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Nonlinear refractive index of optical crystals
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The nonlinear refractive indices (n2) of a large number of optical crystals have been measured at a
wavelength near one micrometer with use of nearly degenerate three-wave mixing. The measure-
ments are compared with the predictions of an empirical formula derived by Holing, Glass, and
Owyoung. This formula, which relates n2 to the linear refractive index and its dispersion, is shown
to be accurate to within about 30%%uo for materials with nonlinear indices ranging over 3 orders of
magnitude. Measurements for a number of binary oxide and fluoride crystals have been analyzed
under the assumption that the hyperpolarizability of the anion is much larger than that of the cat-
ion. It is found that the hyperpolarizability of oxygen varies by a factor of 10, and that of fluorine
varies by a factor of 7, depending on the size of the coordinating cation. This behavior is similar to
that of the linear polarizability, although the hyperpolarizability is much more sensitive than the
linear polarizability to the identity of the cation. The measured halide ion hyperpolarizabilities for
several alkali-halide crystals are in reasonable agreement with recent self-consistent calculations. A
semiempirical model was proposed by Wilson and Curtis to account for the dependence of the
linear anionic polarizability on the radius of the cation. This model also accounts quite well for the
variation of the hyperpolarizability of both fluorine and oxygen, except for cation partners that have
filled or unfilled d-electron shells. The nonlinear indices of a number of complex oxides (i.e., those
with more than one cation) have been calculated from the partial hyperpolarizabilities deduced
from the data for the binary oxides. The calculated and measured values of n2 agree to within an

average error of 13%.

I. INTRODUCTION

A. Background

Nonlinear-optical properties of materials have steadily
increased in importance since the invention of the laser.
Most attention has been focused on the second-order
nonlinearity, g ' ', of noncentrosymmetric materials be-
cause of its applications to harmonic generation and fre-
quency shifting using parametric oscillators. The third-
order nonlinearity g' ' has also become of increasing in-
terest because of its effects on optical propagation of in-
tense beams and its rapidly proliferating importance and
applications in modern optical technology. Since the
pioneering work of Maker and Terhune, there have been
many efforts, mostly rather limited in scope, to measure
third-order nonlinearities of optical materials and to re-
late their nonlinear behavior to their linear refractive in-
dex and compositional and structural characteristics.
It is generally understood that the third-order nonlineari-
ty at optical frequencies far below the optical band gap
increases more or less monotonically with the linear re-
fractive index. This has inspired attempts to empirically
relate the third-order nonlinearity to linear-refractive-
index data, although the database of g' ' measurements
used was not extensive and included mostly low-index
crystals and glasses. This work will be reviewed in the
next section.

The purpose of the present work is to obtain accurate
relatiUe measurements of the nonlinear refractive index
n2 for a wide range of optical materials. The nonlinear

refractive index is one of the simplest properties derived
from g' ', which is a very complicated quantity in its
most general form. n2 is defined by

n no+n2(E )

where no is the linear refractive index and E is the ap-
plied optical electric field. For linearly polarized light in
an isotropic medium or light polarized along a cube axis
in a cubic crystal, n2 is related to g ' ' by

12'n2=
no

The nonlinear index is an important consideration in the
design of high-power lasers and optical systems. Spatial
intensity fluctuations in the wavefront of a laser beam
passing through a medium grow exponentially with the
nonlinear phase shift that is proportional to n2.

B. Microscopic and empirical models for n&

The nonlinear refractive index is determined by several
physical mechanisms, acting on a broad range of time
scales. It is therefore necessary to be explicit about the
contributing mechanisms in a particular experiment. The
various contributions to nz are '

nz =n2(electronic)+nz(vibrational)

+n2(electrostriction)+ n 2(thermal) .

The response times of these various contributions can be
estimated from simple arguments. The electronic and vi-
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Here, EI is the local electric field. Wang obtained a sim-
ple empirical relationship between the u and y for hydro-
genic atoms by simplifying the perturbation-theory ex-
pression for y in the limit of an optical frequency much
lower than any optical transitions to excited states. This
relation states that y =kn, where k is inversely propor-
tional to the average excitation energy of optical transi-
tions to excited states that have a dominant inhuence on
the hyperpolarizability. Boling, Glass, and Owyoung
(BGO) showed that this relation can be generalized to a
multielectron atom or ion. They wrote the nonlinear re-
fractive index as

4m
n2= QN, y, , (5)

where N; is the number density of species i, and f is the
local-field correction factor, which they took to be the
Lorentz local field f =(n +2)/3. They assumed that

brational response times can be obtained from the fre-
quencies of optical transitions involving the bound elec-
trons and lattice vibrations; these are —10 ' and 10
s, respectively. The electrostrictive response time is
roughly equal to the time required for an acoustic defor-
mation to travel across the diameter of the optical beam,
or about 10 s under our experimental conditions.
Thermal diffusion time scales are even longer, and de-
pend on the thermal properties of the medium. In the
propagation of nanosecond laser pulses through a medi-
um only the first two of the mechanisms in Eq. (3) are ac-
tive. These are also the only two mechanisms that con-
tribute to our measured values of n 2.

Calculations of n2 are very difficult because of the high
order of perturbation theory involved and the consequent
need for accurate wave functions and energies for a large
number of excited states. Progress has been made, how-
ever, since the early work by Boyle et al. on third-order
nonlinearities in helium. ' Recently, self-consistent cal-
culations were done on alkali halide crystals using the
local-density approximation, "" we shall discuss these
later. For the majority of the crystals that we have mea-
sured, however, there are no first-principles calculations
available. We shall therefore base most of the discussion
of our results on some empirical concepts and approxi-
mations with the aim of investigating their possible valid-
ity. It is possible that this will lead to some insight into
the most promising directions of future theoretical work
on the third-order nonlinearity.

One of the earliest concepts employed to model the
linear-optical response of condensed matter is the polar-
ization of the constituent atoms, ions, or molecules.
Tessman et al. showed that this approach leads to
reasonably consistent values for the polarizabilities of the
alkali and halide ions calculated from the refractive in-
dices of alkali halide crystals. ' This concept can be for-
mally generalized to the third-order nonlinearity by
defining the hyperpolarizability y; of a microscopic con-
stituent in analogy with the linear polarizability a;. The
polarization of such a constituent is defined as

I, =u, E, +y,E,')6 . .

one constituent had a hyperpolarizability that was much
larger than any others and modeled its linear-optical
response by a single harmonic oscillator whose frequency
could be related to the dispersion of the linear refractive
index. From this ansatz they deduced the empirical ex-
pression for n2,

K(nd —1)(nd+2)

(nd+2)(nd+1)
vd 1.517+

6nd

- )~2 X10 ' esu,

(3) (3) (3) cos (2e)+ 1
~X1111 X)122 X)221

where nd is the linear refractive index at the d line of He
at S875.6 A and vd is the Abbe number, which is the re-
ciprocal of the wavelength dispersion of the linear refrac-
tive index of the medium at this wavelength. IC is an
empirical factor that they suggested might be reasonably
constant for a group of related materials. This formula
has been fairly successful in predicting the nonlinear re-
fractive indices of many low-index crystals and
glasses, ' ' and there are some indications that it may
apply to high-index semiconductors as well.

Recently, Johnson et al. ' have done self-consistent
calculations of the effective ionic hyperpolarizabilities of
alkali and halide ions in alkali halide crystals using the
local-density approximation (LDA) with either ab initio
or spherically averaged pseudopotential methods. They
found that the hyperpolarizabilities of the anions F
Cl, Br, and I are much larger than those of the cat-
ions, and they vary by severalfold depending on the iden-
tity of the coordinating cation. Furthermore, they found
that the variation of the hyperpolarizability is much
larger than that of the linear polarizability. In the face of
this evidence, the assumption of ionic hyperpolarizabili-
ties that are relatively independent of the identity of the
counterions is clearly untenable as a starting point. An
alternative approach would be to assume that the basic
constituents whose hyperpolarizabilities are summed to-
gether in Eq. (5) are cation-anion pairs, which includes
the "bonds" between such pairs. The y; are therefore
defined as variable anion hyperpolarizabilities, which are
assumed to include both the interionic and intraionic
contributions to the nonlinear polarization. Obviously,
this simple assumption does not allow for the fact that
each anion or cation of an ionic crystal may be coordinat-
ed by several ligands, which are not necessarily identical.
Also, the geometric character of the coordination may
vary from crystal to crystal or from site to site in a given
crystal. One of the goals of our experiments is to investi-
gate the extent to which such a concept is useful.

These models all treat g ' ' as a scalar quantity, when it
is, of course, a tensor. For cubic materials there are three
mdependent components, g»», g»22, and g )22, . For a(3) (3) (3)

linearly polarized beam propagating along [001], polar-
ized at an angle e relative to [100], the effective g ' ' may
be written as

&(3)(e)=(2&(,3))»+&()
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for cubic crystals having space-group symmetry 432,
43m, or m 3m (such as NaC1, CaF2, and CsCl, respective-
ly). When all of the excitation frequencies are far below
one- and two-photon electronic resonances, we may use
Kleinman symmetry to simplify Eq. (7):

SF

t w X~2 I

R

BS
R

1.071 pm

D

(3) (3)
71122 +1221

and therefore,

2

(e ) 3 + (
) 3 )

cos ( 26 ) + 1
X +1122 +1111 +1122

(8)

YAG

(trigger)

1.064 pm

0.532 pm

DL
0.567 pm

(shutter control)
H2 cell

s )I./4

We shall make use of these expressions to obtain
y'„z2/yI, '» for cubic crystals from our measurements of
the polarization anisotropy of n2. One might expect to
be able to account for the anisotropy of y ' ' by consider-
ing an anisotropic hyperpolarizability for the bond be-
tween two atoms or ions. It is easily shown that the sim-
plest notion, a one-dimensional bond between atom or ion
pairs, does not account for the anisotropy of y ' ' for the
simplest ionic or covalent cubic materials. It is therefore
necessary to employ at least three independent tensor
components of the bond hyperpolarizability, although
only two of these are independent under the conditions
where Eq. (8) is valid.

Computer
PMT
(S)

t

BC g ) I F

PMT
+
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P

FIG. 1. Experimental setup used to measure the nonlinear re-
fractive index. DL, dye laser; IF, interference filter; P, polariz-
er; D, diaphragm; BS, beamsplitter; S, sample; CL, cylindrical
lens; PD, photodiode; SF, spatial filter; R, reference cell; BC,
boxcar integrator; PMT, photomultiplier tube.

II. EXPERIMENTAL METHOD AND SETUP

Measurements of the nonlinear refractive index were
performed using the technique of nearly degenerate
three-wave mixing (TWM) that we employed previously
for glasses. ' Since the experimental details were report-
ed in Ref. 19, only the most basic and important informa-
tion will be repeated here. The experimental setup is
shown in Fig. 1. In the TWM method the 1.064-pm
beam (frequency co, ) is combined with a 1.071-pm beam
(frequency co2), produced by a Raman-shifted dye laser,
to generate the frequency 2Q)] c02 using a collinear
geometry for the incident and signal beams. The frequen-
cy offset 5=co, —~2=60 cm ' gives a coherence length
for the mixing of about 10 cm, which allows the use of
samples up to 1-crn thickness. Mixing is done in two
nearly identical focal regions, one of which contains the
sample to be measured, and the other is a reference arm
containing a cell of CS2. The signals are separated from
the input waves with a double monochromator and are
detected by separate photomultiplier tubes with S-1 spec-
tral response. A two-channel gated integrator records
the sample and reference signals, which are input to a
computer. The sample signal is normalized by dividing it
by the reference signal for each laser pulse in order to
correct for Auctuations in the input laser beams. The n2
value of the sample is obtained by substituting a standard
material with known n2 into the sample arm, and the
magnitudes of the normalized signals for the sample and
standard are used to calculate n 2 for the sample from the
forrnu1a

1/2 2

(3) (3) S C

(xiii&/s =l»»i)c CC n,

where I, and I, are the normalized signals for the sample
and calibration standard, respectively, 8, and 8, are
their lengths, n, and n, their refractive indices, and C
corrects for differences in their surface reAectivities. Fol-
lowing the procedure used for our measurements of
glasses, we have calibrated our "standard" sample with
the average of the nonlinear refractive indices of seven
glass samples measured by time-resolved interferometry
by Milam et al. '

Although these relative measurements of n2 do not re-
quire a knowledge of the intensities and spatial and tem-
poral distributions of the laser sources, there are still
some possible sources of error that must be avoided.
First, the use of a finite frequency difference 6 may result
in the measurement of only a partial contribution to n2
arising from the Raman-active lattice vibrations. This is
most likely to be a problem with materials with very
low-lying Raman-active vibrations. By varying the fre-
quency difference 6, we have investigated the dispersion
of the signal from a sample of lead glass, ' which has vi-
brational excitations extending down below 100 cm
The results, shown in Table I, demonstrate that there is
no dispersion to within the experimental accuracy of
about 5%. Also shown in Table I are similar data for
CS2, which shows the expected dispersion from molecular
reorientation. Since all of the crystals that we have in-
vestigated in this work have no Rarnan-active vibrations
below about 150 cm ', the effects resulting from the
finite value of 5 will be even less than those expected for
the lead glass. Self-focusing is a second source of error;
its effects would be most severe in high-index materials,
such as the lead glass. Table II shows the results of n2
measurements on the SF-58 glass as a function of laser in-
tensity. Even at intensities near the self-focusing thresh-
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TABLE I. Measured values of n2 as a function of frequency
shift.

6—COl 602

(cm
n2 (10 ' esu)

SF-58 CS2

63.5
32.3
19.8
9.8

11.2
12.2
10.8
11.2

13.8
26.8
32.8
48.6

old for this material, our measurements are independent
of laser power, so we conclude that self-focusing does not
affect our measurements.

The samples employed in this work were a few mm
thick. Their surfaces were polished parallel to within
about 0.3', which was necessary to avoid extensive
realignment between insertion of the sample and stan-
dard. Measurements were repeated several times by suc-
cessive interchange of the unknown and the standard.
Different portions of the sample were measured each time
to avoid systematic errors due to sample quality and sur-
face finish. Many samples were measured on different
days with no noticeable changes. Based on this reprodu-
cibility, we believe that the accuracy of relative n2 mea-
surements is better than 5% for nearly all of the samples
measured. Some materials (KF, KC1, NaBr, KBr, CaO,
and SrO) had marginal optical quantity, and the estimat-
ed errors are on the order of 15%.

III. EXPERIMENTAL RESULTS

TABLE II. Measured values of n2 as a function of intensity
for SF-58 lead glass.

Laser power (kW)
at 1.064 pm'

250
75
50
12

Measured
n2 (10 ' esu)

11.6
11.2
12.1
11.3

'The critical power for self-focusing is P„;,=eA, /32m. n2=94
1&W.

Before discussing the results, it is important to review
our choice of calibration standard and compare our ex-
perimental approach with those used by previous investi-
gators. Time.-resolved interferometry (TRI) is a direct
method that has been employed to measure n2. ' ' The
advantage of TRI is that it automatically satisfies the
condition 6=0 to within the bandwidth of the laser
pulse. This method is, however, very difficult and re-
quires large samples of excellent optical quality. Mea-
surements of y ' ' using TWM have also made use of the
absolute Raman cross sections of benzene or calcite as
the nonlinear calibration standard. ' These mea-
surements must be made with a large value of 6-1000
cm, which is too large to include the vibrational contri-
bution to g' ' in most crystals and glasses. Also, careful
phase-matching geometries involving the unknown and
standard materials are required. Recently, degenerate

four-wave mixing was used to measure n2 in glasses and
some crystals. This method is sensitive to thermal grat-
ings and free-carrier gratings and is difficult if bulk or-
surface elastic scattering is appreciable. A fourth method
involves the measurement of self-focusing, either by its
direct effects on the far-field beam profile, or by measured
optical damage thresholds. The same problems arising
in degenerate four-wave mixing, as well as the difficulty
of defining the optical damage threshold, affect the self-
focusing method. In order to avoid these difficulties, we
have chosen to employ the nearly degenerate TWM
method, which is easier to perform and interpret and less
demanding of sample size and quality than any of these
other approaches. We are also able to utilize many of the
previous TRI measurements as a collective calibration
standard. For a suitably small value of 5 the TWM mea-
surements should be equivalent to TRI, and the experi-
ments discussed in the preceding section verify that the
value of 6=60 cm ' that we employed satisfies this con-
dition. This choice of a calibration standard may, howev-
er, lead to errors in the absolute n2 values, since any per-
sistent error in the calibration set is incorporated into our
results.

An assessment of the uncertainty of the reference stan-
dard may be made by comparing our measurements with
those obtained by the other methods. A comparison of
results for selected materials is shown in Table III. The
data in this table were not intended to be comprehensive,
but. rather to compare several different experimental tech-
niques and standards in experiments that have a
significant overlap with the materials studied in our own
work. For a thorough review of previous n2 measure-
ments, see Ref. 7. Of the listed materials measured by
TRI, only fused silica was included from among the set of
glasses that were used for calibration (see Ref. 19). (The
crystals were not used for calibration since their orienta-
tions were unknown in the TRI experiments. ) Our mea-
surements are in good relative agreement with TRI for
the crystals in Table III. The third column in Table III
lists the results of Maker and Terhune, who used a setup
similar to ours with collinear phase matching and a large
value of 6 equal to the 992-cm ' vibration of benzene,
which was the calibration medium. These results are
consistently larger than ours by a factor of 2. The other
TWM results reported by Levenson and co-workers,
which are based on calcite as a standard, are roughly a
factor of 3 larger than ours, except for CdF2. The relative
values obtained by these previous investigations are, how-
ever, in good agreement with ours. The last column of
Table III lists the absolute measurements of Smith
et aI. , who extracted n2 from optical damage data in
the presence of self-focusing. These measurements are
less direct than the others because of the uncertain role
that self-focusing plays in bulk optical damage.

We believe that the differences between our va1ues and
those obtained using TWM with benzene or calcite as the
calibration standard are real and refIect a disagreement in
the calibration standards. This is not unlikely since this
is the first extensive comparison of nz values obtained us-
ing the time-resolved-interferometry and Raman cross-
section standards. Despite this uncertainty in the abso-
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TABLE III. Comparison of work with previously published results.

Sample

TWM
1.06 pm
1.07 pm

TRI'
1.06 pm

Measured' n2 (10 " esu)
TWM TWM' TWM

0.693 pm 0.575 pm 0.575 pm
0.746 pm 0.610 pm 0.592 pm

TWMg
0.560 pm
0.590 pm

PDF"
1.06 pm

LiF
NaF
NaCl
NaBr
KC1
KBr
CaF,
SrF2
CdFq
BaF2
LaF3
CeF3
A1~03
fused SiO~
Y3A150, ~

MgO

0.26
0.34
1.59
3.26
2.01
2.93
0.43
0.50
3.95
0.67
1.4 (av)
1.3 (av)
1.25 (av)
0.85
2.7 (av)
1.61

0.35
0.43

0.65
0.60
1.46
1.0
1.51
1.55

0.95

0.54

3.2

4.8
7.3
0.92

1.8

3.3

1 ~ 13
1.15
3.50
2.13

1.1
1.4
3.58
1.8

0.92

1.46

2.4
4.5

2.4
0.9
6.5
9.6
3.3

14.2
2.8

3.5

'TWM denotes three-wave mixing, TRI time-resolved interferometry, and PDF power-dependent focus.
This work. This is the g»'» component unless otherwise noted.' References 15 and 17.
Corrected values from Ref. 2 as cited in Ref. 28.' Reference 23 ~

Reference 24.
g Reference 25.
"Reference 27.

lute values, our relative values of n2 are believed to be ac-
curate to better than 15%%uo based on the reproducibility
and scatter of our data.

Our measurements for all of the crystal samples are
presented in Table. IV. The material and polarization
geometry are listed in column 1. Columns 2 and 3 give
linear-index data that are useful for relating n2 to the hy-
perpolarizability, y, and for calculating n2 from empiri-
cal models. The measured values of n2 are given in
column 4. It has often been assumed that n2 increases
roughly with the linear index n. Figure 2 illustrates that
there is indeed a general trend of this type, but materials
with identical linear indices can have values of n 2

differing by up to a factor of 10. The assumptions on
which the BGO model is based suggest that an additional
parameter involved in the correlation between n and n2 is
the magnitude of the average excitation energy of excited
intermediate states. This is incorporated into the BGO
model in the form of the Abbe number, which is related
to the dispersion of the linear index. The n2 values calcu-
lated from the BGO formula [Eq. (6)] are given in column
5 of Table IV. A graphic comparison of the measured
and calculated values is illustrated in Fig. 3, which is a
logarithmic plot of our measurements versus the predict-
ed values from the BGQ formula. The calculations mere
done using the empirical constant K =68, which was
determined by a best fit to low-index glasses and fluoride
crystals. ' ' For perfect agreement, the plotted points

would fall on the solid line. With a few exceptions, the
agreement is good for halide and many oxide crystals.
Most of the oxide crystals, however, fall below the line,
and a different value of the constant, K =48, represented
by the dashed line, fits the entire set of data much better.
The largest errors are for oxides of the sixfold-
coordinated, high-valence transition-metal cations like
Ti +, Zr +, and W +, which fall below even the K =48
line by about 40%%uo. Overall, the BGO expression does
quite well for a very wide range of transparent materials
with nonlinear indices varying by over 3 orders of magni-
tude. A comparison of Figs. 2 and 3 confirms -that
dispersion, represented by the Abbe number, is a very
necessary parameter for relating n2 to the linear index.
Another possibly important ingredient in such a parame-
trization is the form of the local-field correction, which
appears to the fourth power in Eq. (5). This will be dis-
cussed in the next section.

A comparison of the measured and calculated values of
n2 for light polarized along different crystalline axes in
strongly anisotropic materials is also of interest. If the
refractive index and its dispersion are known for light po-
larized along different axes, one can formally calculate
the value of n2 for each polarization. For potassium
dihydrogen phosphate (KDP) and CaCO3 the BGO for-
mula predicts quite substantial differences between ordi-
nary (o) and extraordinary (e) polarizations, whereas
there are little or no differences in the measured values.
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TABLE IV. Nonlinear- and linear-refractive-index data for all crystals studied in this work. (o denotes ordinary, e extraordinary. )

Sample

Linear-index data
n (1.06 pm) Abbe number

Vd

Nonlinear-index data
Measured Calculated

n2 (10 ' esu) n2 (10 " esu)

LiF[100]
NaF [100]
KF[100]
NaC1[100]
KC1[100]
NaBr[100]
KBr[100]
MgF2 (o)
CaF, [100]
SrFz[100]
CdF2[100]
BaF [100]
LaF3 (0)
CeF3 (0)
AgCl (polycryst. )

MgO[100]
CaO [100]
SrO[110]
ZnO (e)
ZnO (0}
A1203 (o)
Alq03 (e)
Ga,O,
Y203
Er203
SiO (fused)
Si02 (quartz) (0)
Si02 (quartz) (e)
TiO&
Zr02
BeA1,04
MgA1204
CaMgSi206
YAl03 (y)
Y3AlgO] 2 (YAG)
Gd3Sc,A130 (2 (GSAG)
Gd3Sc2Ga30~~ (GSGG}
Gd3GaqO]2 (GGG)
Y3GaqO]2 (YGG)
La3Lu2Ga30]g (LLGG)
SrTi03
CaCO& (o)
CaCO& (e)

1.3866'
1.3213'
1.3583'
1.5312'
1.4792'
1.6228'
1.5435'
1.3735
1.4285'
1.4328
1.56'
1.4682'
1.60

—1.6'
2.020b

1.72'
1.83'
1.81'
1 96'
1.99'
1.75'
1.75'
1.96"
1.92'

1.4496'
1.5342'
1.5429'
2.48
2.12b

1 73
1.72
1.67g

1.933
1.822
1.891"
1.943'
1 945
1.912"
1.930'
2.31'
1.6425'
1.4795'

98.0
85.2
97.9
42.9
44. 1

31.7
33.7

104.9
95.1

93.9
61.0
81.8
57.0

21.2
53.4

11.6
12.3
71.8
75.2

37.5

67.8 .

71.6
70.1

9.8
35.8
72.5
60.6

51.2
52.4
48.0
37.3
37.6
40.0
36.4
13.6
47.6
76.8

0.26
0.34
0.75
1.59
2.01
3.26
2.93
0.25
0.43
0.50
3.95
0.67
1.4
1.3

23.3
1.61
5.20
5.07

23.0
25.0

1.23
1.30
5.80
5.33
4.53
0.85
1.12
1.16

55.8
5.8
1.46
1.50
1.73
3.37
2.7
4.0
5.5
5.8
5.2
5.8

26.7
1.11
0.83

0.40
0.38
0.36
2.28
1.84
4.74
3.41
0.34
0.49
0.50
1.37
0.70
1.78

23.0
2.8

57.6
45.0

1.9
1.8

7.2

0.83
1.06
1.13

189
12.6

1.74
2.3

4.88
3.6
5.6
8.0
8.0
5.8
8.2

83.0
2.7
0.79

The situation is reversed for LAP (L-argenine phosphate)
for which little anisotropy is predicted for n2, but a sub-
stantial amount is observed. These results show that the
BGO formula provides unreliable predictions of the an-
isotropy of n2.

IV. DISCUSSION

A. Hyperpolarizabilities of ions in crystals

In the preceding section we showed that the value of
n2 can be calculated with reasonable accuracy solely on

the basis of linear-refractive-index data using the BGO
formula. It would be of interest, however, to be able to
estimate n2 for crystals, or structural units of crystals, for
which neither linear- nor nonlinear-optical measurements
have been performed. This goal requires the develop-
ment of a fundamental understanding of the basic mecha-
nism from which the nonlinear index arises.

The problem of understanding the hyperpolarizability
involves many of the same issues that have confronted
researchers for decades concerning the basis for the linear
polarizability. We now discuss this point in detail. The
most widely used approach to the polarizability of ionic
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TABLE IV. (Continued).

Sample

Linear-index data
n (1.06 pm} Abbe number

&d

Nonlinear-index data
Measured Calculated

n2 (10 ' esu) n2 (10 " esu)

KH2PO4 (o)
KH2PO4 (e)
K(TiO}PO4 (x +y)
L.-argenine phosphate (y)
L.-argenine phosphate (x +z)
KTa03
CaWO4 (o)
CaWO4 (e}
ZnS (e)
ZnS (o}
CdS (e)
CdS (o)

' Reference 29.
Reference 30.' Reference 31.

"Reference 32.' Reference 33.
Reference 34.

1.4598'
1.4938'
1.74"
1 559"
1.51"
2.25'
1 ~ 89
1.91"
2.29'
2.29'
2 34c

2.33

70.9
56.6
23.5
47.5
50.0

30.0
28.0
15.5
15.5
3.8
4.4

~ Reference 35.
"Reference 36.
' Reference 37.
" Reference 38.
"Reference 39.

0.72
0.78
5.73
1.87
3.04

29.0
4.2
5.6

49.3
47.3

283.0
304.0

0.85
1.35

10.0
2.14
2.0

10.4
12.0
64.0
64.0

643.0
494.0

crystals is the simple ionic polarizability model, whereby
the polarizability of a unit cell of a medium, a„ is as-
surned to be determined by the sum of the contributions
from the positively and negatively charged constituents, '

a, =g(X; a;+N; u; ),

where N;+ and X; are the numbers of each ion per unit
cell. The work of Tessman, Kahn, and Shockley'
showed that a single table of ionic polarizabilities (e.g. ,
for F,Cl, Li+, Na+, etc.) could account for the polari-
zabilities of all the alkali halides. In this work, however,
serious problems with the model were recognized. For
instance, the a values were found to have only limited
transferability to the other halide crystals, such as MgC12,

and, for the case of the oxygen ion, it was concluded that
a unique value of n simply could not be established. A
particularly insightful result in this classic article in-
volved a brief demonstration that the polarizability of
0 can be shown to increase monotonically with the
volume per oxygen ion. It should be noted that this can
also be interpreted as a correlation with the radius of the
coordinating cation, although the cations with d' outer
shells or low-lying empty d shells given anomalously high
oxygen polarizabilities.

Alternative models of the linear refractive index have
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FIG. 2. Measured values of the nonlinear refractive indices
of crystals plotted on a logarithmic scale as a function of their
linear refractive indices.

FIG. 3. Measured nonlinear refractive indices of optical crys-
tals vs the values of nz calculated from the BCrG formula [Eq.
(6)], using K =68 (solid line) and K =48 (dashed line ).
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taken numerous paths since this early work. One ap-
proach is that of Pantelides, and others, in which the
linear index has been attributed to interionic transitions,
i.e., the transfer of an electron from F to a Na+ ion in
the NaF crystal. ' This approach has considerable merit
since the lowest-energy interband transitions are known
to be of this nature, and therefore these transitions must
be a major source of the polarizability. Pantelides has
shown that the linear index can be calculated from

n —1=Ad2 3

where d is the interionic spacing, and A is dependent
only on the cation and the crystal structure. While this
model might, in principle, be useful, the limitation lies in
the fact that materials with a common anion, such as
NaF and CaF2, remain unrelated to each other since they
have different values of A. Another approach involves
bond-charge calculations. ' We do not believe that
these complex calculations are required to gain a qualita-
tive understanding of n2 for the materials of interest here.

The prevailing concept of ionic crystals is that of
predominantly independent ionic constituents which do
not form covalent bonds. Therefore, a model which re-
tains the identity of the ionic constituents is preferable.
Within this framework, it has become generally accepted
by numerous authors that it is appropriate to allow the
polarizability of the anion to vary depending on the par-
ticular crystal at hand, while taking the value for the cat-
ion to be a constant. This concept has been justified by
quantum-mechanical calculations" as well as by the
use of simple semiempirical calculations. As we will
show in the next section, this picture is quite useful for
the description of the hyperpolarizability, since the anion
contribution tends to dominate the overall value for near-
ly all ionic materials, obviating the need to consider the

cation hyperpolarizability at all. In addition, although
the anion hyperpolarizability shows an even greater sensi-
tivity than the linear polarizability to the nearest neigh-
bors (NN's), a simple dependence on the NN separation,
independent of the identity of the cation, can be obtained,
provided that the cation does not have a filled or unfilled
d shell that contributes to the optical polarizability.

It is important to remark that it is not our purpose to
judge the relative merit of any of the models discussed
above. We prefer the description of a variable anion
(hyper)polarizability, with a fixed or negligible cation
contribution, because it provides the simplest physical in-
terpretation for our results at this stage.

B. Halides

Consider first the case of the halide anions. From our
n2 data on several alkali halides it is possible to obtain
values of the anionic hyperpolarizability from Eq. (5),
where we assume that y+ &(y and use the value of n2
averaged over the [100] and [110]polarizations. We use
the Lorentz local field for f. The resulting values of y
are listed in the last column of Table V. Recently,
Johnson, Subbaswammy, and Senatore" performed ex-
tensive calculations of a and y for the anions and cations
in the alkali halides. Their results for the in-crystal cat-
ion (+) and anion ( —) contributions are also shown in
Table V. These values were obtained from a self-
consistent local-density-approximation (LDA) calculation
of the energy of the ions in the applied electric field, and
the interactions with the neighboring ions were modeled
by pseudopotentials. The a, =a++a values agree well
with experiment. The hyperpolarizabilities y =y+ +y
also agree reasonably well with our experimental data,

TABLE V. Comparison of the measured and theoretical hyperpolarizabilities (Hyperpol. ) of the alkali halides.

Sample

Polarizability (A )

CX lX

Hyperpol. (10 esu)
y+ y

Comparison with
experiment at 1.06 pm

a
Vtheory gexpt

(adjusted)

LiF
NaF
KF
RbF

LiC1
NaC1
KC1
Rbcl

LiBr
NaBr
KBr
RbBr

LiI
NaI
KI
RbI

0.032
0.158
0.839
1.39

0.032
0.158
0.838
1.39

0.032
0.158
0.838
1.39

0.032
0.159
0.838
1.38

0.848
1.13
1.28
1.38

2.81
3.26
3.50
3.68

3.86
4.40
4.66
4.89

5.67
6.37
6.68
6.95

0.17
3.61

62.4
174.0

0.17
3.55

62.4
174.0

0.17
3.55

61.8
172.0

0.17
3.55

61.2
170.0

240.0
518.0
780.0

1014.0

1210.0
2030.0
2750.0
3444.0

2030.0
2750.0
4190.0
5220.0

3780.0
5790.0
7260.0
8820.0

257.0
563.0
906.0

2380.0
3280.0

4000.0
5240.0

141.0
320.0
889.0

1630.0
3050.0

3370.0
4930.0

'The theoretical values were obtained from Ref. 12 and are extrapolated to A, = 1.06 pm using their formula.
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considering the uncertainties in absolute calibration of
the experimental results. The relative values differ from
the experimental ratios quite substantially, particularly
for the Auorides. For example, the measured value of y
for F varies by a factor of 6 as the cation size increases
from Li to K, whereas a factor of 3.5 is obtained from the
calculations. In view of the many experimental and
theoretical di%culties involved, however, we consider the
similar magnitudes of the absolute values in Table V to be
very encouraging. We note that the frequency depen-
dence for the theoretical values must be accounted for
since they are calculated for co=0. This correction has
been applied, as discussed in Ref. 12, although the
changes were found to be small.

The calculations of Johnson et a/. provide important
insight into the origin and nature of a and y. From
Table V we see that a+ is nearly the same for a given cat-
ion, regardless of the halide ion involved. Similarly, y+
also remains nearly constant. This means that the cation
wave function is not strongly affected by the particular
crystalline environment. In fact, the in-crystal values are
nearly the same as the free-space values. On the other
hand, the magnitudes of both a and y are observed to
change substantially depending on the environment. For

- instance, for the LiF, NaF, KF, RbF series, the total rela-
tive change of a is about 50%. For this same series, y
changes by a factor of 4. Although both a and y
change depending on the crystal, the variation for y is a
good deal larger.

Johnson et al. have interpreted these results by sug-
gesting that the anionic wave functions are being
compressed by the repulsive potential of the surrounding
cations. This repulsive potential decreases with increas-
ing cation radius. As a result, the largest values of y (or
a ) are observed for the crystal with the largest lattice
constant. Another major difference between the trends
exhibited by a and y is that the cationic contribution to
the hyperpolarizability is negligible, while the values of
a+ and a are similar. As we shall see, the fact that y is
determined almost entirely by y greatly simplifies the
interpretation of our data.

The basic differences between a and y can be rational-
ized by use of a simple expression, in which it is assumed
that all of the intermediate states are at the same energy
Eo, and the light wave-frequency co «E, /h,

4
y= "', (&.")/2 —&")') .

Eo
(14)

The important difference in these expressions is that a
depends on (r ), while y depends on (r") as well. This
explains why y is much more sensitive than a to the
identity of the nearest-neighbor cations, which perturb
the anion wave functions at large values of r.

We can gain further insight into the data of Table V by

2ea= (r ),
Eo

where (r ) is the mean square distance of the electron
from the nucleus. The analogous expression for' the hy-
perpolarizability is

(16)

If it is now assumed that Eo and (r ) /( r ) remain con-
stant for a given halide series, Eq. (15) can be used to ob-
tain the result

10
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FIG. 4. Calculated anion polarizabilities (upper frame) and
hyperpolarizabilities (lower frame} plotted as a function of R
where R is the nearest-neighbor distance. The calculated values
are from Ref. 12.

considering the model of Wilson and Curtis, in which
the polarizability is given by

a =ao exp( —C/R ),
where R is the NN distance. This formula is obtained
from a semiclassical argument based on the perturbation
of the anion polarizability by the repulsive potential of
the cations. In this model, ao is interpreted as the free-
ion polarizability of the anion, and C is a measure of the
sensitivity of the halide wave function to the NN cations.
A comparison of the behavior predicted by this model
with the values of a for alkali halides calculated by
Johnson et al. ' is shown in Fig. 4(a), where the calculat-
ed a from Table V are plotted as lna versus R . The
fitted values of ao and C are given in Table VI. The value
of C varies with increasing anion size from 3.87 for
Auorides to 5.41 for iodides. Similarly, the magnitude of
ao is observed to increase for the heavier halides.

In order to develop an analogous expression for the hy-
perpolarizability, Eqs. (13) and (14) are combined to give
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TABLE VI. Fitted parameters to the Wilson-Curtis empirical model [see Eqs. {15)and {17)].

Sample

Extrapolated free-ion
polarizability

0 3~, (A )

Theo r.'
Slope C
Theor. '

Extrapolated free-ion
hype rpol.

yo (10 ' esu)
Theor. ' Expt. '

Slope D
Theo r.' Expt.

F
Cl
Br
I
Q2

2.24
5.50
7.24

10.5

3.87
4.36
4;66
5.41

4040
16 100
24 400
47 500

4950

34 270

11.3
16.9
18.6
22.6

14.7

18.3

'See Fig. 4 and Ref. 12.
b This work.

y =yo exp( D/R )—, (17)

where it is predicted that D =2C. We have plotted the
theoretical values of y from Table V in the form of
lny versus R in Fig. 4(b); the resulting values of D
and yo are listed in Table VI in the column identified as
"Theor. " The average value of D/C is 3.7. If the
Wilson-Curtis model holds exactly, and the prefactor of
Eq. (16) is constant within each halide series, this ratio
would be D/C =2. The considerable discrepancy from
this value indicates that this model is too simple to ac-
count for the quantitative relationship between a and

y . Figure 4 shows that the Wilson-Curtis model for
anion polarizabilities, and its extension to hyperpolariza-
bilities, give a convenient parametrization of the calcula-
tions of Johnson et al. ' for alkali halide crystals.

It is also interesting to compare fluorine and oxygen
hyperpolarizabilities obtained from our measurements of
n2 for various crystals with the Wilson-Curtis model. By
use of the assumption that the anionic hyperpolarizability
dominates the total value, the experimental values of y
for fluorine have been calculated from the n2 data using
Eq. (5). These are given in Table VII in units of 10
esu per fluoride ion. The NN distances are also listed.
These experimental values of in@ are plotted versus

R in Fig. 5. With the exception of CdF2, all of the
data points lie on a line, the slope and intercept of which
are given in Table VI. The interesting result here is that
the values of D and yo are nearly the same as those deter-
mined from the alkali fluoride calculations of Johnson
et al.

&
the experimental and theoretical values at 11.3 and

14.7 A for D, and 4040 and 4950 (10 esu) for yo. It is
important to note that the coordination of the fluorine
ions differs considerably for the crystals from which these
hyperpolarizabilities were obtained. For example, each
F is coordinated by six alkali cations in the alkali
fluorides, and by a tetrahedron of cations in the alkaline-
earth fluorides. It appears that the model in which the
anionic wave functions are compressed by the NN cat-
ions, thereby reducing the hyperpolarizability, gives a
good account of both a and y . In fact, the parameters
in the model are somewhat independent of the cation and
the crystal structure.

The anisotropy of n2 also provides evidence of the
effects of the neighboring cations on the anion wave func-
tions. We have used Eq. (9) to obtain the ratio
r =y&&22/g»» for numerous cubic crystals, and the re-(3) (3)

suits are given in Table VIII. The condition of isotropy
(a value of n 2 independent of polarization direction) is
that r =

—,'. For r )—,', the value of n2 for light polarized

TABLE VII. Experimental neutral-formula-unit hyperpolari-
zabilities (Hyperpol. ) for Auorides.

Neutral formula unit
M F

Anion-cation' Hyperpol.
separation (A) y(M F) (10 esu)

LiF
NaF
KF
Mg & /2F
Ca] /2F
Sr, /2F

Ba 1 /2F
Lal/3F
Ce 1 /3F

2.01
2.32
2.67
1 99
2.37
2.51
2.33
2.69
2.50'
2.48

141
320
889
128
282
412

1520
626
487
440

~~
~~

103

0.1 0.2
~iR' (A-')

g1)'2F
I

0.3

' Reference 50.
Reference 51.

' Reference 52.
Extrapolated from LaF3 by correcting for density.

FICx. 5. Measured hyperpolarizability per fluorine ion plotted
as a function of R for some binary Auorides with various
crystal structures. The square point was not included in the fit
to Eq. (17).
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along [110] is greater than along [100], and vice versa.
From Table VIII we see that r =0.46 for LiF, 0.45 for
NaF, and 0.29 for KF. This behavior is in agreement
with the idea of the compression of the halide wave func-
tion by the cations, since this compression would be
greatest along [100], the direction of the fluorine-cation
axis. It seems reasonable that the values of r should de-
crease for larger cations, since they have less overall
efFect on the Auorines due to the larger NN distance. A
similar trend is found for NaC1 and KC1. The larger er-
rors associated with the bromides make the comparison
more dificult. We briefly note that the oxides having the
rocksalt structure, MgO and CaO, behave in the same
manner as the halides.

The anisotropies of the fluorite-structure crystals
deserve a separate discussion. Since each F is surround-
ed by a tetrahedron of divalent metal ions, the compres-
sion of the F wave function is very asymmetric, and it is
difBcult to determine the direction of maximum hyperpo-
larizability in any simple way. In Table VIII, r =0.56 for
CaF2, 0.60 for SrF2, and 0.66 for BaF2. The value for
CdF2, 0.31, is completely out of line, since the lattice con-
stant of CdF2 is nearly the same as that of CaF2. Recal-
ling from Fig. 5 that y for CdF2 is far above the line
that fits the other Auorides, it is clear that the hyperpo-
larizability of CdF2 has a fundamentally di6'erent origin.
Ions like Cd with high-lying, filled outer d shells will be
discussed separately.

C. Oxides and sul6des

In Table IX are listed some oxygen hyperpolarizabili-
ties per M-0 formula unit. Most of these are calculated
directly from the measured n 2 for a number of simple ox-
ide crystals using Eq. (5), assuming that the cation hyper-
polarizabilities are negligible. The values for BeO and
Sc2/30 were obtained from BeA1204 and Gd3SczA130, 2

TABLE IX. Experimental neutral-formula-unit hyperpolari-
zabilities (Hyperpol. ) for oxides and sulfides.

Neutral formula unit
M, O, M S

BeO
MgO
Cao
ZnO
SrO
A12 y30
Sc2y30
Ga2y30
Y2y30
Er2/3O
fused Si1&20
Ti1g20
Zrl 120
ZnS
CdS

Anion-cation'
0

separation (A)

1.65
2.11
2.41
1.98
2.58
1.91
2.11
2.00
2.27
2.26'
1.61
1.96
2.26
2.34
2.53

Hyperpol.
y(M„O & M.S

(10 3 esu)

436.0"
485.0

1500.0
4850.0
2290.0

248.0
920.0
887.0
945.0

1040.0
510.0

2520.0
650.0

8420.0
57 000.0

' Reference 51.
Obtained from BeA1204 and A12O3 assuming additivity.

'Obtained from Y203 by correcting for density.
We have assumed Er2&30, Gd2&30, La2&30, and Lu2&3O have

the same hyperpolarizability.

using the additivity assumptions to be discussed in sub-
section D. The cation-0 separations are also given.
The most significant property of these results is that the
oxygen hyperpolarizability varies by about an order of
magnitude from A1203 to Ti02. A plot of 1ny versus
R is shown in Fig. 6. In contrast to the fluoride data,
substantial scatter is observed, although the M-0 pairs
(rounded data points) that are ionic in character and for
which the cation does not have filled or unfilled d-

TABLE VIII. Anisotropy of g "' of cubic crystals.

Sample

LiF
NaF
KF
NaCl
KCl
NaBr
KBr

CaF2
SrF2
CdF2
BaF2

MgO
Cao

n '
2

(10 " esu)

0.26
0.34
0.75
1.59
2.01
3.26
3.07

0.43
0.50
3.95
0.67

1.6
5.07

b, c
71122iX1111

0.460+0.017
0.447+0.012
0.293+0.024
0.373+0.013
0.303+0.013
0.424+0.064
0.449+0. 127

0.556+0.020
0.598+0.025
0.307+0.010
0.658+0.008

0.482+0.025
0.262+0.028

71122iX1111

0.45+0.06

043
0 30"

037

0 50 0 44+0. 12'
0.68+0.09'
0.32+0.05'
0.66+0.01'

0.546'

' Polarization along [100],propagate down [001]axis.
b Assume X[122 X1221'

(3) — (3)

' Results from this work.
"Reference 2.
' Reference 23.
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bound to the central metal ion that, in actuality, the O
ion cannot be approximated as an independent entity at
all.

Lastly, we mention the two sulfides for which we have
data, ZnS and CdS. The anion hyperpolarizabilities of
ZnO and ZnS are 48SO and 8420, respectively, in 10
esu (see Table IX). Since these materials are both co-
valently bound and have identical lattice structure, this
comparison should be meaningful, and gives an indica-
tion that sulfides are, in general, expected to have some-
what larger nonlinear indices than oxides.

D. Additivity of hyperpolarizabilities

FIG. 6. Measured hyperpolarizability per oxygen ion plotted
as a function of R for some binary oxides with various crystal
structures. The square points were not included in the fit to Eq.
(17).

electron states in their outer shells can be fitted well by
the line shown in the figure. From the slope of this line,
the value of D =18.29 is obtained, which is quite similar
to the value of 14.7 determined from the Auorides in Fig.
5 and Table VI. A major difference between F and O
is the value of yo which is (in 10 esu) 34270 for O
and 4950 for F . This reAects the much higher average
hyperpolarizability of oxygen.

We brieAy consider the data points of Fig. 6 that lie far
from the line. It is likely that the Wilson-Curtis model
requires that the metal-oxygen pairs that are fitted by the
same values of D and yo have similar degrees of ionicity,
similar types of low-lying excited states that can be occu-
pied by the 0 electrons in response to the optical field,
and no valence-band states derived primarily from the oc-
cupied shells of the cation. Ti +, Sc, and other
transition-metal ions with empty or sparsely occupied d-
shells provide conduction-band states derived from both
their outer d and s shells. They therefore differ in a fun-
damental way from cations with stable, rare-gas
configurations, such as the alkali metals, alkaline-earth
metals, rare-earth metals, and some other common cat-
ions (Al + and B +). The very large hyperpolarizabilities
of the Tliy20 and Sc2/30 pairs can therefore be attributed
to the large number of low-lying, empty 3d states of these
cations. Cations with filled outer d shells (Cu+, Ag
Au+, Zn, Cd +, Hg +, Ga +, etc.) may, on the other
hand, greatly augment the effective number of valence
electrons. In CdF2, for example, the 4d ' states of
Cd + lie within a few eV of the 2p states of the fluoride
ion. This accounts for the anomalously large effective
hyperpolarizability for the Cd, &2F pair in Fig. 5. It is
likely that the number of anomalously large fiuorine hy-
perpolarizabilities in Fig. 5 would be much larger if more
transition-metal Auorides had been measured. Finally,
we briefly mention some of the oxide crystals which ap-
pear toward the end of Table IV. These materials con-
tain oxide ions in "complexes, " such as CO3, PO4
and WO4 . The oxygens are so strongly covalently

TABLE X. Nonlinear index values calculated using additivi-
ty of hyperpolarizabilities (listed in Table VII).

Sample

BeA1~04'
MgA1204
CaMgSiz06
YAlO3
Y3Als 01&
Gd3Sc,A1~012'
Gd3SC2Ga3Ol2
Gd3Ga5OI2
Y3Ga,0,2

La3Lu2Ga3Ol2
SrTi03

n

(1.06 ~m)

1.73
1.72
1.67
1.93
1.82
1.89
1.94
1.94
1.91
1.93
2.31

n 2 (10 ' esu)
measured

1.46
1.50
1.73
3.37
2.7
4.0
5.5
5.8
5.2
5.8

26.7

n2 (10 ' esu)
calculated

from simple
oxides

1.3
2.2
4.8
3.0

5.7
5.2
5 ' 5
5.4

30.0
'

y for BeO and Sc2/30 extrapolated from these materials.

It is interesting to examine whether the hyperpolariza-
bilities given in Table IX can be employed to calculate
the nonlinear indices of other compounds of these con-
stituents. A precedent for this with regard to linear-
optical properties is the work of Gladstone and Dale,
who studied mixtures of liquids. Subsequently, Mandari-
no used the refractive indices of simple compounds
to calculate the indices for more complex compounds
that contained the same elements. If we regard the re-
sults in Tables V, VII, and IX as cation-anion —pair hy-
perpolarizabilities, y;, which are simply additive, then
the nonlinear refractive index of any compound contain-
ing these constituents can be calculated from Eq. (5) by
summing over these pairwise hyperpolarizabilities, where
X; is the number of each per unit volume, and f is as-
sumed to be the Lorentz local-field factor. The results of
such a scheme are shown in Table X for a number of
complex oxide crystals. The agreement is very good; the
average error is about 13%%uo. This result is more
significant than it may seem, because the cations in these
complex oxides have, in several cases, different oxygen
coordinations than in the simple oxide, and each oxygen
is coordinated by up to three different cations. For exam-
ple, in the garnet structure Al or Ga can be both octahe-
drally and tetrahedrally coordinated, and each oxygen is
coordinated by one rare-earth ion and two transition-
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metal ions. Even under those conditions, the limited re-
sults that we have so far obtained suggest that the addi-
tivity of hyperpolarizabilities of cation-oxygen pairs is a
reasonably good approximation.

E. Choice of local-field correction

The presence of the fourth power of the local-field
correction f in Eq. (5) suggests that the particular choice
for f is very important. The Lorentz local field is
rigorously applicable only to the case of highly localized
electrons in a cubic lattice. These conditions are not
satisfied in many of our samples. We have investigated
this point by ignoring the local-field correction in Eq. (5)
and by rederiving the BCxO formula assuming that f = I.
The modified BGO formula gives a fit to the measure-
ments that is not very difFerent from that shown in Fig. 4,
in which the calculated values were obtained using the
original BGO formula in Eq. (6). If the local-field correc-
tion is ignored in determining the oxygen hyperpolariza-
bilities in Table IX from the data on simple oxide crys-
tals, the values of the hyperpolarizabi. lities are, of course,
difFerent. If, however, these new hyperpolarizabilities are
used to calculate the values of n2 in Table X, again using
f = I, there is still reasonable agreement with the mea-
surements; the average error increases to 17%, compared
with 13% using the Lorentz local field. We conclude that
there is really very little that can be learned from the n2
measurements about the best choice of local-field correc-
tion.

V. CONCLUSIONS

We have shown that relative values of n2 can be mea-
sured with an accuracy of about 5% using nearly degen-
erate three-wave mixing. The BGO empirical formula
was found to predict- n2 to within an average accuracy of
about 30% for a variety of types of crystals, with n2
values ranging over 3 orders of magnitude. A new value,
K =48, of the multiplicative constant in that formula was
found to be optimum for the full set of crystals that were
investigated. The BGO formula tends to overestimate
the nonlinear index of some transition-metal oxides with

high linear refractive indices and it yields poor predic-
tions of the anisotropy of n2 in uniaxial and biaxial crys-
tals.

The recent calculations of Johnson et al. ' for alkali
halide crystals give generally good agreement with the
halide ion hyperpolarizabilities obtained from our mea-
surements, although the measured set of alkali halide
crystals was not large enough to provide a thorough com-
parison. For Auorides and oxides of cations with stable
rare-gas cores, our results show a good correlation be-
tween the effective anion hyperpolarizabilities, y, and the
nearest-neighbor distance, independent of crystal struc-
ture and coordination number of these anions. In gen-
eral, cations with filled outer d shells and low-lying unoc-
cupied d states give enhanced values of y . The effective
hyperpolarizabilities of the oxide and Auoride ions were
found to vary by about a factor of 10 for the compounds
that we measured.

The values of y for the oxygen ion obtained from
binary oxides were treated as anion-cation —pair hyperpo-
larizabilities, from which n2 values were calculated for
more complex oxides containing two or more different
cations. These calculated values are in good agreement
with the measured values for a set of complex oxides with
various crystal structures and coordination numbers for
the oxygen ions. This formalism provides an alternative
to the BGO formula for predicting n2 for materials, par-
ticularly where there is no linear-refractive-index data
available.
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