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An ab initio pseudo-atomic-orbital method [Phys. Rev. B 36, 6520 (1987)] is used to predict rela-
tive point-defect abundances and the factors that influence them in a number of III-V and II-VI
compound semiconductors. A study is presented of the trends in the native —point-defect concentra-
tions including vacancies, interstitials, and substitutional defects as a function of stoichiometry,
temperature, chemical potential, host material, and the presence of extrinsic impurities. The con-
centrations are predicted from equilibrium statistical mechanics by making use of the defect-
formation energies.

I. INTRODUCTION

Of fundamental importance to the electronic properties
of a material is the presence of defects. It has only been
recently, with improvement in computational resources,
that reliable quantitative studies of the energetics of de-
fect systems have become feasible. Most of these investi-
gations have focused on the elemental semiconductor Si,
which is, by far, the most commonly used semiconductor
for devices. Relatively few extensive studies have been
carried out on the more complex systems involving de-
fects in compound semiconductors. With the ever in-
creasing technological interest in compound semiconduc-
tors, a thorough understanding of their defects is impor-
tant. Of particular interest is the nature of point defects,
which consist of native vacancies, antisites and intersti-
tials, and extrinsic substitutional and interstitial impuri-
ties.

The relative abundance of point defects may in princi-
ple be predicted from equilibrium statistical mechanics
once the defect reaction energies are known. The defect
concentrations will depend on factors such as stoichiome-
try, temperature, chemical potential, and the presence of
extrinsic impurities. In this paper we study the defect re-
actions and the resulting defect concentrations for a
variety of III-V and II-VI compound semiconductors.
We consider both intrinsic and extrinsic defects.
Specifically, we will investigate unrelaxed tetrahedrally
bonded native (intrinsic) point defects and a number of
extrinsic impurities in the semiconductor compounds
GaAs, GaP, ZnSe, and ZnTe. The intrinsic defects we
consider are the anion and cation antisites (anion occupy-
ing a cation site and vice versa), Ac and C„, the anion-
and cation-site vacancies, V~ and Vc, and the anion and
cation tetrahedral-site interstitial defects A (T~ ), A (T, ),
C(T„), and C(TC) at the two nonequivalent tetrahedral
sites T„(surrounded by anions) and Tc (surrounded by
cations). The extrinsic impurity defects (denoted X) con-

sidered are the anion- and cation-site substitutional de-
fects L~ and Xc, and the two interstitial-site defects
X(T~ ) and X(TC). No other (lower symmetry) intersti-
tial sites, such as the hexagonal site, were considered for
either native or extrinsic defects.

Since defect concentrations depend exponentially on
the formation energies and the formation energies vary
on a scale of roughly 10 eV, our goal is to predict trends
and to identify the dominant or near-dominant defects
only. We are not attempting to predict absolute values of
defect concentrations, but rather relative concentrations
under the assumption of equilibrium. Of course, if equi-
librium is not attained in the crystal, our calculations still
should give an identification of which defects are most
likely and which are highly unlikely.

We imagine a lattice of XL lattice sites (there are two
atoms per lattice site in the perfect zinc-blende structure)
containing N~ anions, Nc cations, and Nz "X" impuri-
ties, and define a concentration [Z]=Xz IXI, where Nz
is the number of defects of type Z in the crystal. The cal-
culation of the defect formation energies are performed
using self-consistent pseudoatomic-orbital (PAO) total
energies. A letter version of a few of the results presented
here have previously been published. ' In the present pa-
per the details of the calculations are given and several
new results are presented.

+Cc ~c+C
~~+ ~c

~~+ ~c ~c+ ~~

(2)

II. METHOD

To obtain the isolated —point-defect concentrations we
first construct a complete set of independent reactions for
the defects. For the eight intrinsic defects, seven (and
only seven) independent defect reactions within the crys-
tal can be constructed. A convenient set is
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A„~~V„+A (T„),
A„~~V„+A (Tc),
Cc~~Vc+ A (T

Cc Vc+ W ( Tc ) .

(4)

We expect each of these reactions to be endothermic in
going from left to right. The first reaction [Eq. (1)]
represents the formation (or removal) of both a cation-
and an anion-antisite defect, while in the second reaction
[Eq. (2)] the crystal is expanded (or reduced) by one unit
cell forming (or destroying) two vacancies, and so on.
Three more reactions can be constructed for the single-X
impurity at its four sites,

REACTION

AA + CC c = & AC + CA

O c ~ ~ ~ & VA +VC

AA + VC & ~ ~ ~ & AC + VA

AA c~~~& VA+ A(TA)

AA c ~ ~ ~ & VA + A(TC)

x ~ ~ ~ & VC + C(TA)

c ~ ~ & VC + C(TC)

EQUATION

[AC][CA] ~ e ~{cy( C)+ey(CA)~

[VA][VC] = e ~{~y( A)+~y(VC)~

[VA][AC] fVC)e { y C) + gy(VA)-cy(VC) ~

[VA][A(TA)] z-p{cy(VA)+ eyA((TA))/

[V ][A(TC)] e ~{~y(VA)+ cy(A(TC)) )

[VC][C(TA)]

[VC)[( (TC)] ~ c ~{cy(VC)+ey(C(TC)))

EXTRINSIC DEFEX TSt XA, XC, X(TA), X(TC)

REACTION EQUATION

XA &~~~& X(TA) + VA

XA c~~~& X(TC) + VA

c & X(TA) + VC

[X(TA)IVA] = [XA]e ] {~y(X( A))+~y(VA) ~y(XA)~

[X(T )IV ] ~ [X )~ P {cy(X(TC)) + cy(VA) cy(XA) )

[X(TA)IVC] [XCg t {cy(X( A))+ ey(VC) ey( C)]

NATIVE DIKIK'ISt AC, CA VA VC, A(TA), A(TC), C( A) C( C)

X„~~V„+X( T„),
X„~~V„+X ( Tc ),
Xc~ Vc +X(T

(8)

(10)

CONSTRAINTS: S, SX

S i (NA- NC)

= 2([AC]-[CA]) + ([VC]-[VA]) + ([XC]-[XA]) + ([A(TA)]+[A(TC)]-[C(TA)]-[C(TC)])

We see that these reactions serve to couple the extrinsic
defects with the intrinsic defects.

So far we have constructed 7+3=10 equations, but
there are 12 unknown defect concentrations to be deter-
mined. The final two relations come from the
stoichiometry S, defined as S =(N„N, )/NL-
= [ A ]—[C] and the total impurity concentration
Sz =Nx/NL =[X]. These two quantities are parameters,
similar in the theory to temperature, and are determined
in practice by the crystal grower. Be relating [A], [C],
and [X] to individual defect concentrations, we can write
Sas

S=2([~c]—[Cg l)+ ([Vc]—[ Vg ])+([Xc1
—[X~ ])

+ I [A (T„)]+[3(Tc)]—[C(Tg )]—[C(Tc)]) .

SX ~ NX/NL

= [XA] + [XC] + [X(TA)] + [X(TC)]

FIG. 1. Reaction equations and stoichiometric constraints
for native and extrinsic point defects in a compound semicon-
ductor. The eight native defects considered are the anion- and
cation-antisite defects Ac and C~, the anion- and cation-site va-
cancies V„and V&, and the anion- and cation-interstitial de-
fects at the two nonequivalent tetrahedral interstitial sites T&
(surrounded by anions) and T& (surrounded by cations) A ( T& ),
A ( Tc ), C ( T~ ), and C ( T&). The extrinsic (for impurity X) de-
fects considered are the anion- and cation-site substitutional de-
fects X& and X& and the two tetrahedral site interstitial impuri-
ties X(T& ) and X(T&).

The quantity S is defined so that S=O corresponds to
perfect stoichiometry, while S)0 represents excess
anions, and S(0 represents excess cations. The total-
impurity concentration Sz is simply the sum of individu-
al impurity concentrations,

S» =[X„]+[Xc]+[X( T„)]+[X( Tc ) ] . (12)

The ten reactions [Eqs. (1)—(10)) and corresponding
mass-action equations plus the two stoichiornetric con-
straints [Eqs. (11) and (12)] determine a unique solution
for the 12 defect concentrations through use of the rnass-
action equations. The ten mass-action equations are
assembled opposite their corresponding reactions along
with the two stoichiometric constraint equations for S
and Sz in Fig. 1. For these defect systems with the two
constraints, it may not be immediately apparent that the
mass-action equations are appropriate. To demonstrate
that the mass-action equations are in fact the correct ex-
pressions for these systems and to determine what, if any,
assumptions are inherent in them, we include a formal
derivation of them in the Appendix.

A. Total-energy calculations

The reaction energies are computed within the local-
density approximation (LDA) using the self-consistent
pseudopotential method and a basis of pseudoatomic or-
bitals (PAO's). The pseudopotentials are of the Ham-
man, Schluter, and Chiang type and were fit to the
Bachelet et al. form. %'e use the Ceperly-Alder
exchange-correlation potential as parametrized by Perdue
and Zunger. ' A repeating supercell of defects is used so
that Bloch's theorem holds. The Bloch basis states of
wave vector k and orbital p (p index includes both basis
index for the basis atom at r and the s orbital index) are
expanded as

@„(k,r)=(1/&N ) pe'"" '@ (r —I —r),
E

where I are the Bravais-lattice sites. The expression for
the Bloch states is identical to that used in the empirical
tight-binding method, but here the orbitals @„(r)are
explicitly constructed from the atomic pseudopotentials
for the isolated atoms using same LDA as the solid. The
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atomic s and p orbitals used are those of the ground-state
configuration of the atom. To avoid the need for evaluat-
ing multicenter integrals we expand the PAO's into their
Fourier components and work in the formalism of plane
waves. "'

The PAO approach takes advantage of the desirable
features of both the momentum-space formalism and the
local orbital approaches. The computation of the Hamil-
tonian matrix elements is performed efficiently and
straightforwardly in the momentum-space formalism,
while the tight-binding framework is not only more
phyiscally appealing and interpretable, but also drastical-
ly reduces the dimension of the Hamiltonian matrix. The
PAO method is described in detail and tested extensively
in a previous publication. ' The psdueopotentials and
PAO's used here are the same as those used in Ref. 12.

To perform the defect calculations, we use a basis of s
and p PAO*s on each of the basis atoms in a body-
centered cubic (bcc) supercell consisting of 16 unit cells of
the perfect crystal. A single special k point was used to
perform the sum over an irreducible sector of the first
Brillouin zone for the supercell and a cutoff of 80, 90, 80,
and 90 eV was used for the plane-wave expansion of the
PAO's for GaAs, GaP, ZnSe, and ZnTe, respectively.
The lattice constants used for these materials were the ex-
perimental values of 5.65, 5.45, 5.66, and 6.09 A, respec-
tively. Lattice relaxation was not included and is expect-
ed to make some quantitative changes in these results but
is not likely to upset the qualitative behavior since such
effects are typically small compared to differences in for-
mation energies. Because we use an sp PAO basis and a
small cutoff, the computed bandgaps are in fortuitously
close agreement with experiment even though the calcu-
lations are within the LDA. Our computed bandgaps are
1.2, 2.2, 2.7, and 2.7 eV compared with the experimental
values of 1.4, 2.4, 2.8, and 2.4 eV, for GaAs, GaP, ZnSe,
and ZnTe, respectively. The full consequences of the use
of PAO's and the LDA are difficult to assess in general.
For particular situations they may become important, but
here we will focus on trends which are relatively insensi-
tive to these errors.

To test the validity of the method in reference to de-
fects, we have used this same PAO basis and cutoff ener-
gy to make predictions of the deep levels and formation
energies of the vacancy and T2 symmetric self-interstitial
in Si. These are prototype defect systems for which a
number of calculations already exist. ' ' Our calcula-
tions find that the Si vacancy forms a deep level about
midgap (Ev +0.66 eV), and the interstitial forms a
conduction-band resonance in agreement with previous
calculations. Our predicted formation energies for the
neutral vacancy and self-interstitial in Si were found to be
5.2 and 7.2 eV, respectively, in good agreement with
those of Car et al. ' who also found the interstitial to be a
higher energy defect. In reference to compound semicon-
ductors, which we are more concerned about here, we
have also compared our results for the native-defect con-
centrations in GaAs to those of the Green's function cal-
culations of Baraff and Schluter. ' The predicted
dominant-defect orderings and their trends are found to
be identical for these two independent calculations.

B. Extracting formation energies from total energy
calculations

E„(N+1,N —1; Ac)=g(N+1, N —1; Ac ")

+n (E~+p), (14)

where Ez is the valence-band edge and p is the chemical
potential (measured relative to Ez). The system will
switch from the nth to the (n +1)th charge state in the
limit where the chemical potential p~p0 satisfies

g(N+1, N —1; Ac ")+n (E~+p0)

=g'(N+1, N —1; Ac '" ")+(n +1)(p0+E~) .

From this expression we see that the n /(n + 1)
transition-state energy cTs'"+" may be defined as

An important consideration in predicting formation
energies is the charge state of the defect. " ' A defect
can act as a shallow donor or acceptor or form a deep
level in the bandgap. The occupation of these levels de-
pends on the position of the chemical potential in the
gap. The energy associated with the exchange of the
electrons or holes with the chemical potential is of the or-
der of the gap and is important in most materials, espe-
cially those materials such as ZnSe which have large
bandgaps. For such large-bandgap materials one cannot
speak of defect-formation energies without stating the
chemical potential.

To find the formation energies for a specified chemical
potential p, we first must calculate the relevant self-
consistent total energies. Let us start with the native de-
fects. We define E(N, N) as the perfect crystal bcc super-
cell energy with N (=16) anions and N cations (note that
there is no dependence on chemical potential for this
quantity), E„(N —1,N; V„) as the total energy of the su-
percell at chemical potential p with one anion removed
from its site to form an anion vacancy, and so forth. For
a given chemical potential, there are nine independent
native-defect supercell energies that must be obtained:

E(N, N), E„(N —1, ¹ V„), E„(N,N —1; Vc),
E„(N+1,N —1;Ac), E„(N —1,N+1;C~),
E„(N+1,N; A (T~ )), E„(N+1,N; A (Tc)),
E„(N,N+1;C(T~)), E„(N,N+1;C(TC)) .

The supercell calculations are performed for a given
charge state n, by removing n electrons from the system
and placing them at the noninteracting vacuum level (to
preserve charge neutrality). ' That is, the n electrons are
not allowed to enter into the exchange correlation or
Hartree potential except through the g=0 (g is a recipro-
cal lattice vector) component of the charge density. For,
say the antisite defect 3&, the true chemical-potential-
dependent supercell energy E„(N + 1,N —1; Ac ) is relat-
ed to the computed supercell energies for charge state n,
g(N + 1,N —1; Ac "), by adding the n electrons back into
the system at the Fermi level,
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~n/(n +1)
~Ts Po

=g(N + 1,N —1; Ac )

e„(Ac )+e„(V„)—e„(VC )

=E„(N+1,N —1; Ac)+E„(N —1,N; V~ )

g(—N+1, N —1; Ac" ") E—~ . (15) E„—(N, N —1; Vc ) E—(N, N), (16c)

The transition-state energies determine upper and lower
bounds on the chemical potential for a given charge state.
Thus the charge state is determined once the chemical
potential is stated.

The defect-reaction energies are derived for a given
chemical potential (charge state) by. taking appropriate
total-energy di6'erences making sure to maintain particle
conservation. To illustrate the procedure, consider the
first reaction [Eq. (1)]. In the forward sense, this reaction
may be called the "antisite-creation" reaction since two
antisites are formed. The energy associated with this re-
action is the sum of the anion and cation formation ener-
gies, c, ( Ac)+E„(C„). We refer to such a sum as a reac
tian energy, while the individual terms in the sum are re-
ferred to as formation energies. In terms of supercell en-
ergies, this reaction energy becomes

e„(AC)+E„(C„)=E„(N+1,N —1; Ac)

e„(V„)+e„(A ( T„))=E„(N—1,N; V~ )

+E„(N+ l, N; 2 (T„))
2E—(N, N),

s„(V„) + e„( A ( Tc) ) = E„(N —1,N; V~ )

+E„(N+1,N; 2 (Tc))
2E(N—,N),

e~(Vc)+e„(C(T„))=E„(N,N —1; Vc)

+E„(N,N + 1;C(T„))
2E (N, N)—,

E„(V~ )+c.„(C(Tc))=E„(N,N —1; VC)

+E„(N,N+1;C(Tc))
2E(N, N)—.

(16d)

(16e)

(16f)

(16g)

+E„(N—l, N+1;C„)

2E(N, N) . — (16a)

E„(Vg ) + E„(Vc ) =E„(N—1,N; V„)

+E„(N,N —1; Vc)

—[(2N —1 ) /N]E (N, N) . (16b)

Analogous to the first reaction, we see that only the sum
of the anion- and cation-site vacancy energies (and not
the individual energies) is definable in terms of the vacan-
cy supercell energies if the number of anions and cations
are to be conserved. The anion and cation atoms, re-
moved from their sites to create the vacancies, are en-
tered back into the crystal at the normal perfect-crystal
lattice sites thus expanding the (infinite) crystal by one
unit cell.

Continuing in this manner we obtain the equations for
the remaining five reactions. They are, respectively,

Notice that, in writing this reaction energy, care has been
taken to ensure that the number of anions and cations
remains constant. Observe also that it is not possible to
write down an equation for E&( Ac) [or ez(C&)] alone in
terms of antisite supercell energies which conserves the
number of anions and cations. Only the sun of the
cation- and anion-formation energies is defined by this re-
action (see also the Appendix).

Consider now the vacancy-creation reaction, 0—+ Vz
+ V&, which produces a pair of infinitely separated va-
cancies. The energy required for this reaction
E„(V„)+E~( Vc ) is computed by

These seven equations [Eqs. (16)] serve to define the seven
reaction energies uniquely. However, the eight formation
energies are defined only to within an arbitrary constant.
One should observe that the formation energies of indivi-
dual defects need never have been defined since it is the
reaction energies which are used in the mass-action equa-
tions and determine the defect abundances. Nevertheless,
it is appealing to think in terms of formation energies
which describe single defects. Individual defect-
formation energies are also convenient since, while the re-
action energies are normally complicated functions of the
chemical potential, they can be defined in terms of forma-
tion energies which vary with chemical potential in the
same manner as their corresponding supercell energies.
Defined in this way, the formation energies of a defect
can be found at all chemical potentials once the forma-
tion energy is known for one chemical potential. We can
fix the arbitrary constant in the formation energies by, for
example, setting the cation- and anion-site vacancy-
formation energies equal to each other in their zero-
charge state,

s( V„')=E( v,') . (17)

The formation energies are now uniquely determined,
and because of the arbitrary coristant may be negative.

The chemical-potential-dependent formation energies
c„are then defined to vary from the zero-charge-state
value in the same way as the total supercell energies vary
with chemical potential p. Thus the slope of E„at chemi-
cal potential p is equal to the charge state n at p and the
transition-state energies cTs determine the chemical po-
tentials at which the slope of c„changes by +1. With
this prescription, all eight native-defect-formation ener-
gies may be individually determined for all important
charge states. Since many of the defects involve several
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charge states, which are computed independently, the
prediction of the concentrations for a single-compound
semiconductor typically involves -40 self-consistent su-
percell calculations, which illustrates the need for an ex-
pedient means of calculation such as the PAO method.

C. Extracting concentrations from formation energies

Using formation energies derived as explained in Sec.
II 8, we numerically solve the nonlinear mass-action
equations subject to the stoichiometric constraints for S
and Sz. Our goal is only to determine which of the de-
fects are dominant and investigate the major trends in the
concentrations of these defects. We are not concerned
with absolute values for the concentrations, which are
highly sensitive to small errors in formation energies.

In practice, it is extremely dificult to obtain useful
general solutions to the mass-action equations due to the
rapid variation of the exponential factor for small varia-
tions in the formation energies. The concentrations
generaHy differ from one another by several orders of
magnitude. At room temperature, for instance, a 1-eV
difference in formation energies roughly corresponds to a
17 order-of-magnitude difference in the concentrations.
Since formation energies typically range over several ev's,
utmost caution must be exercised in deriving useful solu-
tions for a particular situation. A normally safe pro-
cedure is to decide which of the concentrations is dom-
inant and solve for it first; subsequently deriving the
remaining concentrations. The procedure we use is to
first guess at the dominant natiUe defect and its concen-
tration and determine a solution for the coupled mass-
action and constraint equations in a self-consistent
manner. Writing the dominant native defect concentra-
tion C „as

C,„=[i]=e

dent, although their ordering is not. We remove much of
the temperature dependence from the major defects by
investigating only the relative concentrations C =C /
C,„(Eo) and S=S/C, „(Eo), where Eo is the value of e at
perfect stoichiometry (S =Sx =0). The dominant-defect
concentration at stoichiometry, C,„(eo)=e ', is ex-
ponentially dependent on co and may be off by orders of
magnitude for small errors in co. The errors in co depend
strongly on chemical potential and charge state, among
other factors, but are generally on the order of a few
tenths of an eV. Since a 0.1-eV error in c leads to about
two orders of magnitude error in the concentrations at
room temperature, there is no hope of accurately predict-
ing absolute values for defect concentrations. Neverthe-
less, a great deal can be learned just by knowing the or-
dert. ng and approximate ratios of the defect concentra-
tions under various conditions. The formation-energy
differences are usually much greater than the errors in E;0.

We, therefore, expect the ordering of the defect concen-
trations to be far less sensitive to errors in the method
than the absolute values are. In deriving the defect con-
centrations we have used a temperature corresponding to
13=7 eV '. This high temperature has no important
affect on the ordering or trends of the defects.

A. Native defects

1. Gais

The formation energies for the eight native point de-
fects in GaAs are shown in Fig. 2. As explained previ-
ously, the deep trap associated with a given defect can
transfer electrons to and from the Fermi level giving rise
to a variety of charge states for the defect. Thus, the
defect-formation energy is dependent on the position of

where P=llksT and i represents the dominant native
defect, we start by guessing at i and E (or equivalently [i]).
Once C „is stated, all other native defects can be direct-
ly solved for through the mass-action equations. If i was
chosen correctly we should find that the computed con-
centration [i] is indeed largest. If, for this guessed s, the
assumed i was incorrect, the native defect concentrations
are recalculated with the correct (computed) i The value.
of c is then fixed by the stoichiometric constraint for S.
The correct c is the one which produces a physically
reasonable solution to Eq. (11) and is determined through
a root-finding procedure. The addition of extrinsic im-
purities can be handled analytically (with care) within the
iterative process involved in determining the native de-
fect concentrations.

III. RESULTS

4.5

4.0

+ SO-

2.5
40

2.0

i.5

i.0

0.5
0.0

I I

0.5 i.o

p (ev)

GaAs

8.0

V.O

I~ 6.0

44

4.0

S.O
0.0 0.5 i.o

(ev)

We now discuss our predictions for defect concentra-
tions on a number of systems. We first present results for
the native defects in GaAs, GaP, ZnSe, and Zn Te.
Second, we discuss our results for the extrinsic impurity
systems Zn in GaAs (GaAs:Zn), Si in GaAs (GaAs:Si),
and the group I impurities Li, Na, and K in ZnSe. The
defect concentrations C are highly temperature depen-

FIG. 2. Formation energies c.„vs chemical potential p for na-
tive point defects in GaAs. The chemical potential is taken rel-
ative to the valence-band edge and the experimental band gap of
GaAs is used. The vertical single lines represent A

&
transition-

state levels and the vertical lines shouldered by dots are T2
transition-state levels. The charge state of the defects at any
chemical potential is also given.
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the Fermi level. We, therefore, plot the formation energy
c.„as a function of the chemical potential through the gap
region. From the figure one can see that charge-state
effects can be quite dramatic. The formation energy for
the vacancy defect Vz„ for instance, ranges over more
than 3 eV in going from p-type GaAs, where it appears to
be a relatively unimportant neutral defect, to n-type ma-
terial, where it is a triple acceptor and has the lowest for-
mation energy overall. In an analogous manner, the an-
tisite defect As&, goes from being a double donor with
the lowest formation energy in p-type material to a neu-
tral, relatively high-energy defect in n-type material. Ex-
cept for a few special cases, we find that, overall, the de-
fects are well separated from one another in energy for a
given chemical potential. Thus, in most instances, the er-
rors in our method, which are typically a few tenths of an
eV, should not affect the ordering in the energies. In the
limit of p-type GaAs, we see that the antisite defect As&,
is unquestionably the lowest energy defect. In n-type ma-
terial, however, the system contains two defects, V&, and
GaA„which are competitively close to one another in
their formation energies. Modest errors in the deep-trap
levels or other effects could, therefore, conceivably switch
the ordering shown at this limit. We will find that
stoichiometry plays a major role in determining which of
these two defects are important, since the V&, defect will
tend to favor As-rich material, while the GaA, defect will
tend to form in Ga-rich material.

Figure 3 shows the native defect concentrations (with
S&=0) as a function of stoichiometry for both n and p--
type GaAs. Only the major defects appear in the figure;
the remaining defects being below the range of the plot
and relatively unimportant. The quantities are in units of
C,„(so), where Eo is found to be 0.9 and 2.3 eV for n and-
p-type GaAs, respectively, with P=7 eV '. The dom-
inant defect in p-type material is found to be the As on
Ga antisite defect Aso, for stoichiometric material
(S =0) and throughout much of the important range of
the stoichiometric parameter S. For sufBcient excess Ga,
however, the dominant defect eventually changes to the
GaA, antisite defect, although this may be at an unphysi-
cally high value of S. The dominant defect in n-type ma-
terial is found to be the vacancy on Ga, V&„except in
the high-excess-Ga region where the antisite becomes
dominant. It is interesting to observe that in both n-type
and p-type material, we find that acceptor- and donor-
type defects, respectively, form in an attempt to self-
compensate the material. It has recently been proposed
that this type of behavior may be responsible for Fermi
level pinning in Schottky barriers. ' The figure also
shows that for extremely high concentrations of As, the
antisite defect, Aso„becomes dominant. These results
for GaAs are consistent with those of Baraff and
Schluter' who looked at the large nonstoichiometric lim-
its.

A more physical interpretation of the energy co can be
obtained by including only the most important defects in
the mass-action equations and stoit-hiometric constraint
S. At stoichiometry, the constraint on S [Eq. (11}]for
GaAs can be written approximately as

2[AsG, ]+[Vz, ]=2[Ga~, ]+[ Vz, ] (18)

since interstitial defects are relatively unimportant here.
From Figs. 2 and 3 we see that for p-type GaAs we may
neglect [VG, ] and assume [V~, ]= [Ga~,]. With these as-
sumptions, the stoichiometric constraint equation [Eq.
(18)] for p-type material reduces to [Ga~,]=(—,

' )[AsG, ], so
that the first mass-action equation at stoichiometry can—Probe written as [AsG,]=e with so given by

so(p-type) =(—,
' )[2E„(V~, )+e„(As&„)—P ln2] .

Alternatively, if [GaA, ]»[V~, ], the governing reaction
at stoichiometry becomes Eq. (1), and the concentration
of the dominant defect is written as [AsG, ]=[Ga~,]

~'o=e ' with

eo(p-type) = ( —,
'

)[s„(Aso,)+ c,„(Ga~,)] .

In n-type material we can assume the governing reac-
tion at stoichiometry to be Ga6,~~2VG, +GaA, . The
stoichiometric constraint equation [Eq. (, 18)] then reduces
to [Ga~, ]= ( —,

' )[ Vz, ], which leads to the expression

so(n-type)=( —,')I2E„(V&,)+e„(Ga~,) —P 'ln2} .

Again the concentration of the dominant defect [VG, ) at
stoichiometry is dependent on a linear sum of formation
energies. Bearing these facts in mind, it is clear that the
interpretation of the formation energies must be made
with caution. Nevertheless, one can see that for the case
of GaAs the dominant defects are simply those with the
lowest formation energies.

It is interesting to observe that, in general, for
stoichiometric material (S =0), the constraint [Eq. (11)]
alone, forces the material to contain secondary dominant
defects with concentrations within a factor of 2 or so
from the dominant-defect concentration. One can see
from this constraint that if a vacancy is the dominant de-
fect then there need be only one other secondary dom-
inant defect (as is the case for n-type GaAs where the
dominant-defect Vz, forces the formation of the antisite
defect GaA, which absorbs the Ga atoms given up in the
formation of Vo, defects}. However, if an antisite is
dominant at S =0, then since antisites are weighted by a
factor of 2 in the stoichiometric constraint, there may be

eo(p-type) =(—,
' )[e„(Aso,)+e (Ga~, )

—P 'ln( —', )] .

Thus, we find at stoichiometry, the concentration of the
dominant-defect [As&,] is dependent on the sum of the
formation energies and not simply e„(Aso,) alone. This
should not be surprising, since as stated previously, the
individual defect-formation energies are not uniquely
defined (also see Appendix). One should be careful not to
take the assumption [V~, ]=[Ga~,] too seriously. Small
errors in the formation energies of these two defects
could easily make one of them unimportant. For the ex-
treme case where [V~, ] && [Ga~,], the governing reaction
would be As~,~~2V~, +As&, and the dominant-defect
concentration at stoichiometry becomes [V~, ]=e
with
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two other secondary dominant defects (as we find for @-

type GaAs where the V~, and Ga~, defects are secon-
dary). Thus, at stoichiometry, the concentrations of
different defects must be either identical or nearly equal
(within a factor of 2 or so) even though their formation
energies may be vastly different. In the limit of extreme
nonstoichiometry S ))0 or S «0, the stoichiometric
constraint normally requires that the defect with the
lowest formation energy of the set of defects which use
up the excess atoms be dominant even though this defect
may not have the lowest overall formation energy. Once
the significance of the stoichiometric constraint is recog-

nized, it becomes clear why the concentrations in Fig. 3
change with stoichiometry as they do and why small
changes in the formation energies should not affect the
ordering or the crossings observed in the curves. This
again illustrates that the trends and orderings of the con-
centrations in Fig. 3 are much less sensitive to such fac-
tors as temperature than one might at first expect.

2. GaP

To present at least one other example of a III-V ma-
terial we have also predicted native defect concentrations
in GaP (see Fig. 4). Since GaP has an indirect gap and
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FIG. 3. Native defect concentrations as a function of stoichiometry for p- and n-type GaAs. The right panel is for positive
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ordering and acts to make the diff'erences between the defect concentrations less severe. Only the major defects appear in the graph;
the remaining defects having concentrations which would appear below the plot window shown.
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the density of states near the conduction bands is
significantly higher than for the direct-band-gap materi-
als, we do not expect the deep-trap levels and consequent-
ly the formation energies and concentrations to be as reli-
ably predicted for this material. T.he error in the gap is
-0.2 eV, and the sp basis does not well represent even
the lowest conduction band. Nevertheless, differences in
formation energies range over more than 11 eV so that
we still expect the ordering and crossings in the levels to
be correct. In p-type material we again find the antisite

PG, to be the dominant defect over most of the important
range of stoichiometries. A new feature found in GaP is
that the V~ becomes dominant at high excess Ga. This
was not found to be the case in GaAs where the antisite
defect GaA, was dominant at high excess Ga. The value
of co found for p-type GaP was 2.4 eV. Similar to what
was done for GaAs, if we assume only V~ and PG, are
important defects at stoichiometry, we can approximately
write co as

eo(p-type) =(—,
' )[2E„(Vp)+E„(Po, ) —13 'ln2] .

4.0

GaP
i i.o

10.0

Q.O

(a)

In n-type GaP the dominant defects are VG, and Gap,
which are identical to the corresponding vacancy and an-
tisite defects in GaAs. An unphysical value of —0.68 eV
was found for co,

eo(n-type)=( —,')[2c.„(Vo,)+E„(Gap)—P 'ln2]
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which may be attributed to inaccuracies in the deep-trap
levels and inaccuracies in the conduction bands due to
the sp basis. Furthermore, the governing reaction in n-

type material involves five acceptor states. Thus, small
errors in the levels, which are near the valence-band edge,
produce significant errors in the formation energies for
chemical potentials near the conduction-band edge (i.e.,
for n-type material). Given that even for an error of 0.2
eV in the deep levels or the conduction-band edge, the
formation energies for n-type GaP will shift by 1 eV, a
small negative energy co is not too surprising. Fortunate-
ly, these errors do not upset the ordering of the dominant
defects or the shape of the curue shoton in Fig. 4(b) The.
only factor that could appreciably inAuence the curves
would be the involvement of another defect, but the for-
mation energy of the next important defect (V~) is -4 eV
above the dominant-defect-formation energy, thus re-
stricting this possibility to extreme unlikelihood.

3. ZnSe
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FIG. 4. (a) As in Fig. 2 but for GaP. (b) As in Fig. 3 but for
GaP. The unphysically small charge-state splittings for the Vp

defect are due to the mixing of the deep-trap level with the con-
duction bands. The edge of the theoretical conduction band lies
about 0.2 eV below the experimental conduction-band edge
shown.

In the II-VI material ZnSe we find the results for the
formation energies [Fig. 5(a)] and related concentrations
[Fig. 5(b)] are substantially di8'erent from those of the
III-V material GaAs (Figs. 2 and 3) and GaP. Remark-
ably, the dominant defect in p-type ZnSe is the interstitial
defect Zn(T„). The corresponding interstitial defect in
GaAs was found to be unimportant. For p-type, the cat-
ion in anion-site antisite defect, which was dominant in
stoichiometric GaAs becomes relatively unimportant for
ZnSe primarily due to the large formation energy for the
Sez„antisite. ' We find interstitial Zn in the large-
band-gap material ZnSe produces a deep trap near the
conduction-band edge [Fig. 5(a)]. The interstitial forma-
tion energy can thus be greatly reduced by transferring
the electrons from the deep trap to near the valence-band
edge in p-type material. Interstitial Zn in ZnSe has re-
cently been identified experimentally under nonequilibri-
um conditions by Rong and Watkins and has been stud-
ied theoretically in detail along with other interstitial im-
purities by Jansen et al. In n-type material the defects
found in ZnSe are identical to the corresponding defects
in the III-V compounds. The values of co are 1.7 eV,
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so=( —,
' )I2E„[Zn(T~ ))+c,„(Sez„)—P 'ln2I

for p-type ZnSe, and 1.2 eV,

Eo=( —,
' )[2s„(Vz„)+E„(Zns, ) —P 'ln2]

for n-type ZnSe.
A technologically important problem with ZnSe is the

difticulty encountered in producting reliable p-type semi-
conducting materials. ' The fact that interstitial Zn is
an intrinsic dominant defect and a double donor in p-type
ZnSe may be related to this difficulty. When the Fermi

level approaches the valence-band edge to form p-type
material, it becomes energetically favorable for the sys-
tem to form interstitia1 Zn defects. Since interstitial Zn is
a double donor, this increase in interstitial concentration
may act to destroy the p-type. The ZnSe crystal in this
way tends to self-compensate any attempt at making it p
type. The degree to which this particular mechanism for
self-compensation may be important, however, depends
strongly on the absolute concentration of interstitial Zn
atoms for a given chemical potential —an extremely
difficult number to accurately predict theoretically.
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4. ZnTe

Further insight into the mechanism of ' self-
compensation in ZnSe might bt. gained through a com-
parison with ZnTe. Experimentally it is known that
while ZnSe is generally n type, ZnTe tends to form p-type
material. This trend may appear unusual since these two
materials are chemically similar. To determine what
might bring about this trend, let us compare the behavior
of the dominant defects in ZnTe with those of ZnSe.

In Fig. 6(a) we show our results for the formation ener-
gies of all of the native point defects in ZnTe. Comparing
the formation energies of the defects in ZnTe with those
in ZnSe [Fig. 5(a)], we find very little qualitative
difference between the two materials. The defects with
the lowest formation energies for n- and p-type ZnTe are
identical to those found for ZnSe. We, therefore, might
expect little or no qualitative differences in the
dominant-defect concentrations for these two materials.
This is in fact found to hold true for n-type material,
where the dominant defects for ZnTe are predicted to be
identical to those of the corresponding defects in ZnSe
[see Fig. 6(b)]. Surprisingly, however, we predict a

significant reordering of the major defects in p-type ma-
terial. For ZnTe the two major defects are found to be
Zn interstitials and the Zn-site vacancy defect, whereas in
ZnSe the major defects were Zn interstitials and the
anion-on-cation antisite defect. What may be surprising
is that the Vz„or Ac (anion and cation site) are either
completely unimportant or dominant in these two quite
similar materials.

To understand the origin of the difference in dominant
defects between these two materials, we must again con-
sider the stoichiometric constraints on the crystal. The
most energetically favorable (lowest formation energy)
defect in both materials is interstitial Zn, Znr (which in-
terstitial site I=T„or Tc is unimportant here). As Zn
interstitials form, the stoichiometric constraints on the
system force the formation of secondary dominant de-
fects which produce Zn atoms. There are only two de-
fects which give up a Zn atom —the Zn-site vacancy Vz„
and the anion on Zn antisite defect A z„. Except for the
case where these two defects have equal or nearly equal
formation energies, we may in this situation, approximate
the stoichiometric constraint equation [Eq. (11)] near
S =0 as

FIG. 5. (a) As in Fig. 2 but for ZnSe. (b) As in Fig. 3 but for
ZnSe.

S =2[Az„]—[Znr ]

or else

(19a)
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S= [ Vz„]—[Zni ] . (19b)

Thus, if interstitial Zn is dominant, then by stoichiometry
alone, the concentration of one of the two defects, 3z„or
Vz„, must be equal (within a factor of 2 or so) to the Zni
concentration regardless of how high their formation en-
ergies are in comparison to other defects which do not
produce Zn atoms. With this constraint in mind, it is
easy to understand why the two compounds ZnSe and
ZnTe differ in their dominant defects for p-type material.
The ordering of the Az„and Vz„ formation energies in
p-type ZnTe is reversed in order from those in p-type

ZnSe. The dominant defects in p-type ZnSe satisfy Eq.
(19a), while those in p-type ZnTe satisfy Eq. (19b) at
stoic hiometry.

Let us consider the consequences this difference in the
dominant defects between these two p-type materials may
have on their electronic properties, bearing in mind that
ZnSe forms n-type while ZnTe forms p-type. The two
dominant defects in p-type ZnTe have opposite-charge
states. The Zni defect is a double donor, while the Vz„
defect is a single or possible double acceptor. The two
dominant defects in Zn Te thus tend to cancel each others
effect on the Fermi level. The electrons from the Zni are
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simply transferred to the Vz„. Furthermore, the value of
co for p-type ZnTe was found to be 2.14 eV,

which is high enough to make the concentration of any
defects relatively small. We, therefore, do not expect any
significant self-compensation in p-type ZnTe. This is to
be contrasted with the situation predicted for p-type ZnSe
where both of the dominant defects were found to be
donors and co was smaller. Both of these e6ects tend to
make p-type ZnSe more self-compensating than p-type
Zn Te.

For n-type material the dominant defects are Vz„and
Zn z for both ZnSe and Zn Te and are acceptors. For
ZnTe, however, the antisite Znr, is a triple acceptor,
while the Zns, antisite defect in ZnSe is only a double ac-
ceptor. More importantly, in n-type ZnTe a value of 0.39
eV was found for co,

Eo = ( —,
'

)[2s„(Vz„)+E„(Zn( Tc ) ) —P 'ln2],

which is much lower than was found for ZnSe (1.2 eV) so
that the defect abundances (which promote self-
compensation) are expected to be higher for n-type ZnTe.

Although there is some degree of uncertainty in these
predictions for the two materials due to the limited accu-
racy in our formation energies, these results do support
the notion that the native defects may be important in the
understanding of the experimental observation the ZnSe
tends to form n-type material, while ZnTe tends to form
p-type material.

B. Extrinsic impurities

1. Gad s:Zn

Let us now investigate the effects on the defect abun-
dances of adding an extrinsic impurity into a previously
perfect compound semiconductor. We chose the impuri-
ty X to be Zn as a first example. In Figs. 7(a) and 7(b) we
show the results for the formation energies and resulting
concentrations, respectively, for Zn in GaAs. The con-
centrations [Fig. 7(b)] are plotted as a function of total-
Zn concentration Sz for both n- and p-type semiconduct-
ing material at S =0. The concentrations are in units of
the concentration of the dominant native defect concen-
tration at stoichiometry (S =S+=0). Our calculations
predict the dominant extrinsic impurity for both n- and
p-type G-aAs to be the substitutional Zn on Ga defect
ZnG, in agreement with experiment. What is interest-
ing to observe is the inAu ence the Zn has on the
intrinsic-defect concentrations. In n-type material the
dominant defect at Sz =0 (no Zn impurities) is the Vo„
and the secondary dominant defect is the GaA, antisite
defect. As Zn is introduced into GaAs, Zn begins to fill
Ga vacancies causing their concentration to decrease.
The Zn also begins to displace the Ga atoms promoting
the formation of GaA, antisites. When the Znz, impurity
becomes the dominant defect overall we find that the na-
tive defects have switched their ordering. Thus the pres-
ence of Zn has had a significant effect on the intrinsic-

equilibrium concentrations. The Zn acts in a manner
very similar to a change in stoichiometry. In p-type ma-
terial, the inAuence of Zn on the intrinsic concentrations
is much the same as for n-type materia1 except that three
native defects are important.

2. GaAs:Si
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FIG. 7. Formation energies and concentrations for the
extrinsic-impurity Zn in GaAs. (a} Point-defect formation ener-
gies for Zn in GaAs as a function of chemical potential. (b)
Dominant-defect concentrations as a function of Zn concentra-
tion in n- and p-type GaAs at S =0. All concentrations are in
units of the dominant-defect concentration S =Sz =0.

For GaAs we have already investigated an example of
a group-II impurity (GaAs:Zn), and to a certain extent a
group-III defect (excess Ga in GaAs) and a group-V de-
fect (excess As in GaAs). As a last example of an extrin-
sic impurity in GaAs, let us now consider the group-IV
impurity Si in GaAs. For the case of Zn in GaAs it was
fairly obvious that the Zn would prefer the Ga site over
the As site since Zn and Ga have similar electronegativi-
ties (when compared to Zn and As). For the case of Si
(group IV), however, it is difficult to say a priori which
substitutional site, Ga (group III) or As (group V), is pre-
ferred.

The results for the formation energies and correspond-
ing concentrations for Si in GaAs are shown in Figs. 8(a)
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and 8(b), respectively. As is intuitively expected, we find
that both substitutional impurities SiG, and SiA, are im-
portant when Si is incorporated into GaAs. The Si~, de-
fect forms an acceptor state and is consequently, more
abundant in n-type material, where it can form by ab-
sorbing the energy released by the transfer of electrons
from near the conduction-band edge to the valence-band
resonant SiA, deep trap. The SiA, substitutional defect is,
in fact, predicted to be the dominant extrinsic defect in
stoichiometric n-type material. This is to be compared
with the situation which exists in p-type material, where
we predict the Si atoms will prefer to occupy the Ga site.
The defect Sio, forms a donor state so that the defect en-
ergy can be lowered in p-type material by transferring
electrons from the conduction-band to near the valence-
band edge. Thus the dominant Si-impurity defect for
both n- and p-type material is a substitutional defect with
the site dependent on the chemical potential.

For intrinsic GaAs host material (p=midgap) both
substitutional Si defects SiA, and Siz, are expected to
form in nearly the same ratio with Sio, slightly favored.
Experimentally ' it is believed that the site occupied
by a Si impurity in GaAs is the Ga site. This may indi-
cate that the crossing in the two antisite-formation ener-
gies shown in Fig. 8(a) should perhaps be higher in the
gap. There is also, however, some evidence that the

preference for the Ga site may be related to difficulties in
sample preparation. In fact, Warwick et al. have
found that in indium-doped samples, the SiA, defect can
be made predominant over Sio,. This might be due to
both the filling of Ga-site vacancies by In and the raising
of the chemical potential (since the Vo, are acceptors)
and gives some support to the notion that a crossing such
as that shown in Fig. 8(a) does occur. Further evidence
that this crossing occurs comes from GaAs samples
grown by liquid-phase epitaxy, where Si is found to be
amphoteric. ' In any case, one must also keep in mind
that the defects present in a material grown under non-
equilibrium conditions need not be the same as those pre-
dicted here where equilibrium is assumed.

The inAuence the concentration of Si has on the native
defect concentrations is similar to that found for the case
of Zn in GaAs. Unlike Zn impurities, however, the Si
substitutional impurity concentration never becomes
greater than any intrinsic-defect concentration in n-type
material. Again this is due to the stoichiometric con-
straints on the system. For every Si atom replacing an
As atom to form SiA„ there must also exist a vacancy at
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FIG. 9. Formation energies for the extrinsic group-I impuri-
ties Li, Na, and K in ZnSe as a function of chemical potential.
The vertical single lines represent 2

&
transition-state levels and

the vertical lines shouldered by dots are T2 transition-state lev-
els. The charge state of the defects at any chemical potential is
also given.
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the Ga site if we preserve Nz =Xc (i.e., stoichiometry).
The displaced As and Ga atoms combine again at their
normal crystal sites expanding the crystal by one unit
cell. The inhuence the Si has on the native defect concen-
trations in n-type material is identical to the effects of an
excess amount of As. In p-type material the site occupied
by Si is the Ga site. This is the same site as was predicted
for Zn impurities in p-type GaAs. Consequently the
effect on the native defects of adding Si impurities in

stoichiometric p-type GaAs is identical to the effect of
adding Zn impurities (unless, of course, the Si donors act
to afFect the chemical potential).

3. ZnSe:Li, Na, E

As a final example of an important extrinsic system,
consider the alkali impurities Li, Na, and K in ZnSe.
The formation energies for these three different impuri-
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ties are shown in Fig. 9. To a large extent these three ele-
ments appear to behave in nearly the same manner when
incorporated into ZnSe. The Zn substitutional site and
an interstitial site have the lowest formation energies in
n- and p-type material, respectively, for all three alkalies.
These three impurities are acceptors at the Zn substitu-
tional site and are donors at either of the interstitial sites.
The extrinsic defect with the highest formation energy is
always the Se-site substitutional impurity defect. As we
move from Li to K, the Se-site substitutional defect-
formation energy becomes larger. This may be due to the
fact that Li is closer to Se in electronegativity than Na or
K. Another interesting trend is that for p-type ZnSe the
dominant interstitial site switches from T& for Li impuri-
ties to T~ for Na and K. This particular trend is oppo-
site to that predicted from the shell-model calculation of
Harding, indicating that the result may be fairly sensi-
tive to charge redistribution.

The defect concentrations for Li, Na, and K (see Fig.
10) like the formation energies from which they are de-
rived are also very similar to each other for both n- and
p-type ZnSe. In n-type material the alkali occupies the
Zn site and alters the intrinsic-defect concentrations by
filling up the Vz„and forcing displaced Zn to occupy Se
sites in a manner identical to an excess of Zn atoms in
ZnSe and similar to what was found for Zn in n-type
GaS. In p-type material the dominant-impurity defects
are at interstitial sites. Since these sites are empty in a
perfect crystal, occupying them with the extrinsic-alkali
impurities does not upset the native defect concentrations
as evidenced by the horizontal native defect lines in the
figures.

IV. CONCLUSION

An extensive theoretical study has been made on the
factors that influence the formation of native defects and
extrinsic-impurity incorporation in semiconductors. We
have used a complete set of reaction equations within
equilibrium statistical mechanics to predict the defect
concentrations of intrinsic vacancy, antisite, and
tetrahedral Td-site interstitial defects and extrinsic subti-
tutional and Td-site interstitial impurities. Factors that
influence the native defect abundances that we have con-
sidered are the temperature, stoichiometry, Fermi level,
host materials and extrinsic impurities. The host materi-
als we have investigated are GaAs, GaP, ZnSe, and
ZnTe. We find the major native defects in the III-V ma-
terials GaAs and GaP are the antisite and vacancy de-
fects, ~hereas interstitial Zn becomes important in the
II-V! materials ZnSe and ZnTe. The dominant native de-
fect in stoichiometric p-type ZnSe is predicted to be inter-
stitial Zn which is a double donor and thus may be in-
volved in self-compensation in this material. We find in-
terstitial Zn to be important but not dominant in
stoichiometric p-type ZnTe, which tends to form n-type
material. To demonstrate how the presence of extrinsic
impurity may affect the native defect concentrations, we
have also considered a number of extrinsic impurities in
GaAs and ZnSe. We find the presence of extrinsic impur-

ities may profoundly alter the native defect abundances,
in many cases, acting similar to a change in
stoichiometry.
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E(N„N2, . . . , N„j =Eo+ g N;s;, (Al)

where Fo is the total energy of the perfect crystal.
There is a rather subtle aspect of Eq. (Al) that should

be emphasized. The point is that although we have
defined n formation energies, there are actually only
n —n, relevant reaction energies which may be calculat-
ed. Thus n, of the formation energies c.; are arbitrary,
and n, of the coefficients X; are not independent.

To make it obvious that this must be the case consider,
for example, the effect of creating an interstitial in a
formerly perfect crystal. In order to create the intersti-
tial the system is forced to also contain a vacancy due to
the stoichiometric constraints. Thus the energy of form-
ing an interstitial cannot be uniquely defined since it is
not an independent process. Therefore Eq. (Al) is only
well defined because the weighted sum over all formation
energies is a unique quantity.

We now define W t N; j to be the number of ways to dis-
tribute N; type i defec-ts over NL lattice sites (or intersti-
tial sites). Using the fact that two defects of the same
type i are indistinguishable we have

XL!
(NL N; )!N;!— (A2)

If the lattice is sufficiently sparsely populated by defects,
we may assume that the distribution of one type of defect
does not influence the distribution of another type. With
this assumption, the number of ways to form X&-type 1

defects, X2-type 2- defects, . . . , and X-type n defects is
simply

WtN, , N2, . . . , N„}= W[N, j W[N2 j . WjN„}

(A3)

Equation (A3) represents the number of microstates in
the particular macrostate [Ni, Nz, . . . , N„j for distin-
guishable defect types but indistinguishable defects of a
given type. If we neglect volume and nonconfigurational

APPENDIX: FORMAL DERIVATION OF
CONCENTRATION EQUATIONS

Suppose we have a system of n defects under n,
(stoichiometric) constraints. If there are N,.-type i defects
each requiring an energy e, to form (i.e., c,; =formation
energy for defect type i), then the total energy of the sys-
tem can be written as
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entropy changes in the Gibb's free energy (since they are
normally much smaller than formation energies), the par-
tition function Z is given by

Z= g g' WIN, , N2, . . . , N„I

where A,p is a constant Lagrange multiplier and the Stir-
ling approximation (N!-N lnN —N for large N) has been
employed. Neglecting X; in comparison to Nl, we thus
have for the concentration [i]

i=1 N [i]= =e 'e ',
XL

(A7)

i =1 N, j=2
(A4)

where P= 1/k~T, and the prime on the sum reminds us
that the sum over all possible microstates is constrained
by stoichiometry. The stoichiometric constraints on the
defect concentrations can be written in the form [see Eqs.
(11)and (12)]

f„[N„N2, . . . , N„] =NL y(p, ) gctj—(p)NJ =0,
J

(A5)

0= —ln
N; n

—Pe;+ g k„a,(p),
@=1

(A6)

where ct (p) is an integer in the range —2 —2 depending
on the defect, and y(p) is the external constraint, such as
S (say for p = 1) and S, (for p =2).

Replacing the sum in (A4) by the value of its largest
term, and minimizing the free-energy subject to the con-
straints (A5) we then obtain

+"i tt' ' c~

=expt —p[e„(V, )+e„(Vc)]I (A8)

independent of any g s. This can be done for any reac-
tion and is nothing more than the mass-action equation
for the reaction. Thus we have established that the law
of mass action can be used for these defect systems once
the reaction (or formation) energies are determined.

where g, is defined as y;= Q„A,„a;(p). Notice that,
without the constraints g;, the concentrations are com-
pletely separable and are given by their Boltzmann fac-
tors. With the constraints, we must evaluate the g;
which involves solving for all the unknowns. However,
noting that for any reaction the sum of the y s for the
defects on the right side equals that on the left, we can
form concentration product equations which are indepen-
dent of g;. For example, consider the reaction
O~v„+ VC. In this case y( V„)=A, „and y( Vc)
= —A, so that
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