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First-principles calculation of the shock-wave equation of state of isotopic lithium hydrides
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The equations of state (EOS) of solid LiH in the 81 (NaCl-type) and K (CsCl-type) structures
have been calculated within the local-density approximation (LDA), using the augmented-plane-
wave method with Ceperley-Alder's form for the exchange-correlation energy. Using the EOS ob-
tained by the LDA, the volume dependencies of the Debye temperatures for both phases have been
determined. The calculated Debye temperatures in the 81 phase at zero pressure and zero tempera-
ture are 1246 K for LiH and 972 K for LiD in agreement with the experimental values in the
T =0 K limit at normal pressure which are 1190+80K for LiH and 1030+50 K for LiD, respec-
tively. The calculated lattice constants for isotopic LiH at zero pressure are in agreement with the
experimental values at T =83 K by 1.9/o. With these results the shock-wave equations of state (the
Hugoniot) for both phases have been calculated. The Hugoniots for the 81 phase are in agreement
with the experiment by Marsh.

I. INTRODUCTION

The properties of materials under high pressures and
high temperatures have attracted much attention because
of their relevance for understanding the compositions of
the earth's interior and other planetary interiors. '

Present-day shock-wave techniques can produce pres-
sures of several hundred GPa and temperatures of ten or
more thousand kelvins, which exceeds the conditions at
the inner core of the earth. However, the two parameters
of pressure and temperature in the shock-wave experi-
ments are mutually related and cannot be controlled in-
dependently, so we need quantitative theoretical analysis
to look into the properties of materials under high pres-
sures and high temperatures using shock-wave data.

Solid LiH is a good candidate for investigating the
shock-wave equation of state (Hugoniot) experimental-
ly and theoretically because it has large mass
differences between different isotopic compositions and
under normal conditions it is an insulator with the simple
structure of 81 (NaCl-type ) and is expected to undergo a
metallic transition to the B2 (CsCl-type) structure at an
evaluated pressure. ' '" Extensive experimental study on
solid LiH under high pressures has been done by Marsh
using the shock-wave technique. There is no evidence of
a transition for any of the isotopic combinations up to 45
GPa. So far the theoretical studies' ' have been done
by a number of researchers laying a stress on the
pressure-induced insulator-metal transition at zero tem-
perature. Within the local-density approximation (LDA)
Perrot' calculated the equation of state (EOS) of the 81
phase by using the augmented-plane-wave (APW) method
with the Kohn-Sham (KS) exchange energy and took into
account the correlation correction to the exchange ener-
gy by the first-order perturbation with Hedin-Lundqvist's
form of the correlation energy. He predicted that the
semimetallic and metallic transitions occur at about 200
GPa and 3 TPa, respectively. However, since the corre-
lation energy is sizable in his results, it is not certain

whether we can neglect the correction resulting from the
modification of the electron density due to the correlation
potential. Thus the self-consistent calculation inclusive
of the correlation potential seems to be important. Using
an empirical EOS Kulikov' predicted that the 81-B2
transition occurs at about 50—100 GPa accompanying
the metallic transition before the band gap closing occurs
in the 81 phase. However, his EOS of the 82 phase is not
good, as will be shown in Sec. II. Hammerberg" dis-
cussed this problem from the electron-gas approach by
using the Heine-Abarenkov —type pseudopotential with
an empty core for the Li+ ion. He predicted that the
81-82 transition occurs at about 200 GPa. He used,
however, an empirical EOS of the Born-Mayer type for
the insulating 81 phase because his approach is not accu-
rate at low densities. Rodriguez and Kunc' calculated
the volume variation of the total energy in the B1 phase
within the LDA using norm-conserving pseudopotentials.

A comparison of the theoretical values of the EOS un-
der high pressures with those of the experiment has not
been done yet. Thus, in addition to its high-temperature
properties, the calculation of the Hugoniots of solid LiH
is of interest from this point. In the present paper we
have calculated the EOS for the isotopic LiH for the B1
and 82 structures within the LDA by using the APW
method'5' and the Ceperley-Alder (CA) exchange-
correlation energy. ' With these results for rigid lattices
we have determined the volume dependencies of the De-
bye temperature and thermodynamic Gruneisen parame-
ters and have calculated the Hugoniots for both phases.
Using the Lindemann relation, we have also estimated
the pressure dependence of the melting temperatures.
The preliminary results on the EOS and electronic band
structure in the B1 phase under high pressures were re-
ported elsewhere. '

II. EQUATION OF STATE AND EI.ECTRONIC
BAND STRUCTURE OF A RIGID LATTICE

In the density-functional theory the total energy (per
unit cell) of a crystal with rigid nuclei is a functional of
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the electron density n and is written as'

Eo[n]=T, [n]+ U[n]+E„,[n],
where T, [n] is the kinetic energy of the noninteracting
electron system with the same density n, U[n] is the clas-
sical electrostatic energy, and E„,[n] is the exchange-
correlation (xc) energy, respectively. In the muffin-tin
(MT) approximation the respective terms in Eq. (1) are
written in atomic Rydberg units as

OCC R

T, [n]=QE, —g f o (g)u (g)dg, (2)
l

R„o (g)U[n]= —2g f '
dg Z —f o (g')dg'

o g . o

1 1 f dr
/R —r„.[ V r

Vp—

+ g 2vrR, (Q„+ ,'n—iV„)+p„,(nl ),

where p„,( n ) is the xc potential defined by
(d/dn)[ne„, (n)]. For the xc energy we used the LDA
where we adopted the CA result parametrized by Perdew
and Zunger. In Eq. (9) the eff'ective potential in the in-
terstitial region is taken to be zero following the usual
convention.

Using the scale transformation of the coordinates of
electrons and nuclei r=k, r' and R=A,R', the pressure is
calculated by

(12)

V V

v v
R

E„,[n]= g f o„(g)c„,(n , (g))dg+nl VIE„,(nl),
0

(3)

(4)

with ni (r') is the electron density of the transformed sys-
tem. Since the wave function is transformed according to
gi;(r')=A, g;(r), the respective terms of Eo[ni] are
written as follows: T, [n&]=A, T, [n], U[ni]=A, U[n],
and

R

Q, =Z —f o,(g)d g+ nI VI,
where cr,(g)=4vrg n (g) with n (g) as the electron densi-
ty in the vth MT sphere, g=r —r with r as the atomic
position of the vth atom in the unit cell, Z is the atomic
number of the vth atom, R is the lattice translation vec-
tor, r .=r —r, , R and V, are the radius and the
volume of the vth MT sphere, and V is the volume of the
unit cell. The average electron density in the interstitial
region nl is given by

R
ni= g Z —f o (g)dg (6)

with Vr as the volume of the interstitial region in the unit
cell. In Eq. (3) the last integral to be taken over all space
cancels out the infinite part in the lattice sum. The elec-
tron density n (g) is determined self-consistently by the
one-particle Schrodinger-type equation:

[—V +u, tt(r)]g, (r) =c., l(, (r),

u (g') for ~r
—r

~

~R
u r='

0 otherwise, (9)

4mniR, +p„—,(n (g)) uo, — (10)

where in Eq. (8) the spherical average is taken over the
vth MT sphere and the index i runs over the occupied
states, and the effective potential inside the vth MT
sphere is written as

2Z 1 g R„o (g')+2 —f o. (g')dg'+ f0

E„,[ni]= f n(r) E(l n(r))dr .

From Eq. (12) we readily get

3PV= 2T, [n]+ U [n]
—3f n (r)[ e„,(n(r)) —p„,(n (r))]dr .

For the MT approximation Eq. (13) is reduced to

(13)

3PV= 2T, [n]+ U[n]
R—3g f o,(g)[e,„,(n, (g))—p„,(n„(g))]dg

3"IVi[e ("I) p„,(n )]I. (14)

Using the method mentioned above, we have calculat-
ed the total energies, pressures, and electronic band
structures of solid LiH for the B1 and B2 structures. In
the present calculation all electrons are treated as the
Bloch electrons with wave vectors k. The electron densi-
ty has been calculated self-consistently by the APW
method where the angular mornenta are taken to be
I ~ 12, and for each k the reciprocal lattice vectors G are
included up to

~
k+ Cx

~

~ 22(2n. /a ) for the B1 and
11(2'/a) for the B2 structures, respectively, with a as
the lattice constants of the respective structures. For the
sampling of k points in the Brillouin zone (BZ), we adopt-
ed the special-point technique for the insulating phase
where we used 19 and 20 points for the B1 and B2 struc-
tures, respectively, and for the metallic phases we took a
256- and 216-point sampling for the Bl and B2 struc-
tures, respectively. The calculated equilibrium lattice
constant of the rigid lattice for the B1 phase is 3.927 A,
which is independent of the isotopic compositions. The
theoretical value is 3% smaller than the experimental
ones. The interpolated values of Perrot's results are
4.170 A for the KS exchange energy and 4.045 A for the
KS exchange energy with the correlation correction, re-
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513 K

TABLE I. Lattice constants of the isotopic LiH in the 81 phase at normal pressure.

a (A) (calc. )' a (A) (expt. )
T: 83 K 298K 83 K 298 K 513 K

LiH
'LiD
7LiT
6LiH
LiD

4.000
3.983
3.975
4.001
3.984

4.008
3.995
3.990
4.009
3.996

4.0296
4.0215
4.0042
4.0302
4.0221

4.0657
4.0477
4.0403
4.0666
4.0499

4.0829
4.0693
4.0633
4.0851
4.0708

4.1224
4.1119

4.1218
4.1110

'a(rigid lattice) =3.927 A.
Reference 9.

spectively. The norm-conserving pseudopotential
method' with the same CA xc energy as ours gives a

0
rather smaller value of 3.34 A. Owing to the light masses
of the Li and H atoms the lattice vibration produces
significant effects on the lattice constant even at low tem-
peratures, as is seen in its large isotope dependence: In
the B1 phase at normal pressure the extrapolated values
of the experimental lattice constants to T=O K are
4.0610, 4.0415, and 4.0340 A for LiH, LiD, and LiT,
and are 4.0615 and 4.0425 A for LiH and LiD, respec-
tively. By using the Debye approximation, we estimated
the pressure due to the lattice vibration with the Debye
temperature theoretically determined by the method
which will be mentioned in Sec. III. In Table I the calcu-
lated lattice constants for the isotopic LiH in the B1
phase at normal pressure are compared with the experi-
mental ones. The theoretical values are in agreement
with the experimental ones at T =83, 298, and 513 K by
(1.6—2.3)% for all isotopic combinations. In Table II we
showed the calculated equilibrium lattice constant, bulk
modulus, and its pressure derivative of normal LiH in the
B1 phase at T =0 K and compared those with the values
by the experiment and previous theories. Figure 1 shows
the EOS for both phases, which are compared with the
previous theoretical ones: Our pressures are lower than
those by Perrot. Thus the modification of the electron
density due to the correlation potential is important for a
system with a small number of electrons like solid LiH.
Since Kulikov's' EOS for the B2 phase is not good over
all densities, his estimate of the transition pressure seems
to be not accurate. We found that Hammerberg's" total
energies are well represented up to the fourth significant
figure for all densities in his Table I by
E(r, ) =aor, +a, r, +a2r, '+a3+a41nr, with r, =[3/
(4mn)]' . Acc. ording to this we estimated his pressures
and Gibbs free energies for both phases. As shown in

Fig. 1, the electron-gas results up to the third order of the
electron-ion interaction are close to the pressures by the
LDA at high densities. However, the B1-B2 transition
occurs at r, =2.37 and P =2.8 GPa, in contrast to the re-
sult of about 230 GPa by the LDA.

The volume variation of the characteristic excitation
energies for the B1 and B2 phases are shown in Fig. 2. In
the B1 phase the band gap is the direct gap with the X, -

X4 symmetries up to the band closing at V =3.35
cm /mol which is 10%%uo smaller than the value by Perrot.
The pressure at the band-gap closing for normal LiH is
estimated to be 226 GPa, which is 13% higher than that
by Perrot. For further compressions after the band-gap
closing the band crossing occurs on the Z line of the first
Brillouin zone (BZ) between the state with the Z& symme-
try and that with the Z3 symmetry. Figure 3 shows the
electronic band structures at normal pressure and at
V=2. 83 cm /mol. At lower compressions the valence
band and at the bottom of the conduction band consist of
the bonding and antibonding states of the H 1s and Li 2s,
respectively. As the compression becomes higher, the
states having s character shift upwards rapidly due to the
symmetry. The bottom of the conduction band has p
character of the Li 2p state and shifts downwards rela-
tively to the valence band having s character and the
band contact occurs gt the X point in the BZ. In the B2
phase the band gap is the indirect gap with the R2-X,
symmetries up to V =7.05 cm /mol. For further
compressions the band gap becomes the indirect gap with
the R z-M5 symmetries and its closing occurs at V =6.32
cm /mol with the pressure of 26.6 GPa. In Fig. 4 the
electronic band structures at normal pressure and at
V=6. 18 cm /mol are shown. Recently the pressure
variation of the band gap for normal LiH in the B1 phase
was measured up to 48 GPa by observing the optical
reilectance spectra. ' Despite the 60% compression of

TABLE II. Equilibrium lattice constant a, bulk modulus Ez, and its pressure derivative Kz of nor-
mal LiH in the B1 phase at T =0 K. Parentheses denote the room-temperature values.

Present
Perrot
Rodriguez and Kunc
Expt.

'Reference 37.
"Reference 33.

a (A)

4.000
4.170

3.40—3.60
4.061'

X, (@Pa)

36.6
25.5

45-59
34.24 (32.35)"

3.40

3.26—3.92
(3.80+0. 15 )
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a rigid lattice calculated by the LDA, as was mentioned
in Sec. II, and E„;b and P„b denote those for the lattice
vibration. In the Debye approximation for the lattice vi-
bration we can write

0E„;b= ', nk—~e+3nks TD
T

I' b= —'nk~ +3nk T D
yQ» Q»

Ylb g 8 y V T

where n denotes the number of atoms in ihe unit cell, kz
is the Boltzrnann constant, 0 is the Debye temperature,
and D(x) is the well-known Debye function. The ther-
modynamic Gruneisen parameter y de6ned by—( t) ln T/8 ln V)z is expressed as —(8 inc/8 ln V) T. The
Debye temperature is related to the mean-squared vibra-
tion frequency as

O„— (
5 ( ~2) )1/2fi

k~
(18)

where R=h /(2m) and h is Planck's constant. According
to the lattice dynamics, (co ) can be expressed by the
trace of the dynamic matrix D (k) divided by the num-
ber of normal modes 3nN as follows:

3nN „

(19)

5 R T g K

FIG. 4. Electromc band structures of the 82 phase (a) at nor-
mal pressure and (b) at V =6. 18 cm'/mol.

where M is the mass of the vth atom located at r in the
unit cell, and P ~(r) is the pair potential between the vth
and v'th atoms which is assumed to be centrally syrn-
metric. In the following we assume that there are two
atoms in the unit cell, as is the case for the 81 and 82
structures. Though the force constant V P,„, in Eq. (19)
may be calculated from first principles by using the
I.DA, it is laborious and is not appropriate for the sim-
ple Debye model. In the present paper we use the follow-
ing approximation to calculate (co ): According to the
lattice dynarmcs of diatomic sohds %'e can express ap-
proximately [co(acoustic)] cx: 1/M and [co(optic)3 cc 1/p,
with M and p the total and reduced masses of the two
atoms, respectively. In order to take into account the
acoustic and optic frequencies in the average manner, we
replace 1/M in Eq. (19) by —,'(1/@+1/M). Thus we can
write Eq. (19) as

III. VOLUME VARIATION
GF THE DKBYK TEMPERATURE

For an insulator having relatively large energy band
gap the thermal excitation of electrons is very small and
has negligible e6'ects on the total energy and pressure.
Thus we take the following approximation:

E ( V, T) =Eo( V)+E„;b( V, T),
P ( V, T)=Pa( V)+P„;b( V, T)

where Eo and I'0 denote the total energy and pressure for

(co ) = —+ g g [V P, (r)]„=~R+,
~

. (20)
12 p M

V d 4 d
d dV~ 3V dV

(21)

We estimate the average force constant at the nearest-
neighbor distance d and write Eq. (20) as

(~ &=——+ [V e(r)]„„1 1 1

6 p M

3 1 1—+
2 p M
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where C&(r) denotes the lattice energy per unit cell for the
system having the nearest-neighbor distance equal to r,
and V is the volume of the unit cell. Inserting Eq. (21)
into Eq. (18), we get

1/2

0 fiV 5 1+ 1 d + 4 d
( )kd 2 p M dV' 3VdV

(22)
In the low-temperature region where the excitation of
phonons is small, we can take the total lattice energy to
be equal to the total energy of the rigid lattice Eo in Eq.
(15), where we neglect the zero point energy. Thus we

can express the Debye temperature as

S 1 1oo= —+
kBd 2 P M

1/2

V (Ko 4p )1/2 (23)

where KT = —V ( dpo /d V) T. The thermodynamic
Griineisen parameter y is given by [2(BKTIBPO)T——', ]/
[1 ', (P—o—/KT] —

—,'. If we neglect the 4, p—o term in Eq.
(23), our y is reduced to the Slater y. At high tempera-
ture the force constant itself depends upon temperature
due to lattice vibrations. We consider in the present
model that the phonon contribution of the total lattice
energy is equal to the thermal mean of the harmonic po-
tential energy. Thus we can express

8=00(1+Oi)', Oi= —K'T —4P„;b —T (KT 4p„,b—)
V

(KT —4PO), (24)

where KT= —V(BP„;b/BV)T. Since 0, in Eq. (24) de-

pends upon 0, we have to determine 0 self-consistently.
To look into the accuracy of our model we applied it to
calculate the Gruneisen parameters for solid Ar and Ne,
using the Lennard-Jones potential. The results are in
reasonable agreement with those by self-consistent pho-
non calculation where we assumed that

y= +co,y, /pa), -(1/3N) g yq,

where 5= ( ( u ) )
' /d with ( u ) as the mean-square dis-

placement of thermal vibrations. Due to the light mass
of the hydrogen atom we assume that T is determined

by the temperature at which the melting of the Li sublat-
tice occurs. Thus m in Eq. (25) is the mass of the Li
atom. According to Shapiro the Lindemann relation
holds well for each structure separately where the critical
fraction 5 for fcc is estimated to be 0.071. The melting

q, s q, S q, s

with y, the mode Gruneisen parameter and co, the
normal-mode frequency. From the result we found that
the —

4, PO term in Eq. (23) is important to obtain reason-

able agreement and produces a pronounced efFect at high
pressures.

Table III shows the calculated Debye temperatures in
the 81 phase at T=O K and P =0. The theoretical
values of 1246 K for LiH and 972 K for LiD are in

good agreement with the experimental values in the T =0
K limit, which are 1190+80 K for LiH and 1030+50 K
for LiD, respectively. In Fig. 5 the volume variations
of the 0ebye temperatures and thermodynamic
Gruneisen parameters are shown. The pressure variation
of the melting temperature T can be estimated by using
the Lindemann relation

2.0-

1.5

0.86

PPlkB
( $d )20~

9A
(25)

0.82

TABLE III. Debye temperatures 0 at T =0 K and the melt-

ing temperatures T in the B1 phase at normal pressure. 1.0

Calc.
O (K)

Expt. '
T (K)

Calc. Expt. 0.8 Q.6 V/ Yo
0.80

LiH
LiD
LiH
LiD

'Reference 29.
Reference 31.

1246
972

1266
995

1190+80
1030+50

959
588
849
529

961
FIG. 5. Debye temperatures 0 and the thermodynamic

Gruneisen parameters y of the B1 and B2 phases at T =0 K vs

relative volume with V0=9. 117 cm /mol. The Debye tempera-
tures are reduced by 00=0( Vo), which are given by 1308, 1009,
1330, and 953 K (1164, 897, 1182, and 847 K) for LiH, LiD,
LiH, and LiD for the B1 (B2) phase, respectively.



39 FIRST-PRINCIPLES CALCULATION OF THE SHOCK-WAVE. . . 3357

2000

now consider the case that a phase transition occurs un-

der the compression. The increase of the internal energy
can be calculated by thermodynamic consideration as

Ea —Eo = E"( Vo, To )
—E ( Vo, To )

+ y" V, T0 Cy V, TO
yh

1000 P—"( V, To ) d V

+ f Cv(VH, T)dT, (27)
I I I I I I I I I I I I I

50 100
Pressure(G Pa)

150

FIG. 6. Pressure variation of the melting temperatures T
for the 81 phase.

IV. SHOCK-WAVE EQUATION OF STATE

Let us consider the shock-wave compression of a ma-
terial from the initial state (Vo, P0, To) to the Hugoniot
state ( VH, PH, TH ). The Hugoniot state is determined by
the Rankine-Hugoniot conservation relation

temperatures for isotopic LiH at P =0 are listed in Table
III. The calculated T for LiH of 959 K is in agreement
with the experimental one of 961 K. ' Figure 6 shows
the pressure variation of T for isotopic LiH.

where the superscripts l and h denote the low- and high-
pressure phases, respectively, Cv is the heat capacity at
constant volume, and Vo and Vo ( = Vo) are the volumes
of the unit cell for the respective phases at P =Po and
T =To. Inserting Eq. (27) into Eq. (26) we get the
Hugoniot equation of state. Where there is no phase
transition under the compression we must replace h by l
in Eq. (27). The Hugoniot temperatures in the respective
phases are determined by solving

H
PH=P (VH, T0)+ f y (VH, T)Cv(VH, T)dT

Tp

(28)

with a=l and h. If. the temperature variation of the
Griineisen parameter is neglected, Eq. (28) is written as

Eo ( Vo VH )(Po+PH ) (26)

where E& and Eo denote the internal energy of the
Hugoniot state and the initial state, respectively. We

I

THf Cp(VH, T)dT= ~ [Pa P(V HT )0]
—.

y (Va)

Inserting Eq. (29) into Eq. (27) with Eq. (26), we have

(29)

y"( Va)
PH = P "( Va To)+Po

H

y "(Va ) va
y"( V)Cv( V, To) —P"( V, To) dV

T

Vo
I —-'y"(V )H VH

—P0 (30)

where b,Ea t =E ( Vo To) E ( Vo To).
Using Eq. (30), we have calculated the Hugoniot pres-

sures and temperatures for isotopic LiH for the B1 and
B2 structures and have compared these with the experi-
ments in Fig. 7 where the initial temperature is taken to
be TO=293 K according to Marsh's experiment. Solid
lines represent the Hugoniots with the densities calculat-
ed at P =0 and T =293 K in the B1 phase as the initial
densities po, where we used the values of Vo Vo and
AE& I tabulated in Table IV. In order to treat porous
samples or those with lower densities than the calculated
crystal densities, we consider these as expanded crystals
with the pressure given by Po(V0, T0). Using Eqs. (26),
(27), and (29), we have calculated the Hugoniots for
lower-density samples in the B1 phase, where we replace
PH P(VH, T0) in Eq. (29) by P—a+Po P(V0, T0) in or-—
der to take Pa=0 at Va= Vo and TH=T0. In Fig. 7(a),

Burton and Landeen's data, which are estimated by
P~ =pou u, obtained from u and u, values cited in Ref.
8, where we assumed po to be the crystal density at nor-
rnal conditions of 0.783 g/cm, seem to show a phase
transition at P =70—90 GPa. We estimated the Gibbs
free energies of both phases at the temperature T =2000
K corresponding to their Hugoniot data for "LiH within
the present model and found that the B1-82 transition
occurs at P =130—140 GPa. Since the energy difference
between the B1 and B2 phases is small and pressures in-
crease rapidly at high densities, a more detailed treat-
ment with regard to the precise determination of the Fer-
mi surfaces and the phonon energy beyond the Debye ap-
proximation is required. Thus we cannot deny the possi-
bility of a phase transition at P =70—90 GPa within the
present model. Here we note that we did not consider
the thermal excitation of electrons. As is shown in Fig. 2,
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TABLE IV. Parameters used to calculate the Hugoniots.

Vo (cm /mol) Vo (cm /mol) EE/, I (mRy)

LiH
LiD

6LiH
LiD

9.692
9.598
9.699
9.605

9.367
9.285
9.373
9.292

25.18
25.59
25.16
25.56

the band gaps close at V=3.35 cm /mol and 6.32
cm /mol for the Bl and B2 phases, respectively. Thus
for the pressure range considered in Fig. 7 this effect is
negligible in the B1 phase and it may give an effect in the
B2 phase at high pressures. Though the electronic
thermal effect can be treated by using the electronic exci-
tation spectra calculated by the LDA, we will not con-
sider it further at present.

V. DISCUSSION

In this paper we have shown that the equilibrium lat-
tice constant and Debye temperature at normal pressure
are well described by the LDA. As for the thermo-
dynamic Gruneisen parameter which is written in the
present model as

4P+24VP'+9V P"
6(P+3VP') (31)

with the primes P' and P" denoting the volume deriva-
tives, it is very sensitive to the P-V curve near zero pres-
sure and increases rapidly when the volume increases
from the calculated zero-pressure volume. The calculat-
ed y at zero pressure of 0.85 deviates from the experi-
mental value of 1.21 but it becomes 1.31 when estimat-
ed at the experimental volume 10.3 cm /mol at normal
conditions. After confirmation that the properties at
normal pressure are in agreement with the experiment,
we have calculated the Hugoniot and have shown that
the high-pressure and high-temperature properties are
also well described by the LDA with the Debye approxi-
mation for the lattice vibration.

The two-point Hugoniot data by Burton and Landeen
in Fig. 7(a) seems to show a phase transition at 70—90
GPa with volume decrease of about 10%. Judging from
the fact that the higher-pressure datum is near the calcu-
lated Hugoniot and from the large volume decrease, the
high-pressure phase is expected to be the B2 phase if
these data represent a true transition. This pressure is
close to the pressure for the B1-B2 transition predicted
by Kulikov. ' However, the empirical EOS used in his
theory is not accurate enough to predict the phase transi-
tion. Using the electron-gas theory, Hammerberg" cal-
culated the total energies of the B1 and B2 phases at

T=0 K. His pressures are in excellent agreement with
those by the LDA above 70 GPa but his theory predicts
that the B2 phase is stable above 2.8 GPa, according to
our estimation of the pressures and Gibbs free energies
with the use of his results. In fact, he used an empirical
pptential instead of the electron-gas theory in order to
calculate the Gibbs free energies for the insulating B1
phase and estimated the transition pressure to be about
200 GPa. The empirical potential whose parameters are
determined at normal pressure does not seem to be accu-
rate up to the compression of 0.3Vo —0.4Vp with Vo as
the volume at normal conditions. Considering the excel-
lent agreement of the pressures by the electron-gas theory
and those of the LDA for both phases above 70 GPa, the
electron-gas theory is also applicable to the B1 phase as
well as to the B2 phase in this pressure range. Thus the
total energies seem to be correct at high densities except
for some nearly constant shifts in energy, presumably re-
sulting from the core region of the pseudopotential
neglected in his calculation. However, the estimated
pressure for the transition is in agreement with that by
the LDA of about 230 GPa. %'ithin the present model
we also estimated the pressure for the B1-B2 transition of
"LiH to be 130—140 GPa at T=2000 K, which corre-
sponds approximately to the calculated Hugoniot tem-
perature for Burton and Landeen's data.

In the present paper we have used the MT approxima-
tion to calculate the total energy and pressure. For solids
with a small number of electrons such as solid He and
LiH the MT approximation is expected to be good:
The MT approximation gives only a small correction to
the pressure. And for the total energy it gives a small
and nearly-constant shift in energy especially for the B1
phase because of the larger volume of the interstitial re-
gion in the unit cell than that of the B2 phase, which is in
a direction reducing the transition pressure. However,
since the difference of the Gibbs free energies between
both phases is small and the pressure increases rapidly at
high densities, the structure-dependent contributions of
the lattice vibration to the Gibbs free energies are also
important for solid LiH to predict the phase transition as
is inferred from the large zero-point energy. ' ' This
problem is beyond the scope of the present paper, so we
will not consider it further at present.
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