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There is a considerable disagreement in the literature on the description of lifetime effects arising
from core-valence transitions in solids. We calculate here Auger and radiative widths of shallow
core levels in Li, Be, Na, Mg, and Al with use of principles consistent with dynamical theories of
secondary-emission processes developed earlier. The lifetime has no simple relation to the usual
self-energy but is instead directly related to emission yields. The problem of choosing reliable ap-
proximations for Auger rates and matrix elements is analyzed theoretically and computationally.
We also comment on some earlier approaches. Much of our discussion pertains also to calculations
of Auger line shapes from first principles. For long hole lifetimes the total and partial level widths

obey an initial-state rule and follow from wave functions perturbed by a static core hole. To obtain
these impurity wave .functions we perform self-consistent supercell calculations. The core-hole
screening increases the Auger rates by factors of the order 2 —4 compared with results from
ground-state orbitals but has never been properly included before. The width of the 1s level in Li is

rather accurately known because it monitors large effects of incomplete lattice relaxation. For Li
we obtain here a width 17 meV in excellent agreement with the value 16 meV deduced earlier from
measurements by Callcott et al.

I. INTRODUCTION

In this and the following paper we shall address a num-
ber of what we believe to be unresolved questions in the
description of core-valence-valence (CVV) transitions in
metals. In the present paper we consider the principles of
how core-level lifetime widths of shallow core levels in
metals should be obtained theoretically and present ab in-
itio results based on the linear muffin-tin-orbital (LMTO)
repeated-cluster method. In the following paper' we will
be concerned with the question to what extent Auger line
shapes may be obtained from strict one-electron theory,
possibly corrected by surface and mean-free-path effects,
and the role of dynamical effects connected with the sud-
den disappearance of the core hole in the final state of the
process. Throughout these two papers we will confine
ourselves to the simple metals Li, Be, Na, Mg, and Al.
Preliminary results have been reported earlier at interna-
tional conferences.

The lifetime widths of, say, the 1s core level in Li
might seem to be a rather uninteresting quantity, giving
rise to a mere broadening of a deep-level spectrum.
While this is the case for x-ray-photoemission (XPS) and
soft-x-ray-absorption (SXA) spectroscopy connected with
the core-hole —creation process, the lifetime enters in a
more interesting way in the description of secondary
spectra such as x-ray-emission and Auger emission spec-
tra connected with the subsequent decay of the core hole.

When the core-hole lifetime is not too long or not too
short compared to the time needed for the system to relax
in the core-hole potential, interesting dynamical effects
originating from partial core-hole relaxation have been
predicted and observed in both x-ray-emission and Auger
emission spectra. ' The core-hole lifetime monitors
the degree of relaxation seen in these secondary emission
spectra. In this regard the lifetime of holes in the upper-
most core shell in a simple metal is of special interest
since these lifetimes are generally believed to be of the
same order as the lattice relaxation time, i.e., correspond-
ing to widths of the order 10 eV. The core-hole life-
time also plays an important role in resonant photoemis-
sion processes in which direct and indirect channels in-
volving core-hole states interfere. In the current descrip-
tion of these phenomena the lifetime has a precise
definition, and an accurate calculation provides a test of
the internal consistency. In this way one can also obtain
measures on the accuracy by which transition matrix ele-
ments of importance to line shapes can be obtained.

Previous calculations" ' of core-level lifetime widths
in simple metal have all been based on crude approxima-
tions of wave functions and matrix elements and have
given convicting results. Our work is intended to show
the importance of using accurate wave functions and
proper descriptions of the ejected Auger electron. Of
more importance is that some previous works are from a
conceptual point of view in clear conAict with, by now,
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well-established theories of lifetime effects in
solids. ' ' Conceptual difTiculties arise mainly for
core levels that decay via core-valence transitions, since
in that case the valence electrons play a dual role in that
they participate both in the core-hole annihilation and
the core-hole relaxation processes. According to these
general theories, which are developed to cope with
dynamical effects in secondary spectra and with reso-
nance phenomena, the lifetime width is to be identified
with the core-hole annihilation rate, not with the core-
electron self-energy as has been done in most previous
calculations. Due to, e.g. , shakeup of electron-hole pairs,
the latter quantity would be nonzero even if the core hole
did not decay at all ~ The identification of the lifetime
widths with a total annihilation rate (or total yield), on
the other hand, is exactly what simple physical intuition

would suggest. Further, one can show that for lifetimes
which are long compared to the relaxation time, the
widths (I ) should be evaluated from a wave function
~0*) with a completely relaxed core hole. Introducing a
"decay" operator I which gives the core-hole annihila-
tion rate for arbitrary (core-hole) X-electron states, we
thus have

r—= r„=&o*~r~o*) .

Specializing to a one-electron picture and to Auger de-
cay, Eq. (1) gives

I g
— Dg 6 dC

where

OCC

D~(E)=2~yy(1&kllulcw &I' —&kIIUlwc)* &kl~U cw &)s(E, +E, —E, —E„)g(E—E„)
k, l k~

(3)

is the usual one-electron expression for the Auger rate
with one important exception —all orbitals are perturbed
by the core hole and no longer have Bloch symmetry. [In
Eq. (3) U is the Coulomb interaction, k and l denote
valence states, A is the ejected Auger electron, and c the
core electron. We use units such that e =fi=m =1.]

In this work we will evaluate the widths according to
the prescription above, Eqs. (1)—(3). Our procedure is re-
lated to that used recently by Green and Jennison' to ob-
tain total yields in alkali halides. We use orbitals ob-
tained from self-consistent calculations on a repeated
cluster where every 16th atom is a core-hole atom, a
method used earlier by von Barth and Grossman. ' For
completeness we also calculate the radiative width I „ in
order to obtain the fiuorescence yield (I „/I ). Tradition-
ally one has in most calculations of core-level widths in
metals used a screened and in many cases a statically
screened interaction for evaluating the Auger matrix ele-
ments. On the other hand, one has in more realistic cal-
culations of Auger spectra been using an unscreened in-
teraction. ' Here we will give what we think are con-
vincing arguments that the latter choice is, in fact, the
appropriate one for the systems considered here (Sec. II).

The remaining part of this paper is organized as fol-
lows. In Sec. t;I we briefiy describe the main physical
ideas behind our treatment of decay process, motivate
our approximations from a many-body theoretical point
of view, and discuss some of the previous works. Apart
from this section, which may be omitted for readers in-
terested only in our results, this paper deals mainly with
one-electron concepts. In Secs. III—V we outline the
principles of how our effective one-electron expressions
for Auger and radiative rates are evaluated in practice.
Our results are described in Sec. VI, and in Sec. VII we
give some concluding remarks.

II. THEORY OF CORE-HOLE
LIFETIME EFFECTS IN SOLIDS

A. General background

The theoretical description of lifetime effects in solids
has been reviewed an extended in great detail recently by
Almbladh and Hedin, which relieves us from going into
too much detail here. However, in order to motivate our
approximations and to discuss some previous works it
will be necessary to describe the main physical ideas.

A conceptually clear way to treat lifetime effects in
solids is to split the 'exact" Hamiltonian H into a part
Hp without lifetime effects and a perturbation V. The
unperturbed part contains all electron-electron interac-
tions, except those terms which make the core hole unsta-
ble, and is treated in a formally exact way. (Approxima-
tions for this part are chosen at a later stage. ) The per-
turbation contains the remaining terms and consists of an
Auger part V~ and a coupling V„ to the radiation field.
In the present case we confine ourselves to processes in-
volving one core level at a specific site, which allows us to
write

HO=H, +E,n, + V, (1 —n, )+H h,
in the subspaces corresponding to a filled (n, =1) and an
unfilled (n, =O) core level, respectively. In Eq. (4), H„
describes in principle the fully interacting valence system
when all core levels are filled, c, is an unrenormalized
core-electron energy without solid-state effects and can be
identified with that of a free ion in vacuum (see, e.g. , Ref.
9, p. 646), V, is the nonlifetime core-valence coupling
which gives rise to particle-hole and plasmon shakeup,
core-level relaxation shifts, etc. H h„ is the free radia-
tion field which needs to be included only when radiative
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core-hole decay is considered. The lifetime parts V~ and
V„contain only terms nondiagonal in core-level occupan-
cies and can be written

V„= g (kllvlcA &ckcic„b+H.c. ,
k, l, A

V„=g (2m'a/lql)' (kl —ia Vlc &c ba +H. c.

gives a measure of the core-hole annihilation rate, which
leads us to the identification I '= Jo"p (t)dt. This
width is the usual full width at half maximum (FWHM)
width in the case of exponential decay. One can further
show that except for very short times of the order c, ' the
time derivative of p (t) is p(t) = —(4'(t)lf'll'(t) &, which
allows us to rewrite the lifetime width as

k, q

—:g T„(q)a +H. c. (6) I & e(t)l f'le(t) &dt
0

p(t)dt

f'(E) =2m V5(E —Ho ) V . (7)

Neglecting unimportant cross terms we can decompose
the decay operator into an Auger (f'„) and a radiative
(f'„) part obtained by replacing the full V in Eq. (7) by its
Auger and radiative part, respectively.

When the decay operator acts on a state %' with a core
hole its radiative or Auger part fills the core level and
couples to no-hole final states. Thus we see that
('pl f'l 4 & gives a core-hole annihilation rate according to

w(4)=2m'g I(f, n, = 1
I VI~II &I'~(E —E&(n, =1)) .

f
When the core hole decays via intracore processes, f' can
be taken as a c-number as far as the valence electrons are
concerned, f'=r, and the proper definition of the life-
time width is obvious. When I" involves only core-
valence processes, the valence electrons take part in both
the core-hole screening as well as the core-hole annihila-
tion processes, and as a consequence the true lifetime
effects are more difficult to sort out. To obtain a sensible
definition of the hole lifetime in this latter case it is useful
to study the time development of a state bio& corre-
sponding to a sudden removal of a core electron out of
the ground state at t =0. At a later time t the projection
of this state on the hole subspace is

%(t)=P(n, =o)e ' 'bio—&=b be ' 'bio& .

The norm
f

p(t)=(Olb (o)b(t)b (t)b(0)lO&

Here a is the fine-structure constant, ck and b are, respec-
tively, valence- and core-electron operators, a is a pho-
ton operator, and q is short for the photon wave vector
and polarization.

The model lifetime problem expressed in Eqs. (4)—(6)
can be solved in closed form both for primary (XPS,
SXA) and secondary emission spectra by at least three
seemingly rather different techniques: infinite-order
perturbation theory extended to the case of a continu-
ous manifold of decaying states, ' ' scattering theory as-
sisted by a Feshbach projection technique, and by
Fano theory. ' ' As was indicated in the Introduction,
the solution can conveniently be expressed in terms of a
decay operator '

The partial level widths I ~ and I „may be defined in an
analogous manner as

J ( 0 (t) l
f', l4(t) &dt

I &=A, r
p(t)dt

0

(9)

and can be shown to give the correct Auger and radiative
yields I „/I and I „/I, respectively.

Here we will mainly be concerned with the case when
the core-hole lifetime I is long compared with the
valence-electron relaxation time r (which is of the order
of a reciprocal Fermi or plasmon energy). In this case
one can show from quite general arguments as well as
from model studies that expectation values of operators
which like I only probe the system near the core hole
factorize as ' ' '

(+(t) lrl+(t) & -(+(t)I+(t) &(o*lr" lo* &

for times which are long compared to r. Here l0* & is the
fu11y relaxed core-hole state, i.e., the lowest state of H0 in
the subspace n, =0. Neglecting deviations from this be-
havior for shorter times, Eqs. (8) and (9) finally give

r = (0*
l
r lo* &, r.= ( o*

l r, lo* & . (10)

Thus one has for long lifetimes an initial-state rule for
lifetime widths and total yields, a physically rather sensi-
ble result.

Experimentally, lifetime widths are deduced assuming
that the core-hole lifetime enters only via an additional
Lorentzian broadening. Thus, e.g. , the core-electron
spectrum is assumed to have the form

A, (s)=I A,"(s—e')Dr(s')

A, (s)=—Im(olbt(~ —E +H —ig)

=—Im(olb "[s ED+&0 —i—l (Eo —s)/2] 'bio&,

in terms of a fictitious spectrum A, (s) without lifetime
effects and a broadening function Dr(s) =I /(s + I /4).
The spectra 3, and A, are formally defined as the imag-
inary parts of the corresponding core-electron Green's
functions and can be written

of this state, which has been termed "decay function, "
gives the probability that the core hole has not yet been
filled at a. later time t. At t =0, p(t)=1 and p( ~ )=0.
Clearly the integral of p (t) between zero time and infinity

A,"(s)=—Im(olb (s —ED+Ho irj) 'bio&—
(12)

(13)
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(Eo is the X-electron ground-state energy). The second
equality in Eq. (12) follows by applying Feshbach projec-
tor algebra and by neglecting a small "Lamb shift" of the
core-electron energy. At this point it is worth emphasiz-
ing that due to the interaction in Ho, the infinite-lifetime
spectrum is not a 5-function line, but is instead a continu-
ous distribution. Thus already 2, contains broadenings,
and in fact, for shallow c&ore levels the major part of them
(phonon broadening, plasmon- and particle-hole shakeup,
etc. ). Considering intracore decay processes, we may
take I to be a c-number, and the convolution law in Eq.
(11) readily follows. Interestingly enough, the convolu-
tion law also follows for core-valence processes, provided
the decay is slow compared to the valence-electron relax-
ation process and provided we define I according to Eq.
(10) (see Ref. 9 for further details). Thus we see that our
definition of core-hole lifetime widths is in close
correspondence with current experimental practice.

B. Relation to diagrams

The formalism of the preceding subsection is useful for
establishing general results such as the initial-state rule
for lifetime widths, but systematic expansions of the re-

sulting expressions in powers of the interparticle interac-
tion are most easily obtained using diagrams or by related
techniques. In the present case we wish to consider a
specific subclass of final states, namely those with no real
core hole. Problems involving selective summations of
final states lead in a natural way to path-ordered rather
than time-ordered diagrams.

The quantity we wish to study is the core-electron
spectral function A, (E). Going to time space we write
A, (E) as

In the expansion of g & and X & in interacting propaga-
tors and screened interactions, fermion and interaction
lines connecting points with opposite time ordering
represent real excitations in the final state (see, e.g. , Ref.
26). Thus we see that in the expansion of X & we can iso-
late the lifetime part by keeping only those skeleton dia-
grams which have no real core hole in the final state, i.e.,
those with no (full) g & line. Extending this principle fur-
ther we see that the radiative part (X"& ) and the Auger
part (X&) correspond to lifetime diagrams with and
without a real photon, respectively. It is now natural to
take the lifetime widths as

(15)

It is clear from their definition that these quantities give,
respectively, the (intrinsic) Auger and radiative yields.

The definition above allows, in fact, for an independent
justification of the results summarized in the preceding
subsection by means of diagrams. Here, however, we will
instead rely on the previous results and directly study the
quantity (O*~f'~0*). We limit the discussion to the
Auger part, as the radiative part can be handled in an
analogous manner. It is quite easy to see that the relaxed
Auger width (0*

~

f'~ ~0* ) is obtained from a subclass of
diagrams for X& by replacing all ground-state propaga-
tors by the corresponding ones which are perturbed by a
static core hole. The subclass in question consists of the
diagrams without any core lines. The lowest-order dia-
grams are given in Fig. 1. In mean-field theory these are
to be evaluated with independent-electron propagators
for the core-hole system. Choosing a one-particle basis
which makes these propagators diagonal we find that the
first diagram [Fig. 1(a)] gives

A, (e)= Jdt g&(t)e"',

where g & (r) =i (0~ 6 "(0)b (t) ~0) can be computed directly
from path-ordered diagrams. In the path-ordered tech-
nique the usual time ordering is replaced by ordering
along a time path going from —~ to + ~ and then back
to —~. Since Wick's theorem does not depend on the
particular ordering principle used, the usual rules for
evaluating diagrams remain valid provided we observe
that all points on the negative time-ordering path going
from + oo to —~ (labeled —

) are considered ahead of all
times on the positive time-ordering path (labeled +).
The function g & can be written

X dtGk t G& t G& —te

which is readily found to reproduce the direct part of the
independent-electron result in Eqs. (1)—(3) ( G is a
valence-electron propagator). In a similar way we find
that the diagram to the right gives the exchange part.
Let us now consider the effects of replacing the bare in-
teraction U by the screened one [8'(co)]. An easy calcu-
lation shows that the diagram to the left now gives the
contribution

(14)

in terms of the self-energy X&(t) [=X(t+,0 )] and the
core propagators g, and g corresponding to positive and

negative time ordering, respectively. Below the Fermi
level (p), X &(E)= 2i ImX, (e), w—here X,(E) is the usual
time-ordered self-energy. Using this property it is not
difficult to show that Eq. (14) is equivalent to the more
common expression

A

FIG. 1. The lowest-order diagrams for the Auger process.
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OCC

2rrg g )(k/~W, (E& —E, )~cA ) ~ 5(s&+E& —E, —Ez ) .
kl k~

A similar expression is obtained from the exchange
graph. Since the energy transfer in 8'is of the order of a
core-electron energy, the screening is of the order co /c. ,
and can safely be neglected. We next replace the
independent-electron propagators by their interacting
counterpart,

6 & (E)=2rri A (E)e(p —E),

G) (E)= 2v—riA (E)e(E—p) .

In this case we can no longer choose a one-electron basis
so as to make the spectral density A (E) diagonal for all
energies. The interactions, however, do not change the
total weight of the diagonal part, J(k~A (s)~k)dc, ,
which thus equals unity as in the case of noninteracting
electrons. Further, the off-diagonal elements have zero
total weight. The lifetime width involves integrals of the
spectral densities of the valence electrons and the Auger
electron below and above the Fermi level, respectively,
and therefore we expect only minor changes from the
self-consistent-field (SCF) result. The interactions do,
however, give important modifications of the line shape,
shifting part of the oscillator strength from the main
band to plasmon satellites.

Evaluating the widths of the properly renormalized
versions of the diagrams in Fig. 1 corresponds to taking
the density of states of two valence holes as the convolu-
tion of two one-hole densities of states. Experiments sug-
gest that this is a very reasonable assumption for simple
metals, but it is certainly not valid for narrow-band sys-
tems, as has been demonstrated both experimentally and
theoretically. In such systems we might expect impor-
tant effects also for the total Auger rate from (valence-)
hole-hole interactions.

It remains to discuss the choice of core-electron energy
in the resulting mean-field expression for the yield Eqs.
(1)—(3). The proper choice is of importance for very shal-
low core levels like the L, 2 3 level in Na. It follows readily
from the structure of the theory that the correct energy
in the general expressions, Eq. (15), is the difFerence be-
tween the lowest energies of Ho in Eq. (4) in the sub-
spaces n, =0 and n, =1, respectively. This energy con-
tains relaxation corrections to the one-electron eigenval-
ue. Choosing Ho as independent-electron Hamiltonians
in the two subspaces we obtain the relaxation shift as a
sum of eigenvalue shifts for the valence states, which is a
rather crude approximation. Mean-field theory is varia-
tional and does not correspond to well-defined Hamiltoni-
ans for n, = 1 and n, =0. In this case the physically obvi-
ous choice is to take the core energy as a difference be-
tween the two variational estimates in the respective sub-
spaces. This "ASCF" energy agrees with the experiment
within typically 1 eV for the systems considered here, and
consequently it will not affect our results in any impor-
tant way if we instead use the experimental core energy.

We end this section with some remarks on previous
work by Glick and Hagen' (GH) and by Bose. ' The

two works are similar to their approach so we confine the
discussion to the first paper. GH attempted to obtain a
lifetime width by including the diagram in Fig. 2(a).
Here the double-dashed line represents a core propagator
renormalized only with respect to lifetime effects, and
was taken as

(d)
C

E —E, iI—/2
(16)

We first note that the diagram 2(a) is contained in the
nonlifetime skeleton diagram to the right [diagram 2(b)],
which corresponds to the well-known "GW" approxima-
tion, and is thus not related to an Auger yield. When
evaluated with the decaying propagator in Eq. (16), dia-
gram 2(a) gives the result 2„"(E—ii" /2) in terms of the
corresponding result obtained with the zeroth-order
propagator. [Note that X "(E) contains no hole life-
time. ] To the imaginary part of this diagram GH then
add the proper lifetime part (I o) from the lowest-order
Auger diagrams of Fig. 1, evaluated in a simple approxi-
mation, and finally take the lifetime width as

I =I +21m' "(E,—ii"/2) . (17)

W

FIG. 2. {a) A lifetime diagram according to Refs. 12 and 13.
The double-dashed line represents a core propagator renormal-
ized with respect to decay processes. {b) The skeleton which
contains the diagram in {a).

Extending the GH principle also to higher-order dia-
grams would lead to the result

I =I +21mX„(E,—iI /2)

where X is the entire self-energy of the core propagator
g without lifetime effects, a clearly absurd result. In
fact, Eq. (18) represents the entire core-level width~ of
which the proper lifetime part (I"o) is only a small frac-
tion for shallow levels.

The GH prescription is not only in conAict with funda-
mental principles, but it a1so violates the convolution law
in Eq. (11), in disagreement with experimental findings.
As is well known, this law corresponds, in a diagrammat-
ic language, to the following procedure. We first consider
the nonlifetime core propagator g, expanded to all or-
ders. We then in each diagram replace the zeroth-order
core propagator by its counterpart g,'"' in Eq. (16), renor-
malized only with respect to the core-hole lifetime effects.
The result then represents the full core-electron propaga-
tor and gives, as is readily shown, the convolution law in
Eq. (11). Applying this principle with GH's definition of
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III. ONE-PARTICLE THEORY
FOR AUGER INTENSITIES

A. Auger rate for muftin-tin orbitals

FIG. 3. A diagram which is double counted when one tries to
reconcile the theory in Refs. 12 and 13 with a convolution law.

lifetime parts, however, gives a multiple double counting
of diagrams of the type indicated in Fig. 3. Extending
the GH principle as in Eq. (18) leads in a similar way to a
multiple double counting of all diagrams contained in the
nonlifetime propagator g

In this section we will derive calculable expressions for
the efFective one-electron scheme justified in the preced-
ing section.

We begin by considering the Auger rate from the cen-
tral core-hole cell "0." We adopt the muffin-tin or
atomic-sphere (ASA) approximation and write the orbit-
als as

Pz(r)= gi'BI" YI (r)P(Ea, r) .
L

(19)

Here L is a shorthand collective index for the angular
momentum labels (i and m) and k is short for the
valence-electron labels. Making the usual multipole ex-
pansion of the Coulomb interaction v(r —r')=1/lr. r'l
we obtain the central-cell part of the matrix elements as

(kk'lvlcA ) =

where

LL', L ~,L"

.l~ I —I'
k k ~ k ~i (BLBL, )"Bl ( YI l YL. YL )( YI YI, lYI )RI (El, s', 1',c, A)5» 5, ,

A C A c
(20)

R&(a, b, c,d)= f dr f dr' z, P, (r)Pt, (r')P, (r)Pd(r')
0 0 p

(21)

is a Slater integral and P, an r-multiplied radial wave function (S is the sphere radius). To proceed further we rewrite
the Auger rate in Eq. (3) as

D„( e) =2mfd. e f de' g g 5(E—e„)5(e'—e„)5(E„—E„)5(e+e'—e, —E„)
k k'k

A

X(l&kk'lulcA &I
—&kk'lulAc&* &kk'lulcA &) .

g 5(E—sq )BL(B~)*= D((s)5L~,
1

2l +1 (22)

where

D, (e)= g lBI l'5(E —eq)
k, m

(23)

is the projected density of states (PDOS) per spin at the

When we insert the actual matrix elements, Eq. (20), in
the expression above, we encounter sums like

g 5(e—e„)B"(B-")".
k

For angular momenta less than 2, these sums are diago-
nal in m and m and independent of m. Thus, we have

impurity site. Here we assume Eq. (22) to be valid also
for higher angular momenta, thereby making a small er-
ror for d and higher contributions. For simple metals,
however, we will see that these contributions are small.

When we make the approximation in Eq. (22), all sums
over m labels can be done analytically. We express the
overlaps of spherical harmonics in terms of Wigner 3-j
symbols. After averaging over the core-hole magnetic
(and spin) sublevels we find, making use of orthogonality
properties, that the sum of Wigner coefficients in the
direct term reduces to a sequence of 3-j coefficients with
m indices equal to zero. The sum over m labels can also
be carried out analytically for the exchange term. After
some algebra one finds that the sequence of Wigner
coefFicients in that term nicely combines into a Wigner 6-

j symbol. The final result we write as

Dz(e~)=2~ dE de' g Dt(e)DI(e')DI (E„)Mni (E, s', E„)5(E+s'—e, —e„) . (24)
oo oo

I, l', l~

The quantity M contains the radial matrix elements and Wigner coefficients. Its direct and exchange parts are, respec-
tively,
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I I, k I' 1„k
(eyE &g)=2+ 2k+i p p p p p p ~Rp(el e I c splat)~ (25)

l l, k l' l~ k l lq k' l' l, k'
(x)

&, Opp P P P P O O OO Pkk'
7

l k l,
X( —l) I' k' I Rk(el, e'I', C, EAIA)Rk (EI,E'I', EAIA, C) . (26)

This completes our derivation of the Auger intensity
from the central cell.

The Auger matrix element (kk'~v~cA ) has contribu-
tions also from those parts of the orbitals Pl, and P&

A

which are outside the central cell. When forming the
Auger intensity of the complete matrix elements, we also
obtain, in addition to the central-cell contribution given
above, two- and three-center terms. Such terms have
been estimated by Matthew and Komninos and have
been found to be very small. We have also made esti-
mates which confirm that the interatomic terms are small
for the systems considered here.

B. Treatment of the Auger-electron orbital

In previous works different prescriptions for obtaining
the Auger-electron orbitals have been used. Thus Feibel-
man and co-workers argue that one should use an orbit-
al corresponding to a doubly charged ion in vacuum. A
similar prescription has been used by Jennison and co-
workers. ' von Barth and Grossmann' solved the Auger
orbital in the same effective potential as was used for the
valence orbitals within the central atomic sphere and
matched this solution to free spherical wave outside the
cell. The above works were concerned with line shapes,
but the question of how to approximate the Auger orbit-
als is important also when total rates are calculated.

Let us first consider the problem of finding reasonable
approximations to the potential. For a free atom the ob-
vious and commonly used approximation is to take the
potential as that corresponding to the doubly charged ion
left behind. ' For a solid, on the other hand, the situa-
tion is rather difterent. Here the initial state is the fully
relaxed core-hole state with essentially no net charge
within the central cell, in the case of metals, and with
some uncompensated charge in the case of semiconduc-
tors or insulators. Using a time-scale argument, Feibel-
man et al. propose that the Auger electron also in a
solid is seeing a doubly charged central cell left behind
like in the case of atoms. The question of choosing the
"best" one-electron potential is of course a complex and
basically unsolved many-body problem, but we believe
that Feibelman's description overestimates the hole
effects. If we could measure the charge density in the
central cell as a function of time after adding both a core
and an Auger electron and annihilating two valence elec-
trons with the appropriate amplitudes ((cA~v~kk') ), we

would in fact see a continuous change. The central-cell
charge would first increase by about one unit on a time
scale given by the Auger-electron velocity. The charge
would then tend to its ground-state value on a time scale
given by the valence-electron hopping time. However,
the uncertainty principle makes it impossible to simul-
taneously measure the energy distribution of the Auger
electrons. In order to obtain the energy-resolved Auger
current we must decompose the transition state in ques-
tion,

V„~p) = y (cAv~kl )Ib c„c,c„~p*),
k, l, A

into exact no-hole eigenstates. In order to form a wave
packet of exact eigenstates having a charged central cell,
higher shakeup states are required, and thus we believe
that the final ground-state potential with no core hole is a
reasonable first-order approximation to use in the no-loss
part of the current closer to the threshold. Away from
the threshold, higher excited states contribute and give
losses, both of intrinsic and extrinsic nature, and we are
dealing with phenomena outside a one-electron picture.

In the case of total rates we may base our discussion on
the initial state rule, Eq. (10). This expression implicitly
involves the no-hole Hamiltonian [cf. Eq. (7)]. Taking
the final states as Slater determinant of no-hole orbitals
and neglecting the small overlaps between the final-state
Auger orbital and the initial-state valence orbitals, as well
as the weak energy dependence of the matrix elements,
one obtains the usual one-electron expressions, Eq. (3),
but with relaxed valence orbitals and unrelaxed Auger or-
bitals. We have performed test calculations both with re-
laxed and unrelaxed Auger orbitals and have found only
minor differences, and for simplicity we then solved all
orbitals using the initial-state potential. The effective
one-electron approximation used here clearly leaves out
dynamical effects arising from interactions between the
Auger electron and the correlated hole state left behind.
However, at high kinetic energies these vertex correc-
tions are generally believed to be small.

Having discussed the physical basis of our effective po-
tential we now turn to the more practical question of
computing the corresponding orbitals. Let us consider a
calculation based on the ground-state potential. Neglect-
ing surface effects, the orbitals have Bloch symmetry with
unit norm in every cell. It is quite a difficult task to ob-
tain such orbitals at energies of the order 100 eV. To
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TABLE I. Error measures for dift'erent approximations to Auger orbitals. N is the central-cell norm
of the equivalent scattering state in the spherical approximation; 5 and AE are error measures for the
LAPW approximation as defined in Eqs. (27) and (28).

Li KVV
Be KVV
Na L23VV
Mg L23VV
Mg XVV
Al L23VV

Spherical
waves

1.09
1.08
1.17
1.19
1.03
1.16

0.195
0.314
0.063
0.112
0.041
0.283

0.345
0.374
0.032
0.021
0.811
0.015

0.161
0.155
0.480
0.733
0.688
0.744

LAPW

AE,

0.61
1.34
0.24
0.51
1.04
0.89

—0.84
—1.05
—0.13
—0.18

2.08
—0.23

hE„
—0.42
—0.81
—0.25
—0.39
—2.54
—0.66

compare the approximation of matching solutions inside
the central cell to free waves with the more appropriate
Bloch-wave approach, we make a unitary transformation
and form a scattering state fk of the spherical waves with
the long-range behavior

ikr

)
—1/2 ik r+f .p) e

r

The scattering states and the spherical waves give identi-
cal results for the angular-integrated Auger intensity.

Because the Bloch symmetry has not been imposed, the
scattering state may have a norm within the central cell
which is different from 1. We may take this difference as
a crude measure of the error we are making in this ap-
proximation. These values are shown in Table I. We see
that the violation in norm is typically of the order 15%
for Auger-electron energies of the order 50—100 eV.
Those partial waves which actually couple to s- and p-
valence states, i.e., the Auger-electron s, p, and d waves
(cf. Table II) only contribute some 30%%uo to the central-cell
norm at these energies. This contribution decreases with

TABLE II. Vector-coupling coefficients according to Eqs. (25) and (26) for core levels of s and p sym-
metry for the direct (Cd ) and the exchange (C ) parts.

0
0
1

1

1

1

0
2

2

0
0
0
0
1

1

1

1

1

1

1

27

1

27

2
135

1

27

2
135

1

27

1

27

1

27

2
135

2
225

2
375

2
225

0
2

2
1125

1

27
2

135

2
135
4

6750
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increasing Auger-electron energy, and as the higher-1
~aves are largely unaffected by the potential we expect
the spherical-wave approximation to work better and
better with increasing energy.

To be able to judge the quality of the spherical-wave
approach, we have also approximated the Auger orbital
by a single linear augmented plane wave (I.APW). In
this scheme a radial wave function (P) is a linear com-
bination of a proper solution (P ) and its energy deriva-
tive (P )at .a fixed energy Eo which we choose as the
Auger-electron mean energy:

P = A (P +coP ). .

As an error measure in this approach we may use the
squared norm (b, ) of that part which is not a proper
eigensolution,

two different approximations give similar line shapes in
these cases, whereas the total yields are somewhat morq
sensitive. Compared with the treatment of the valence
states, our approximations for the Auger orbitals are
rather crude. Nevertheless, the agreement is good
enough to give us confidence in the approximations used.

In the case of the EVV spectra of Li, Be, and Mg we
see that the error involved in the LAPW scheme is quite
large also for the p wave, whereas the error measure used
for the spherical-wave approach is actually smaller than
in the L23VV spectra discussed above. Thus the latter
approximation is to be preferred here. This scheme is
further supported by a recent calculation by Muller and
Wilkins, who find that the PDOS from the simple
spherical-wave method agree quite well with suitably
broadened full LAPW results at energies in the range of
interest here.

a= Iaaf'&P, IP, ),
or the expectation value

~E =
& P l(H —E)IP & .

(27)

(2g)

IV. ONE-PARTICLE THEORY
OF RADIATIVE RATES

These quantities are also given in Table I. For the L2 3
VV spectra of Na, Mg, and Al the error is tolerably small
for the s and p waves but not for the d wave. However,
we see in Table II that the d wave couples rather weakly
to the valence states, and thus the error in the d-wave
part of the Auger orbital is not expected to inAuence the
spectrum in any important way. We have found that the

%'e first derive the radiative rates according to the
length formula, and transform to the velocity form at the
end of this section. The radiative width according to the
length formula is given by

I,=—&0'If', lp*& = J'r(~)d~,

3
+(~)=&'"'(~)=2~& I &f I~, &„I0'& I'&(~q+Eg E,*)&(~——~, ) =-;~'~' & & I &f I&, Ip' & I'&(~+Eg —Eo ) .

fv j=1 f

Here 8, is a Cartesian component of g„r„,and a is the
fine-structure constant, a =,37 Specializing to one-
particle theory and to cubic symmetry the length formula
simplifies to

s'"'(~) =4~'~'y
I &k fz fc) I' S(., +~—.„) .

k

Taking Pk to be a muffin-tin wave function this can be
simplified further by a similar technique, as was used
above for the Auger rates. In the present case the reduc-
tion is much simpler and details are available in the
literature, so we just give the final result

I'"'(co ) =—', a co g Di ( c, + co )
I

1

Xe(JLc E co) p 0 p

XQ, (sL, c) .

Here D& is as before the PDOS for one spin at the core-
hole site, and

S
Q, (a, b)= J P, (r)rPb(r)dr

0
(30)

(co+8, —s, )
&'"'(co) /I'"'(~) =

CO

(3l)

The difference between the length and velocity results is
no consequence of our basic description, expressed in
Eqs. (4)—(6), but occurs because we compute spectra from
variational estimates to the eigenstates in the subspaces
n, =0 and n, =l. The velocity form is less sensitive to
the core energy c, and is generally believed to be more
accurate in nonconserving approximations.

is the radial matrix element.
Provided we use the actual one-electron eigenvalues ck

and e„ the length and the velocity formulas give the
same result for local potentials. If we instead use 'the ex-
perimental core-electron energy c, or a theoretical value
computed by other means, the velocity formula gives a
result which differs from Eq. (29) by the factor



C.-O. ALMBLADH, A. L. MORALES, AND G. GROSSMANN 39

V. THE REPEATED-CLUSTER METHOD
FOR IMPURITIES

In this section we will give some further details con-
cerning our one-electron calculations. Our description
here also applies in appropriate parts to the calculation of
ground-state orbitals used in the following paper. As we
saw in Sec. II we require wave functions corresponding to
a core-hole impurity in the central cell. In a metal the
core hole is screened within the central cell, and thus the
impurity potential is very localized. A conceptually sim-

ple way of dealing with this problem, used earlier by von
Barth and Grossmann, ' consists of constructing a cluster
of atoms, choosing one of them to contain a core hole,
and repeating it so as to form an infinite solid. In this
way we can perform an ordinary self-consistent band-
structure calculation with this cluster as unit cell. For
the band-structure problem we have used the well-known
method of linear combination of mufTin-tin orbitals
(LMTO) which gives comparable results to any other
method and is quite efficient in terms of computing
time. We have used the atomic-sphere approximation
(ASA), and corrections to this have not been included. In
the usual LMTO method the wave functions are ex-
pressed in the radial solutions and their energy deriva-
tives at a fixed energy. In order to improve the accuracy
for states far out in the Brillouin zone we have adopted a
renormalization procedure due to von Barth and
Grossmann. ' Thus, after each eigenvalue diagonaliza-
tion we reconstruct the wave function from radial solu-
tions at the correct energy and the MTO expansion
coeKcients. In this way we obtain wave functions much
closer to those obtained from the KKR-ASA (KKR
denotes Korringa-Kohn-Rostoker) method. We expect
to obtain accurate enough wave functions from this
method with a few atoms in the cluster in view of the
short screening length in free-electron-like systems. In
fact, we have used 15 ground-state atoms surrounding the
impurity for all the systems considered here.

For the case of Na we have also compared the self-
consistent supercell results for the impurity with the re-
sults obtained by using a self-consistent spherical-solid-
model (SSM) potential, " properly modified for solids. '

We have found that the results for the partial density of
states and electron occupancies obtained by this method
agree very well with the LMTO results. This gives us
more confidence as far as the size of the cluster is con-
cerned since the SSM is simulating the infinite dilution
limit and is known to give good potentials for simple met-
als.

The clusters are chosen by doubling the size of the con-
ventional unit cell in all directions and then choosing an
appropriate primitive cell for the cluster. For the bcc
systems we find a sc cluster, for the fcc systems we find a
bcc cluster, and for the hcp we obtain a hcp cluster, all of
them containing 16 atoms. We then solve self-
consistently for all the atoms in the cluster until the
root-mean-squared value for the difference in potential
between two successive iterations is less than 0.001 Ry.
We have used 56 k points in the supercell irreducible
wedge for the sc cluster, 55 k points for the bcc cluster,

I I I I I I I I I I I I I I
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FIG. 4. Local projected densities of states below c~ for beryl-
lium. The top panel gives the ground state, the middle panel the
average over no-hole cells when a core hole has been intro-
duced, and the bottom panel the local DOS in the core-hole cell.

and 40 k points for the hcp cluster. In our calculations
we included up to d waves except for the Li and Na su-
percell calculations, where d waves were included only in
the central cell. The exchange and correlation effects
were included via the local-density approximation to the
Hohenberg-Kohn-Sham ground-state potential with
electron-gas data from Ceperley and Alder. After ob-
taining the eigenvalues and wave functions for these k
points we calculate the density of states (DOS) in a simple
approximation consisting of replacing the 6 functions by
Gaussians whose width is chosen typically of the order
0.01 Ry. With this procedure the finer details of the band
structure are slightly broadened. For our purpose, how-
ever, these finer details disappear when forming the
Auger current according to Eq. (24) by convoluting to-
gether the projected densities of states and the slowly
varying radial matrix elements.

The supercell calculation is intended as an approxima-
tion of the infinite dilution limit, but due to the small size
of the cluster the wave functions and charge densities will
contain some spurious effects due to the interaction of the
core holes at different sites. These effects, however, have
been found to be rather small. For instance, the band-
widths increase by at most 6%%uo compared to the perfect-
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TABLE III. Number of s and p electrons in the central cell with (nl*) and without (nl ) a core-hole
impurity according to LMTO-ASA calculations.

P

n,
n

Li

0.88
1.23
0.52
0.48 .

Be

0.88
2.03
0.63
1.25

Na

1.18
0.78
0.64
0.36

Mg 1s

1.29
1.56
0.88
0.94

Mg 2p

1.27
1.52
0.88
0.94

1.46
2.14
1.11
1.48

crystal values. From the above discussion we conclude
that the repeated-cluster method is providing us with
sufficiently accurate wave functions for our purpose of
calculating the lifetime widths.

When a core hole is introduced, the local DOS of s
character changes drastically and a virtual bound state is
formed at the bottom of the band. For the third-row
metals the changes in shape of the local p DOS is quite
small, but the case of Be (Fig. 4), and to a lesser extent Li,
the changes are more pronounced. Our results for Li and
Na are essentially identical to those by von Barth and
Csrossman' and need not be reproduced. The number of
s and p electrons in the central cell with and without a
core hole are given in Table III.

VI. RESULTS

We present our results in Table IV together with ear-
lier theoretical and experimental results from various
sources. For completeness we also give, in addition to
our widths evaluated with relaxed impurity orbitals (I „),
the corresponding quantities (l 0) obtained from ground-
state orbitals. For the L2 3 VV spectra we give values ob-
tained using both approximations for the final-state orbit-
als discussed in Sec. III 8. The agreement between the
two methods is very good for Mg and Al, whereas for Na
they difFer by about 20%. In the latter case we feel the
LAPW method probably gives the better value due to the
fairly low Auger-electron energy.

TABLE IV. Auger FWHM widths —experimental and theoretical. The labels 4 and 0 refer to values with and without core-hole
relaxation and screening effects, respectively. Energies in meV.

Data

SW
Expt.
Expt.
Berg.
GH
Bose

SW

SW
LAPW
Expt.
Expt.
GH
Bose
KM
GF

SW
SW
LAPW
Expt.
KM

SW
LAPW
Expt.
KM

Element

Li

Be

Na

Mg
Mg

Core level

K
L2, 3

L2

ro

4.0

8c

46
2820'

13

2.2

09
2940'

5.2g

0.04
5.7
7.0

».8'

2O'

ro

Io

0.60

0.28

0.04
0.13

0.41
0.003
0.01

0.03
0.OO4

rsp

r,
0.26

0.34

0.58
0.57

0.36
0.42
0.41

0.37
0.26

0.12

0.32

0.29
0.21

0.24
0.48
0.44

0.50
0.57

17
30+30'

16

40

4.5
5.7

20+20'
1O"

0.13
12
13

30+20'

22
22

40+20'

0.32

0.16

0.03
0.15

0.43
0.004
0.02

0.02
0.002

rsp

0.32

0.30

0.62
0.62

0.35
0.43
0.47

0.38
0.34

0.35

0.51

0.30
0.18

0.23
0.49
0.42

0.52
0.54

'Citrin et al. , Ref. 40.
Deduced as described in Ref. 5 from data by Callcott et al. , Ref. 42.

'Bergersen et al. , Ref. 41.
Glick and Hagen, Ref. 12.

'Bose, Ref. 13.
Kobayasi and Morita, Ref. 11.

~Guinea and Flores, Ref. 14.
"Callcott et al. , Ref. 39.
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TABLE V. Subchannel yields compared to local occupancies for s and p electrons. The table gives
the ratios r» /n&n& in meV with () and without (0) a core hole. The yields correspond to the
spherical-wave approximation to the Auger orbitals.

Data

ss
ss

sp
sp

pp
pp

Li K

8.95
7.19
4.15
5.05
2.13
4.05

Be K

9.11
8.29
5.51
6.69
2.67
5.02

Na L23

0.137
0.081
3.70
3.03
3.24
2.20

Mg K

0.021
0.003
0.017
0.023
0.011
0.012

Mg L, 3

0.024
0.027
2.86
2.70
3.06
2.50

Al L23

0.235
0.201
2.45
2.64
2.45
2.48

As is seen in Table IV, it is of critical importance to
use orbitals properly relaxed in the core-hole potential.
Thus, in Li these core-hole relaxation effects increase the
width by -4 times. These effects have never been includ-
ed before in a proper way for core-valence processes in
metals. The partial contributions I „,I, , and I from
different "initial" valence levels are also shown. As we
will see in the following paper, the relaxed values of these
quantities are of importance in calculations of line
shapes. Their importance comes from the fact that also
the different subchannel contributions (ss, sp, pp ) obey an
initial-state rule as far as total yields are concerned, and
thus, their relative intensities in the spectrum are
governed by the ratios I II./I *. We see that the core-
relaxation effects on these relative weights are quite im-
portant for Li and Be, whereas they are very small for the
third-row metals. For Mg we notice the difference in
core-hole screening effects for the K and I.23 yields,
which indicates that the Auger process probes the elec-
tronic structure more locally when deeper core shells are
involved.

In Table V we compare the subchannel yields I
&&

with
the local occupancies n& of s and p electrons in the central
cell. As anticipated, I 0 scales roughly with the product
nln, when a core hole is introduced. The second-row
metals are exceptions, and the reason is that no core lev-
els of p symmetry stabilize the orbitals.

When comparing with experiment we note the large
experimental uncertainties which are much larger than
the theoretical uncertainties we have reason to expect
here. Most experimental values were obtained by analyz-
ing XPS or SXA spectra where, as discussed previously,
the lifetime part just gives a small broadening. These life-
time broadenings are very small compared to both pho-
non and instrumental broadenings, and are thus difficult
to obtain. In the x-ray-emission spectra of Li, however,
the hole lifetime determines the strong effects of incom-
plete lattice relaxation. When the core-hole lifetime

width is of the same order as the phonon frequencies, the
phonon-broadening function for Li has been shown to be-
come very large and to acquire a two-peaked structure in
a way that depends sensitively on the lifetime. By
analyzing the emission and absorption edges, one of us
(C.-O.A. ) obtained a core-hole width of 16 meV. This
analysis included the full details of the phonon spectrum,
but the couplings to the core hole were partily sem-
iempirical since no reliable calculations were available at
that time. These couplings have recently been confirmed
in detail by Almbladh and Morales, who included previ-
ously neglected but important effects of nonlinear screen-
ing. The value we obtain here, 17 meV, agrees better
with the analysis in Ref. 5 than our approximation really
deserves, but nevertheless it seems to be quite clear that
the explanation of the Li edge proposed in Ref. 5 is the
correct one.

These dynamical phonon effects discussed above seem
also to be present in Na, although they are much weaker.
By analyzing these effects also in Na, Callcott et al. ob-
tained a value of 10 meV (Table IV). Owing to the small
size of the phonon effects in Na in comparison with other
broadenings this value is, however, far less certain.

We also include previous theoretical work in Table IV.
We note that the values are heavily scattered. We also
note that all of them are to be compared to our values ob-
tained without core-hole relaxation effects. As far as the
values by Glick and Hagen and by Bose are concerned, a
comparison is not really meaningful, as these authors ac-
tually do not calculate the core-hole lifetime. We observe
that Bose, by a slight variation of the GH procedure, ob-
tained a lifetime width of the 2p level in Na about as large
as the entire valence-electron bandwidth, which again il-
lustrates the basic incorrectness of their approach.

We finally turn to the radiative sublevel widths calcu-
lated from the velocity formula (Table VI). We notice the
large screening effects for Li and Be, which again shows
that the p states are rather easy to deform. The 1.23

TABLE VI. Radiative level widths in peV obtained with relaxed (I „*)and ground-state (I, ) orbit-
als.

Li 1s Be 1s Na 2p Mg 2p Mg1s~ V
A1 2p

13
55

170
410

2.8
6.6

11
18

1300
2300

31
45
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yields, on the other hand, scale roughly with the number
of s electrons in the central cell. The fiuorescence yields
I „/I are very small, generally 0.1% or less, for the shal-
low core levels considered here.

VII. CONCLUDING REMARKS

The principal aim of the present paper has been to
study to what accuracy Auger transitions rates in solids
can be predicted, and to show that a clear picture has
emerged in the theoretical description of lifetime process-
es in solids. For the case of Li this work in combination
with Refs. 5 and 38 gives, for the first time, an a priori
description of the Li x-ray-emission edge with no adjust-
able parameters which is in excellent agreement with ex-
periment. In order to obtain reliable values we have ex-
amined crucial approximations, both of theoretical and
numerical nature, needed in order to obtain calculable ex-
pressions on an effective one-electron level. Much of our
discussion here applies also to calculations of Auger line
shapes. We have stressed the importance of using a prop-

er treatment of the Auger orbitals which, owing to the
selection rules imposed by the Coulomb matrix elements,
infiuence the subchannel yield (I ii ) and thereby also the
line shapes in a rather direct way. We feel the main un-
certainties in our calculations lie here. We judge the ap-
proximation using a repeated cluster to obtain the impur-
ity wave functions to be less important, at least as far as
total yields are concerned. In calculations of satellite
spectra from multiply ionized cores, such a treatment,
however, may give, e.g. , a slightly incorrect bandwidth
and some structure arising from the remaining but small
impurity-impurity interaction.
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