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A critique is given of classical models of depinning and transport by sliding charge-density waves
(CDW) in quasi-one-dimensional metals. A considerable body of evidence supports a theory based
on quantum tunneling over macroscopic distances, particularly on NbSe3 and TaS3. No sound pre-
diction of the classical approach is consistent with these data. All evidence indicates that it is neces-
sary to treat CDW metals as macroscopic quantum systems with quantum tunneling as an essential
feature. Classical concepts are useful for memory, hysteresis, and low-frequency response in the
pinned state below threshold. They can only be used for phenomena on length scales larger than
the Lee-Rice domain length in the sliding regime above threshold.

I. INTRODUCTION

With the passage of more than eight years since the
quantum tunneling model of charge-density-wave (CDW)
depinning in quasi-one-dimensional (1D) metals was first
proposed, ' there is still no consensus as to the correct
approach for describing these systems. Nearly all theor-
ists who have worked on the problem have tried to ac-
count for the experimental results with semiclassical
models. Classical models have dominated the thinking of
experimentalists as well. Since I feel that this has been to
the detriment of what should be an exciting field for
study of macroscopic quantum phenomena, I have decid-
ed to give a critical assessment of the classical approach.

In classical models the CDW is regarded as a classical
deformable object subject to random impurity pinning
and viscous damping. No plausible classical model has
been able to account for any aspect of CDW transport,
dc, ac, or combined dc and ac. The only exceptions are
phenomena that involve time variations of the phase with
no changes in charge density. The latter include oscilla-
tions about the pinning frequency and transport in high
fields at temperatures so low that there are few normal
carriers present to help screen density fluctuations. No
prediction has been made that subsequently has been
verified experimentally. By plausible, I mean a model
that uses classical variables that can be defined within the
quantum limits of uncertainty and. takes into account the
important energies in the problem in at least an approxi-
mate way. Any approach that does not treat CDW met-
als as macroscopic quantum systems misses the essential
physics of the problem.

Nearly all theories, classical and quantum alike, are
based on the Fukuyama-Lee-Rice (FLR) theory of weak
impurity pinning in which there are many (typi-
cally & 10 ) impurities in a phase-coherent domain. The
CDW is defined by a density variation
po+p, cos[2k~x+O(r, t)], where k~ is the Fermi wave

vector in the direction of motion of the CDW and O(r, t)
is a phase that varies slowly in space and time. For uni-
form drift with a velocity U„, 0= —2k~v„t.

A phase-coherent domain ip one in which 0 changes by
no more than -m. /2. A typical domain has a length
I.d =10 cm in the chain direction (the direction of
propagation) and = 10 cm in transverse directions. It
is convenient to define a chain as an area containing a
charge 2e per wave length. The charge and current den-
sities per chain are then

p,h=(e/vr)(t)O/Bx), J,h
= —(e/tr)(t)O/t)t) .

There are on the order of 10 parallel chains in a phase-
coherent domain. This designation does not imply that
the "chains" necessarily have any physical meaning, but
is used as a way of counting the degrees of freedom. One
could equally well use a k~ value, with the number of
discrete kz values equal to the number of chains per unit
area.

The present discussion is limited to CDW metals at
temperatures sufhcient for complete screening of density
Auctuations involved in transport by normal carriers.
These include the most widely studied metals, NbSe3 at
nearly all temperatures and TaS3 above about 110 K. It
is only for such systems that a reasonably complete mi-
croscopic theory is available.

When random impurities are present, the phase Oo(r)
that minimizes the energy of a static CDW is an aperiod-
ic Auctuation of average amplitude ~ and average period
21.d. The associated density functions arise from an
aperiodic potential, due to Auctuations, in which the elec-
trans move. The potential gives rise to a small pinning
gap through which electrons must tunnel to accelerate
the CDW. Experimentally, it is found that there is no
conduction by moving CDW's unless the applied electric
field exceeds a threshold value, ET. Above ET, the CDW
current density can be expressed approximately in the
form
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j cnw=o b(E ET)exp( Eo/E) (2)

where o.b=n, e ~/MF. Here n, is the electron density
and MF is the Frohlich mass associated with ion motion
that accompanies the moving CDW. The CDW may be
regarded as a macroscopic occupation of a phonon of
wave vector 2kF. When the CDW is moving with a drift
velocity vd, the phonons have an angular frequency
cod =2kFU

From the beginning, the major problem has been to
account for the Zener-like factor P(E)=exp( Eo/E—).
The value of Eo is about that expected for tunneling of
individual electrons through a small pinning gap. How-
ever, the gap is orders of magnitude smaller than thermal
energy. In 1979 I suggested"' that the problem could be
resolved if the gap and Zener factor apply only to
coherent tunneling of electrons that advance the CDW
condensate in a large phase-coherent volume containing
—10 electrons or more. There is only one thermal de-
gree of freedom for motion of the CDW in a phase-
coherent volume. Only one quasiclassical variable can be
used to define CDW motion in this volume.

In 1980, not long after the first measurements of ac
conductivity were made below the microwave region, I
suggested" ' that effects of ac voltages, or combined dc
and ac voltages, could be accounted for by application of
Tucker's theory of photon-assisted tunneling (PAT
theory). At the time, it was not known whether or not
the threshold field rejected a gap that must be overcome
as in normal-superconducting junctions. Later it was
realized that the important driving field is not E but
E ff E+E „, where the CDW polarization field

Ep ] ET just above threshold. Below threshold,
E ff 0. The PAT theory was successfully applied to a
wide range of phenomena, including mixing, harmonic
mixing, and harmonic generation.

If valid, the theory implies that effects of quanta of
megahertz radiation are being observed at temperatures
above 100 K. Particularly since this is a priori irnplausi-
ble, it is important to see whether or not such data, as
well as the dc I-V characteristic, can be explained with
classical models. We shall show that all such attempts
that claim success are Aawed.

II. DESCRIPTION OF CDW MOTION WITH
CANONICAL VARIABLES

Motion of the CDW in the chain direction x may be
defined by a variable N(x) that gives the total wave-
vector density of the electrons and macroscopically occu-
pied phonons in units of 2AkF. The momentum density is

P (x)=N(x)2A'kF=n, vd(x)MF,

where n, =N,„(2k~/vr) is the electron density, N, h is the
number of chains per unit area, vd is the drift velocity of
the CDW, and MF is the Frohlich mass. The mass Mz
includes both that associated with ion motion of the rnac-
roscopic phonons and the band mass m of the electrons
that accompany the moving CDW.

The variable conjugate to iiiN(x) in the Hamiltonian
sense is the phase 8(x). For a freely moving CDW, the

free-energy density is

P N,„p(x ) ae N, h fiuF aeF(x)= + +
2n, MF m Bx 4m Bx

The first term on the right-hand side is the kinetic energy,
the second is the potential energy of electrons in the field
E, with eE= —Bp/Bx, and the third is the increase in
Fermi energy (KE) of the electrons from fluctuations in
electron density. The Hamiltonian equations of motion
are

eaN/at) =(N,„/~)(a~/ax)
—(N,hirivF/2n )(a 8/ax ),

ae/at = —2k, u, ,

leading to the equation for acceleration,

a'e/at =2k eE/MF+c (a 8/ax ),

(5a)

(5b)

where co = (m /MF )uz is the phason velocity. The second
term on the right-hand side is that arising from the polar-
ization field, E,]. This equation was derived by a
different method by Lee, Rice, and Anderson for a freely
moving CDW.

Random impurities give a phase-dependent energy of
the form

H; = Vo g cos[%~+8(r , t)], .

J

where +z =2kFxz is a random phase for the impurity at
r and 8(r, t) is a. slowly varying function of space and
time that gives the density variations and motion of the
CDW. The pinning energy is minimized by a static dis-
tortion 8O(r) that varies on the scale of a phase-coherent
domain, I.d = 10 cm. The density fluctuations de-
scribed by eo(r) give rise to an energy gap through which
electrons must tunnel to accelerate the CDW when an
electric field is applied. The gap is similar to that in an
amorphous semiconductor except that there is a second
distortion eo(r) that makes the energy a minimum when
the CDW is displaced by half a wavelength or ~ in phase.

One cannot arrive at an energy gap by treating the im-
purities as a perturbation in any order of perturbation
theory. The analogous problem in superconductivity is
that one cannot arrive at the superconducting ground
state by treating the electron-phonon interaction and im-
purity scattering in perturbation theory. Similarly, one
cannot treat low-temperature transport in a serniconduc-
tor with a perturbation expansion of the potential that
gives the gap.

When the impurities are included in zero order, a tun-
neling step is required to add 2k+, or one macroscopic
phonon, to the total wave vector of the CDW. This
means that a Zener tunneling factor exp( Eo/E) must-
be included at the elementary step of increasing X by one
in a phase-coherent volume or of increasing the momen-
tum of the CDW by 2AkF.

It is convenient to include the Fermi energy from den-
sity fluctuations on the scale of L,d or less in a phase-
dependent pinning energy N, h V(r, e). Then 8 varies only
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on a scale larger than Ld. Changes in the density of the
electrons from space variations of 0 on a scale greater
than Ld can be treated quasiclassically.

With mvd=A'q, the equation for free acceleration, (6),
becomes

A'Bq /Bt =e *[E+E,~
( r ) ]= e *E,s- . (10)

Both q and E may be slowly varying functions of the
space coordinates. The quantum equation is similar but
includes the Zener factor

Pic}q /Bt = e *E,&exp( Eo /E,—s. ) .

In both cases, the steady-state value for the drift velocity
of the CDW is obtained by integrating over a short relax-
ation time. The quantum equation is

mud
=e *rE,sex p( Eo /E, s.—), (12)

while the classical equation is similar except for the all-
important Zener factor. In both cases, E and E oi may, if
desired, be regarded as space averages. At threshold,
Ep J ET and E,z =0. Above about 2ET, E,z =E. It
is the expression with the Zener factor that fits the exper-
imental data ' (Fig. 1). The space average of E „gives

ABq /Bt =e *E,
where e"=(m /MF)e. The effect of weak impurity pin-
ning is to add a polarization field

eE, = —~O V/ae

to E. The semiclassical equation of motion is then

the oscillating voltage (narrow-band noise) associated
with dc current Aow.

III. CRITIQUE OF CLASSICAL THEORIES

. From the above analysis, the minimum classical dc
current density should be ob(E. ET—). How do the clas-
sical approaches account for substantially smaller values
for fields of the order of Eo and smaller? The initial ap-
proach of Sneddon, Cross, and Fisher' was a plausible
one; it starts from a freely moving CDW and treats the
impurities by perturbation theory. While plausible, it is,
as discussed earlier, incorrect in its basic assumptions.
The only prediction that could be compared with experi-
ment is that at high fields the dc CDW current should be
proportional to E—cE ' . Later, Fisher, ' by treating
threshold as a critical point, predicted that the current
should vary as (E Er ) ju—st above threshold. Neither
of these predictions is in agreement with experiment" .

Attempts to improve things by introducing internal de-
grees of freedom have been equally unsuccessful. By
phase locking to an applied ac one can get a step in the
dc I —V characteristic on which the dc CDW current is
precisely constant for a finite range of dc bias, and on
which the current density is uniform throughout the en-
tire specimen to a very high degree, in contrast with the
predictions of many-degrees-of-freedom models. ' "

Much reliance has been put on computer calculations
based on oversimplified models. Many of these take the
phase at each impurity site, 0, as a classical variable, al-
though this cannot be done within the quantum limits of
uncertainty except on an energy scale at least 2 orders of
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FIG. 1. Field and frequency dependence of conduction in NbSe, below T, (from Thorne, Ref. 9). The dc I-V characteristic,
Gcn~(E)/Gb =Ico~(E)/GbE, fits the Zener expression exp( —Eo!E) for fields above about 2ET. As predicted by PAT theory, the
ac conductance GcD~(cu)/Gb scales closely with the dc except near threshold and below. Classical concepts can be used to describe
the ac conductance near and below threshold, but not above threshold where there is scaling between the ac and dc response.
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magnitude larger than the actual energies in the problem.
To define the phase at an impurity site within the quan-
tum limits of uncertainty requires an energy per electron
of the order fi /2mL;, where L,- is the average distance
between neighboring impurities. This is of the order of
(Ld/L, ), or greater than 100 times the pinning energy
per electron. If each 0 represents a classical degree of
freedom, the thermal energy would be far greater than
the pinning energy.

Sneddon' has used a model introduced by Fisher'
with infinite-range interactions. The phase at each irn-
purity 8~ =8(r, , t) is taken to be a classical variable, with
the 0 satisfying equations of motion of the form

d8 /dt =a(8, —
OJ )+b sin(2kFxj+8 ) cE,— (13)

where 0, = (HJ ) is the average phase and 2k+x is a ran-
dom phase. No terms are introduced that represent the
large energies involved when 0; and 0 differ and i and j
are close together. The claim is made, ' on the basis of
computer calculations, not only to account for the gradu-
al rise in Id, /(E ET) ab—ove threshold, but also for ex-
periments on effects of combined ac and dc fields that
have been interpreted in terms of PAT theory. Such
claims are based on what I believe are unphysical and im-
plausible models.

Takayama and Matsukawa' ' also claim to account
for both the dc and ac characteristics, on the basis of a
somewhat different model. It is similar to that of Sned-
don in taking the 0 as classical variables, but introduces
terms in the equation of motion to represent elastic forces
from space gradients proportional to V 0. The results
appear to be reasonable for a classical theory when ap-
plied to a 1D chain. The ratio I/V rises rapidly above
threshold to a constant value above about 2ET, as expect-
ed for E,z. Difficulties arise when they attempt to model
a 3D system by adjusting the pai'ameters of the 1D chain.

The dependence on dimensionality is not based on us-
ing true 2D and 3D models, but on reducing everything
to calculations for a 1D chain. Dimensionality is taken
into account in the reduced variables used for the chain.
In the model, the frictional force from impurities is in 3D
not proportional to the CDW velocity but to the square
root of the velocity. Response to applied fields is limited
by a frictional force proportional to the velocity. At high
fields the latter gives the limiting current, but at low fields
the impurity pinning force predominates and limits the
current. The crossover field where the two are about
equal corresponds to the depinning field Eo. In three di-
mensions the acceleration is not proportional to E,z-, as
in Eq. (10).

I believe that an error may have been made in the mod-
eling. Qnly Auctuation effects should depend on dimen-
sion. Equation (1) should apply to a classical model. The
polarization field E,&

can depend on 0 but not on the
CDW velocity, as has been verified experimentally. " At
the crossover field Eo the drift frequency cod=80/Bt is
typically —10 rad/sec. In a relaxation time ~=10
sec, 8 changes by only a small fraction ( —10 3) of a radi-
an. The drift velocity vd at a field Eo can have no effect
on the relaxation rate. The force from impurity pinning

can arise only from the 8-dependent polarization energy
V(8), not the CDW velocity. The maximum polarization
force is given by the threshold field, ET. A reasonable
modeling would adjust the density and strength of impur-
ities so as to make the Lee-Rice length, Ld, the same in
one dimension as in three dimensions. There would then
be no difference in response between 3D and 1D systems.

Matsukawa' also claims to derive the equations of
PAT theory with a classical model and thus account for
results of applied ac voltages and combined ac and dc
voltages in the same way as is done by the quantum-
tunneling approach. For example, for an applied field
E=Ed, +E„cos(cot ), the equations of motion in the ab-
sence of impurities are integrated over a relaxation time
to derive an expression for the ac current:

2acoI„=E„[Id,(Ed, +aco) Id, (E—d, am)—], (14)

where a is a scaling factor inversely proportioned to ~.
This equation is of course valid. In the absence of im-

purities, Id, is linear in the field, Id, =o.Ed, so that
Id, =oE„. He uses the same equations when impurities
are present, with Id, replaced by the nonlinear Id, as de-
rived by the analysis criticized earlier. A perturbation
expansion also is used to derive Id, . In a correct classical
theory, Ed, would be replaced by E,~, and the ac conduc-
tivity would be the same as the dc. In PAT theory, the
same equations are derived, but with the nonlinear tun-
neling probability (given by the Zener factor) included.

The expression derived by Matsukawa for a is almost
identical to that of the quantum approach. He finds
a=A/2e*vF~, but derives it in a form in which A does
not appear explicitly from the semiclassical equations of
motion. This form can be obtained by multiplying
numerator and denominator by kF and replacing AkF by
the equivalent mvF. The first form is more physical since
it relates an energy drop in a field with the quantum Ace.

Littlewood and Varma' have given a classical descrip-
tion of CDW dynamics in which different regions
respond on different frequency and length scales. These
regions are coupled together. The theory is reasonable
when applied to such phenomena as hysteresis, memory,
and low-frequency ac response when the applied voltages
are below or in the vicinity of threshold. In this region
effects of random disorder of the impurities on length
scales ) Ld are all important and their discussion is pret-
ty much model independent. There is no Zener tunneling
below threshold.

In the sliding regime above threshold, Littlewood and
Varma rederive results obtained earlier by Fisher In
the classical model the dc current should increase
above threshold as (E ET )

~ and at —high fields,

Id, =o bE cE' . They also find I—„(co)=I„(co) ceo'~—
for co large. None of these predictions are consistent with
experiment.

They derive the infinite-range equations of motion (13)
as a first approximation of a perturbation expansion of
the impurity interactions. These have the difficulties dis-
cussed earlier.

There are regions where classical models are appropri-
ate and quantum tunneling does not play a significant
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role. One is pure phase oscillations about the pinning fre-
quency where the phase changes in time but not in space.
Another is depinning at high fields at temperatures so
low that there are two few normal carriers to screen den-
sity variations of the CDW. ' In such depinning the
phase again changes only in time.

It is remarkable how well single coordinate models
based on the quantum approach fit the data for a wide
variety of phenomena in spite of the random disorder of
impurities known to be present. Computer calculations
should shed light on this if E,ff is multiplied by the tun-
neling probability. Such effects are most important near
threshold and below.

I conclude that no sound prediction of classical CDW
motion in the charge-compensated sliding regime is borne
out by experiment. Experimenters and theorists alike
should think of CDW motion as a beautiful example of
macroscopic quantum mechanics, with many analogies to
superconductivity.

Note added. A number of articles on CDW transport,

both experimental and theoretical, have appeared since
the manuscript was first submitted. No attempt has been
made to cite these since nothing has appeared that would
alter the criticisms made. Tucker' has proposed to ac-
count for some CDW phenomena on the basis of a model
with strong pinning. The phase-dependent energy per
impurity is of the order of thermal energy at the Peierls
transition temperature. For a Lee-Rice domain of length
I.d —10 cm there would have to be of the order of 10"
such impurities in a phase-coherent volume in order to
account for the pinning energy, well within the weak-
coupling limit.
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