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We discuss some exact results concerning the large-wave-vector behavior of the charge and spin
susceptibilities of an interacting Fermi liquid in its normal state. We have investigated three-
dimensional as well as two-dimensional Coulombic systems for which new exact results have been
established. Our microscopic analysis is easily generalized to other types of interactions. The
relevance and the implications of our results are discussed.

The purpose of the present paper is to address the
problem of the exact behavior at large wave vectors of
both the charge and spin susceptibilities of an interacting
Fermi liquid —a problem that has recently attracted
some attention. ' Our analysis will focus on three-
dimensional (3D) as well as two-dimensional (2D) degen-
erate Fermi systems with Coulomb interactions but can
be simply generalized to systems interacting via other
types of potentials. The main motivation of the present
study is provided by the need for a suitable approxima-
tion to the response functions, which is a necessary in-
gredient for the successful development of a qualitative
and quantitative theory of various many-body phenome-
na. A specific example is provided by our recent study of
the e6'ective mass and anomalous Lande g factor in inver-
sion layers and in general in a 2D electron gas.

Work on the behavior at large wave vectors of the sus-
ceptibilities of an interacting Fermi liquid has been car-
ried out employing various techniques by several au-
thors. ' More recently Holas' has reviewed and dis-
cussed in detail the case of the charge susceptibility for
the 3D case. Our aim is to recover in a simple and trans-
parent way the well-known results for the charge and
spin susceptibilities in 3D degenerate Coulombic systems,
and to establish for the first time the corresponding re-
sults in the 2D case.

We begin by introducing a suitable definition for the
response functions. By generalizing Niklasson's
analysis, ' ' gc(q, co) and ys(q, co), the charge and spin
susceptibilities of an interacting Fermi system can, quite
generally, be expressed as follows:

Xo(q ~)
xc(q, ~)=

1 —u (q)[1—6+ (q, co) ]go(q, co)

and

yo(q, co)
Xs(q~co) pa 1+v (q)6 (q, co)yo(q, co)

'

where u(q) is the Fourier transform of the appropriate
interaction potential, and yo(q, co) differs from the famil-
iar Lindhard susceptibility' in that the (plane-wave) oc-
cupation numbers n (p) entering its expression are here
taken to be the ones appropriate to the interacting sys-
tem. Equations (1) and (2) do not have a physical content
of their own and merely provide a definition for the
many-body local fields 6+(q, co). It is interesting to no-
tice here that these quantities can be seen as the many-
body analogues in the electron liquid of the familiar
Clausius-Mossotti local fields of electromagnetism. ' In
general, however, the 6+(q, co)'s are (largely unknown)
complex functions.

Although seemingly awkward and perhaps unsettling
at a first superficial glance; Niklasson's definition of the
6+ (q, co )'s provides a physically pleasing general
definition for the class of vertex corrections first con-
ceived by Hubbard. ' In particular with this definition
the 6+(q, co)'s do not display the (physically unappealing)
q divergence for large q which must occur' if go(q, co) in
Eqs. (1) and (2) is taken to be the "plain" Lindhard
response function. '

We consider first the large-wave-vector static limit (i.e. ,
q~ co at co=0). In this case yo(q, co) and 6+(q, co) are
real and we can write down the following expansion for
the function yo(q, O),

4m 4((k q) ) 16((k.q) )oqo= —,n+ ', +
8q' q q

(3)
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where n is the particle density. In Eq. (3) the notation
(f (k) ) indicates that an average over the (interacting)
occupation numbers has been taken, i.e.,
(f (k)) =(I/V) gz n (k)f (k). The necessary other in-
gredients in the evaluation of the full response functions

are the corresponding exact limiting values of the many-
body fields 6+(q, co). For the 3D case the appropriate
values have been obtained by Niklasson' and by Zhu and
Overhauser. By making use of these results and of the
expansion of Eq. (3) we readily obtain

4m 4((k q) ) 16((k q) )cs'q 0 =—,n+, +
8

q q q

16 e [1+( —1+3)g (0)]+
3q

(4)

Xs,c (q(2D)

where g (0) is the value at the origin of the pair correla-
tion function of the system. Here the upper sign corre-
sponds to the charge, the lower to the spin response.

As far as the 2D Coulomb case is concerned the ap-
propriate exact asymptotic values for the 6+(q, co) have
recently been obtained by Santoro and Giuliani. In this
case Eq. (3) still applies (n is in this case the areal densi-
ty), and the results for the response functions are given by

4m 4((k q) )

3((k. )2) nq4
yo(qco) = n + + - +

teal 6) I co 4&l co
(6)

Consider next the high-frequency regime in which the
q~~ limit is taken in such a way that co)&q /mkF.
Also in this limit yo(q, co) and G+(q, co) are real. The
suitable expansion for the function yo(q, co) is given here
by

Sm.mn e g(0) +
3

where in this case the upper sign corresponds to the spin,
the lower to the charge response. ' '

As it turns out the exact values for the large-wave-vector
limits of the G+(q, co) coincide with the ones of the static
regime. As a consequence with the help of Eqs. (1), (2),
and (6) we readily arrive at the sought results. In particu-
lar for the 3D case we have'

X'c,s'(q~ ~,~)=, n+ + + [1+(—1+3)g (0)]+3((k q)') nq 4mn'e'
7?l 67 pl co 4f7l co 3apl co

(7)

while for the 2D case we find

y', '(q, m) = ~, n +,'q, +(2D) g 3((k ) )
le CO Pl co 4' Q7

+ 2~n e g (0)qIco

where the condition on the frequency is here
co ))q /m kF.

A few remarks are in order here. The corrections in-
volving g (0) display a diff'erent wave-vector dependence
in the 2D as compared to the 3D case. This feature sim-
ply stems from the different dispersion of the plasma
modes in the two cases. While in 2D the first significant
correction beyond the q term is proportional to g(0)
and has always an opposite sign for the charge and spin
response, in three dimensions the situation is more com-
plicated. In fact in such a case the knowledge of both

g (0) and ((k q)4) (which must be finite) are necessary to
determine the corresponding corrections. In all cases the
knowledge of the average ((k q) ) is necessary. This
quantity can either be simply evaluated with the use of
the interacting occupation numbers n (k), ' or can alter-
natively be determined from the (exact) total kinetic ener-

gy of the system.
Finally we note that as far as the spin susceptibility in

three dimensions is concerned, Eqs. (4) and (7), in both
the static and the large frequency regimes the sign of the
term involving g(0) depends on the actual value of the
latter, a sign change occurring for g (0)=0.25. From the
approximately known values of g (0) available in the
literature it can be concluded that such a term is negative
throughout the metallic range.
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