„ l
~ exp[ —(M/2+A)/X],

lagl ~ exp[ —(M/2 —A)/k],
(4.6)

where A is the smallest distance between the center of lo-
calization of the eigenstate and the middle of the corre-
sponding branch. Then the width of the resonances is ex-
ponentially small and the resonances are sharp. This also
happens when one has highly reflective contacts, even
when the branches of the rings are ordered, because the
amplitudes of the eigenstates on contacts A and B are
small. Using Eq. (4.5) the maximum takes the form

1
TM 2cosh (2A/A, )

(4.7)

If A» A, , Eq. (4.7) reduces to TM =4 exp( —4A/A, ),
which agrees with Azbel's proposal.

Proceeding now with the evaluation of the antireso-
nances, consider an interval around the energy E at
which l Vzii =0. This situation, which is not possible in

a linear chain, can occur in rings and other multiply con-
nected systems when the path contributions to the total
effective coupling cancel each other. If that situation
occurs, the transmission probability T goes to zero and
antiresonances are produced near E„. Taking a linear
approximation near this energy we get l V~ii l

=m(E E) and usi—ng Eq. (2.1) we find that the resis-
tance goes to infinity as

A(E )

m(E —E) (4.8)

Thus the reAection probability R = 1 —T may be written
as

1

1+(E E„)m /A (E —)
(4.9)

The antiresonances occur as Lorentzian peaks of R as a
function of E. The width is W„= A (E )' /m. Now,
let us remark that there are only two values of P for
which

l Vzs l
can be zero, that is for /=0 and /=$0/2.

This is because VU and VL are real numbers so that V~&
is then a complex number, making it necessary that
VU= VL=O in order to have V~&=0. But in a linear
chain neither VU nor VL are ever zero. However, for
eh=0,

l V&& l

=
l VU+ VI l, and for qb=qbo/2, l V&& l

=
f VU

—VI l. Then one may have antiresonances only for
these two values of P. For /=0 or $0 an antiresonance
can occur between two neighboring eigenvalues, E of
the upper branch and Ep of the lower one, with identical

Note that the width is proportional to the inverse of the
lifetime of the eigenstate of the ring. The center of the
resonances are shifted with respect to the eigenvalues of
the ring by a quantity which is proportional to the eigen-
value and to the inverse of the lifetime (or width). The
validity of this result depends on the width of the reso-
nances, which must be smaller than the mean separation
between levels hE. That is the region of strong localiza-
tion. Following Azbel the amplitude on the contacts are
approximated by

parities. In contrast, for /=$0/2 they must have oppo-
sites parities. The width of the antiresonances can be re-
lated to the localization length in the strongly disordered
regime. The approximations

Q]Q~
VU=G) ~—E —E

p p
L Q) Q~

E —Ep

(4.10a)

Qa 2 a 2

E~ =E~+Gi i +Gi-i. -E~+— +E —E E —Ea p

(4.10b)

Q~ Q~
Ea =Ea+Gx x +Gw-x- ——Ea+ +

a p

are valid between E and Ep. In this regime

a, .az -a, az. -+ exp( —M/A, ),a a p p

(4.10c)

where the sign is related to the parity of the eigenstates,
that is, to the number of nodes. To go further we assume
that E and E& have equal parities and that /=0 or
P =Po. Then the linear approximation takes the form

E +Ep
l V„ii l

= exp( —M /A, ) E—
2

(4.11)

where one can identify m = exp( —M/A, ) and E„
=(E +E13)/2 Now. , in the strongly localized regime
one can approximate E =E~ and E~ =E~ for E =E„
because of the exponential localization of the eigenstates.
Thus A (ia)'~ is a finite number of order unity [see Eq.
(2.10)] and the width of the antiresonance is

IV„~ exp(M/A, ) . (4.12)

Note that a smaller localization length gives a larger
width. We finally want to emphasize that antiresonances
are very much inAuenced by the Aux. An antiresonance
for P =Po (P =Po/2 ) disappears for P =Po/2 ( P =Po ).
However, this is not the case for resonances. That is be-
cause to first order in perturbation theory the eigenstates
of the ring do not change and their energies only oscillate
with an exponentially small amplitude

E =E +( —1)"2exp( —M/1, ) cos(2m//Po), (4.13)

V. DETERMINATION QI" THE PHASES

Before introducing the numerical results for T(P), we
show the different types of curves that can be seen. T(P)
typically has one of the forms shown in Fig. 2. The
double-peaked function (c,d) is the more likely for weak-
ly disordered rings. They have Fourier components with
period $0 and Po/2 of the same order of magnitude. The

where n indicates the number of nodes of the eigenstate
of the ring (n =0 for the ground state). Therefore the
Aux only moves the resonances an infinitesimally sm@ll
amount without modifying their shape.
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~ V„~ ~

= VU+ VL +2VU VL cos(2m. (It/Pc), (5.2)

principal di8'erence between these two curves is the initial
phase of the Po component. Figure 2(c) [2(d)] has a phase
P=O (P=~). For numerical purposes we assign a param-
eter P =0 to this kind of curve. On the other hand,
single-peaked functions (a) and (b) are characteristic of
strongly disordered rings. They have a dominant Pc
period with a initial phase P=O [(a)] and P=m [(b)]. The
parameter P = —1 (P = 1) defines a curve of type (a) [(b)].

To understand why only these three cases are possible
it is necessary to examine Eq. (2.9). The dimensionless
resistance depends on

~ V~~ ~
because the Fermi energy is

fixed. This function has an absolute minimum at
' 1/2'" ~'="= aE (5.1)

The oscillation in T(P) is produced because
~ V„z ~

oscil-
lates with fiux with period Pc,

occurs if V,'& V'& VM or VM & V'& V,'. The condition
for a single-peaked function with P =1 requires that
VI & VM & V or V & VM & VI. Finally, the last case
P = —1 occurs whenever V~ & VI & V or V & VI & VM.
This exhausts all the possible relations between the pa-
rameters VI, V~, and V .

VI. FLUX DEPENDENCE OF T FOR THE RING

In this section numerical results are presented fear T(P)
and the data are interpreted by means of an analytical ap-
proach. First, the discussion is made for the case of
strong disorder (k «M). For this case it can be verified
that the results do not depend strongly on the position of
the contacts so that the values N'=N"=M/2 1 we—re
selected. Figure 3 shows the numerical results for
X'=N" =99 and a disorder parameter of 8'=2. Notice
that for a strongly disordered ring almost any energy
gives P =+1, while P =0 occurs for energy windows of
infinitesimal measure around the points at which P

so that it moves from
~
V~~(/=0)~ = VI=(VU+ VL ) to

~ V„z(P =Pc/2) ~2 = V~ = ( VU
—

VL ) in a monotonic way

(rising or decreasing) and then goes back. It is not
difficult to see that a double-peaked function (P =0)

8.0 x10

).0

0.8—

0.6—

(a)

0.2—

0.0

2.0x 10 I

4/4o
(c)

(e)

0
0

- 0.2
E/V

I

0.2

FIG. 2. (a) and (b) Typical transmittance T for a strongly
disordered ring. Both curves have a dominant $0 period. (c)
and (d) Typical transmittance T for a newly ordered ring. These
curves have both $0 and $0/2 periods of equal order of magni-
tude. Curves of type (a) and (b) are characterized by a parame-
ter P equal to —1 or 1, respectively. Curves (c) and (d) corre-
spond to P =0.

FIG. 3. Data for a ring with N'=N"=99 and disorder pa-
rameter 8'=2. (a) Transmittance as a function of energy {scale
at bottom) in the middle of the band for /=0. (b) Arrows over
the axis indicate the eigenvalues of the isolated ring. (c) Param-
eter P defined in the text (see Fig. 2) as a function of energy. (d)
and (e) Arrows indicate the eigenvalues of the isolated upper
and lower branch, respectively. Observe the correlation of (c)
with (d) and {e).
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changes from the value —1 to 1 and vice versa [see Fig.
3(c)].

In order to understand the origin of the different
phases it is convenient to analyze T as a function of the
energy. A typical situation of this is shown in Fig. 3(a)
for / =0. Notice that T is exponentially small for almost
any energy except small ranges, at which it has large
values. These are just the resonances related to the
"symmetrical" eigenstates of the isolated ring (A is ap-
proximately zero), which were discussed in Sec. IV. Note
that the resonances are related to the eigenvalues of the
isolated ring [see Fig. 3(b)]. The position of the reso-
nances has a slight dependence on the magnetic flux as
determined by Eq. (4.13). Then one could be tempted to
conclude that the observed phases and oscillations are
due to the movement of the resonances, as previous au-
thors have pointed out. ' However, for strong disordered
systems this is not the case as one can see comparing Fig.
3(a) to Fig. 3(c). At the resonances there occurs a change
in phase, but the inverse is not true. There exist changes
of phase for energies where there are no resonances (nor
eigenvalues of the isolated ring). Also, there is not an ex-
act correlation between the infinitesimal movement of the
resonance and the oscillation of T for a Fermi energy
near to it.

In Figs. 4(a) and 4(b) we plotted —ln(T) as a function
of energy for /=0 and P=Po/2, respectively. Reso-
nances appear as valleys while antiresonances correspond
to the peaks. Note that the positions of the valleys are
practically unaffected. The purpose of the logarithmic

g 20—
c

10

plot is to show the strong dependence of antiresonances
on magnetic Ilux. If we had an antiresonance when / =0
(P =Po/2) it disappears at P =go/2 (/ =0). This
influence gives us a reason to expect that the increment
(decrement) of the magnitude of the effective coupling

~ V„z ~
with (lux will cause P = 1 (P = —1). With

these ideas we calculated P using values of
~
VU+ VL ~/~ VU

—
VL ~

both larger and less than 1. A
curve is obtained in complete agreement with Fig. 3(c).
Therefore, the change from one phase to the other one is
associated with a change from a situation in which

~ VU+ VL ~

) VU —
VL ~

to the opposite one or vice versa.
Since both VU and VL are real numbers, this requires
that one of them modify its sign. This change in sign
occurs exactly at the eigen values of the disordered
chains, because

a aa (~a~~
VU=Gix =RE

a

Q ~tig~rrP P

VL I"N" g E Ep P

(6.1a)

(6.1b)

where E and E& are the eigenvalues of the upper and
lower branch, respectively. Given these results one can
find a spectral interpretation for the energies at which the
change of phase occurs: 8'e conclude that the changes in
phase for T(P) occur at the eigenualues of the isolated
branches Figures .3(d) and 3(e) show these exact coin-
cidences. Therefore, if there are states with the same par-
ity in both branches, just below the Fermi energy E, one
has P = —1. On the contrary, for states of different pari-
ties one must assign P =+1. In the strongly disordered
regime an asymmetry in the position of the contacts can-
not introduce any new fact, since the relative parity is a
random variable. This was verified numerically.

The above discussion implies that for almost every en-
ergy and (lux the inequality

~ V„s ~

& V holds. The
reason lies on the strong localization of the branch eigen-
states. While V is a number of order unity or larger,

~ V„z ~
= exp( —M/1, ) && 1. Only when E is very close to

a branch eigenvalue (for instance, an upper value E ),
~ V~~ ~

increases as

0
-0.2

I I

0.0 E/V

(b)

V' =(G )'=(a )'(a ~ )'/(E —E )'

But at this energy

V =E„Es=G, , G~~ =(a, ) (a~ ) /(E E)—2 U U a 2 a 2 2

10

0
- 0.2 0.0

E/V
0.2

FICx. 4. Plot of —ln(T) as a function of energy for (a) /=0
and (b) / =$0/2, respectively, with parameters of Fig. 3.

Therefore,
~ V„s~ = V and one has a double-peaked

function for T(P).
Note that the above considerations are based on the

smallness of the amplitudes of the branch eigenstates at
the contacts. Thus a similer description holds for an or-
dered ring with a highly reflective contact, for which this
statement is valid. According to Eq. (3.7) this situation
occurs if the Fermi energy lies near the band edge. How-
ever, E at the band center is more convenient for the
correlation between the resonance maxima and eigen-
states. Therefore, we maintained E =0 and simulated the
strong scattering at the contacts by taking lower site en-
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ergies at the contacts than on the rest of the ring. Figure
5 shows the extreme case of two ordered branches with
N'=99, N"=100, and E~ =E~=E,.=E,-=E~. =E~-
= —2, with the other site energies equal strength. An in-
teresting fact occurs in this regime. For very weak disor-
der the eigenvalues of each branch are approximately
equal to zero. Our arguments, were completely
confirmed. For almost every energy, one observes a
phase P =+1 [see Fig. 5(d)]. The change from one phase
to the other occurs close to the eigenvalue of each branch
of the ring [compare Fig. 5(d) with Figs. 5(e) and 5(f)].
This plot makes it evident that the positions of the reso-
nances are related to the eigenvalues of the isolated ring,
and that they are only weakly displaced by the magnetic
Aux. One can then attribute to this movement the
double-peaked transmittance (P =0) near the eigenval-
ues, recovering the seminal ideas of Ref. 14. However,
for most energies (where P = —1 and 1) the principal
effect is the decrease (increase) of T due to the formation
(collapse) of the antiresonant regions with the magnetic
Aux.

There remains to be considered the weak and inter-

I(b)

U U

(c)l!Ll t ll ll Il
(d)

I I I I I I I I I

I I I I I I

(e)

i

(f)

mediate disordered regimes. For the first case, the behav-
ior of T(P) is described by a double-peaked function for
almost every energy. T takes on appreciable values and
the amplitudes of the oscillations are large. As we al-
ready mentioned, T(P) has a Po and Po/2 period of ap-
proxirnately equal strength. An interesting fact occurs in
this regime. For very weak disorder the eigenvalues of
each branch are approximately equal to those of the or-
dered case. Hence, correlation among energy positions
and their relative parities is very important in deterrnin-
ing the phase of the Po oscillation. We will discuss the
typical situations.

For equal branch lengths, say N'=N"=99, T is large
for P =0 and small for P =P =Po/2. The reason resides
in the almost one-to-one correspondence between the
equal-parity eigenvalues of both branches. Thus for
P=Po/2 there exist destructive interference for most en-
ergies. Then the Po component of T has phase P=O [see
Fig. 2(c)]. On the other hand, different numbers of sites
can invert this situation. For example, for N' =99 and
N"=101 there is a one-to-one correspondence, but be-
tween eigenstates of different parities. Destructive in-
terference now happens at /=0. Hence the phase of the

Po component is P=m [see Fig. 2(d)]. A more symmetri-
cal situation happens for N'=99 and N"=100. The ei-
genvalues of one of the branches are between the eigen-
values of the other one. Then, choosing random energies,
one sometimes observes a double-peaked function as in
Fig. 2(c) and sometimes as in Fig. 2(d).

The transmittance of a real many-channel ordered sys-
tem may be conceived as a superposition of all the situa-
tions described above. As disorder turns up, the correla-
tion between eigenstates is lost and one begins to see both
types of single-peaked functions [see Figs. 2(a) and 2(b)],
and the Po component of the double-peaked curve has a
random phase. The results of Mural et al. ' are applic-
able to this case. Averaging over energy produced by the
finite temperature leads to the subsistence of only the
Po/2 component. Finally, more disorder causes the
double-peaked structure to disappear. T has a dominant

Po period and is small. This also happens for every disor-
der with highly reflective contacts. In that case, tempera-
ture will not cause the elimination of the Po component,
as Murat et a/. ' pointed out. The only effect would be
to diminish the amplitude of the oscillations and to
change the phase as the temperature is raised.

VII. DISCUSSION

—0.2 0.0 0.2

FIG. 5. Data for a ring with N'=99 and N"=100 with all
sites energies equal to zero and E& =E& =E& =E& =N&-
=E&-= —2. (a) and (b) Transmittance as a function of energy
for /=0 and /=$0/2, respectively. The scale of energy is
shown at bottom. (c) Arrows indicate the eigenvalues of the iso-
lated ring. (d) Plot of the I' parameter as defined in the text. (e)
and (f) Arrows indicate the eigenvalues of the isolated upper
and lower branches of the ring, respectively. Observe that (d)
correlates with (c) as we11 as with (e) and (f).

The microscopic meaning of the Aharonov-Bohm
effect was described using a simple model. This allowed
us to clear up some basic questions, such as which are the
parameters that control the dominant period and phase
of the low-temperature rnagnetoresistance oscillations?
The importance of antiresonant and resonant regions in
the observed oscillations becomes clear in this work.
Other notable aspects of our work are the consideration
of branching effects and a formal extension of the tight-
binding model of the resonant tunneling theory due to
Azbel. In the case of a loop this theory was further ex-
tended in order to include antiresonances.
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In the regime of intermediate and strong disorder, our
model presents a transmittance whose main contribution
has a (()o period, which is originated by the formation or
collapse of the antiresonances. Their phase depends of
the position of the eigenvalues of each branch relative to
the Fermi energy. In this regime, the connection of the
quantum transmittance with the finite-temperature mag-
netoresistance of metal rings was already clearly dis-
cussed by other authors. ' ' '

It is in the regime of weak disorder where a new in-
gredient shows up. According to the results of Sec. III, a
branched circuit presents localized states in the region of
the contacts. The main consequence of this is that con-
tacts produce the backscattering of the incoming waves.
This effect is weak for energies near the band center while
it is very strong near the band edges. In the first situation
both ring branches are almost perfectly coupled. Then,
the magnetoresistance presents a strong {to/2 period.
This is originated on the displacement of the resonance
maxima, associated with the eigenvalues of the ring,
which crosses the Fermi energy two times as flux varies
in the range (O, po). This spectral argument, which ap-
plies also to cylinders, is consistent with the traditional
idea that the Po/2 period is due to the interference of
electronic paths of opposite directions that go around the
annulus. The amplitude of this oscillation is of the same
order as that corresponding to the {()o period, provided
that the branches are almost perfectly coupled. This con-
dition breaks down when the contact represents a strong
scattering center. We then come to the second situation,

where backscattering at the contacts occurs when the
Fermi energy lies near the band edge. We have shown
both analytically and numerically that in this regime it
appears to be a dominant {()o component associated, as in
the case of strong disorder, with the formation or col-
lapse of the antiresonances. We believe that this situation
could have its experimental correlate in the observed
dominant tI)o period of the magnetoresistance of high-
mobility rings. These circuits are made using a
quantum-well heter ostructure of GaAs/GaAs, „Al„.
Since the number of occupied channels (or transverse
subbands) is very low, the Fermi energy lies near the
band edge and the above condition applies. In this case
the localized states can be thought of as having originat-
ed as a consequence of an increase of the well size
(effective dimensionality ) in the neighborhood of the
contact. Notice that the branching effect should not be
as critical for metals because they have a Fermi energy
far away from the band edge.

The appeal of our tight-binding model is that, in spite
of being simple, it allows for the retention of much of the
physics of the Aharonov-Bohm effect in solid-state de-
vices. Therefore, it can be used in the quantitative dis-
cussion of predictive value in different experimental con-
ditions.

ACKNOWLEDGMENTS

H.M.P. acknowledges discussion with Professor M.
Brodsky in the early stages of this work, as well as the
correspondence of Dr. Washburn.

~B. L. Al'tshuler, A. G. Aronov, and B. Z. Spivak, Pis'ma Zh.
Eksp. Teor. Fiz. 33, 101 (1981) [JETP Lett. 33, 94 (1981)].

D. Yu Sharvin and Yu. V. Sharvin, Pis'ma Zh. Eksp. Teor. Fiz.
34, 285 {1981).[JETP Lett. 34, 273 {1981)].

B. L. Al'tshuler, A. G. Aronov, B. Z. Spivak, D. Yu Sharvin,
and Yu. V. Sharvin, Pis'ma Zh. Eksp. Teor. Fiz. 35, 476
(1982) [JETP Lett. 35, 589 (1982)].

~M. Gijs, C. Van Haesendonck, and Y. Bruynseraede, Phys.
Rev. Lett. 52, 2069 (1984).

5B. Pannetier, J. Chausay, R. Rammal, and P. Gandit, Phys.
Rev. Lett. 53, 718 (1984).

R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz,
Phys. Rev. Lett. 54, 2696 (1985); S. Washburn, C. P. Umbach,
R. B. Laibowitz, and R. A. Webb, Phys. Rev. B 32, 4789
(1985).

7V. Chandrasekhar, M. J. Rooks, S. Wind, and D. E. Prober,
Phys. Rev. Lett. 55, 1610 (1985).

8R. Landauer, Philos. Mag. 21, 863 (1970).
Y. Gefen, Y. Imry, and M. Ya Azbel, Phys. Rev. Lett. 52, 129

(1984).
Y. Gefen, Y. Imry, and M. Ya Azbel, Surf. Sci. 142, 203
(1984).
A. D. Benoit, S. Washburn, C. P. Umbach, R. B. Laibowitz,
and R. A. Webb, Phys. Rev. Lett. 57, 1765 (1986).

~M. Murat, Y. Gefen, and Y. Imry, Phys. Rev. B 34, 659
(1986).
M. Biittiker, Phys. Rev. Lett. 57, 1761 (1986).

~M. Biittiker, Y. Imry, and M. Ya Azbel, Phys. Rev. A 30,
1982 (1984).

' A. D. Stone, and Y. Imry, Phys. Lett. 56, 189 (1986).
~6Q. Li and C. M. Soukoulis, Phys. Rev. Lett. 57, 3105 (1986).
~7J. Jose, in Proceedings of the XIXth Latin American School of

Physics, Cali, Columbia, 1982, edited by A. Rueda (World
Scientific, Singapore, 1983).
E. Domany, S. Alexander, D. Bensimon, and L. P. Kadanoff,
Phys. Rev. B 28, 3110 (1983).
C. Wiecko and E. Roman, Phys. Rev. B 30, 1603 (1984).
H. M. Pastawski, C. Slutsky, and J. F. Weisz, Phys. Rev. B 32,
3642 (1985).

'P. Levstein, H. M. Pastawski, and J. L. D*Amato (unpub-
lished)
A. D. Stone, J. D. Joannopoulos, and D. J. Chadi, Phys. Rev.
B 24, 5583 (1981).
H. M. Pastawski and C. Wiecko, Phys. Rev. A 36, 5854
(1987).
F. Guinea and J. A. Verges, Phys. Rev. 8 35, 979 (1987).

~~M. Ya Azbel and P. Soven, Phys. Rev. B 27, 831 (1983).
~ M. Ya Azbel, Solid State Commun. 45, 527 (1983).

M. Ya Azbel, Phys. Rev. B 28, 4106 (1983).
H. M. Pastawski, A. Rojo, and C. A. Balseiro, Phys. Rev. B
37, 6246 (1988).
G. Tirnp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P.
Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev.
Lett. 58, 2814 (1987).


